地球科学进展 ›› 2011, Vol. 26 ›› Issue (12): 1282 -1289. doi: 10.11867/j.issn.1001-8166.2011.12.1282

所属专题: IODP研究

研究论文 上一篇    下一篇

冲绳海槽中部热液活动与IODP 331航次初步成果
杨守业,王权   
  1. 同济大学海洋地质国家重点实验室,同济大学海洋与地球科学学院,上海200092
  • 收稿日期:2011-11-10 修回日期:2011-11-20 出版日期:2011-12-10
  • 通讯作者: 杨守业(1971-),男,江苏淮安人,教授,主要从事河流与海洋地球化学研究.  E-mail:syyang@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“末次盛冰期以来长江入海沉积铁化学相态组成及环境响应”(编号:41076018)资助.

Hydrothermal Activity in Middle Okinawa Trough and Preliminary Results of Integrated Ocean Drilling Program Expedition 331

Yang Shouye, Wang Quan   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai200092, China
  • Received:2011-11-10 Revised:2011-11-20 Online:2011-12-10 Published:2011-12-10

伊平屋北部热液区(Iheya North hydrothermal field)位于冲绳海槽中部地区。综合大洋钻探计划(IODP)331航次于2010年9月1日至10月4日在该区钻探了5个站位(C0013~C0017):C0016站位位于North Big Chimney(NBC)地区活跃的热液烟囱和硫化物—硫酸盐丘状体上;在C0013、C0014、C0015、C0016站位发现了异常高热流值;在热液补给区C0017站位,实现最大钻探深度达到海底下151 m。在活跃的丘状热液喷口处的C0016站位,尽管取芯率只有4.7%,但首次在现代海底获得黑矿型(Kuroko-type)、富闪锌矿的黑色矿石样品。其他4个站位岩芯主要为具有不同热液蚀变和矿化程度(沸石相到绿片岩相)的互层状半深海和火山碎屑沉积物,及火山角砾和浮岩砾屑。钻孔中不规则的地温梯度剖面变化揭示出地下流体的横向运移趋势。现场数据表明,岩芯孔隙水和气体组成在垂向和横向上变化较大。海底作用主要包括通过相态分离而形成高盐水和富气体的流体,矿物蚀变释放Ca而吸附Mg和Na,高温下K释放而低温吸收,硬石膏形成,有机质的微生物氧化和甲烷利用硫酸盐的厌氧氧化,微生物作用下甲烷形成等。船上研究未证实研究区存在活跃的深部生物圈,细胞丰度明显低于以前的ODP/IODP在陆架边缘的钻探站位。

The Iheya North Hydrothermal Field is located in the middle Okinawa Trough. During the Integrated Ocean Drilling Program (IODP) Expedition 331, the Deep Hot Biosphere Project, five sites (C0013~C0017) were drilled in the Iheya North Hydrothermal System from September 1 to October 4, 2010 in order to investigate metabolically diverse subseafloor microbial ecosystems and their physical and chemical settings. Site C0016 located in the active hydrothermal vent site and sulfide-sulfate mound at North Big Chimney (NBC) has the recovery rate of only 4.7%, but the core included the first Kuroko-type, sphalerite-rich black ore ever recovered from the modern seafloor. The other four sites yielded interbedded hemipelagic and volcaniclastic sediment and volcanogenic breccias and pumice that are variably hydrothermally altered and mineralized, in the zeolite to greenschist facies. Detailed temperature profiles at Sites C0014 and C0017 display irregularities suggestive of lateral flow.The analysis of interstitial water and headspace gas yielded complex patterns with depth and laterally at most sites over distances of only a few meters. Documented processes include formation of brines and vapor-rich fluids by phase separation and segregation, uptake of Mg and Na by alteration minerals in exchange for Ca, leaching of K at high temperature and uptake at low temperature, anhydrite precipitation, microbial oxidation of organic matter and anaerobic oxidation of methane utilizing sulfate, microbial methanogenesis. Shipboard analysis has not confirmed the presence of an active deep hot biosphere. Cell abundances are much lower than those found in previous Ocean Drilling Program/ IODP sites on continental margins, and attempts at culturing were generally unsuccessful.

中图分类号: 

[1]Deming J W,  Baross J A. Deep-sea smokers: Windows to a subsurface biosphere?[J].Geochimica et Cosmochimica Acta,1993,57(14): 3 219-3 230.[2]Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted back arc hydrothermal system: Impacts of subsea-floor phase-separation[J].FEMS Microbiology Ecology,2005,54(1): 141-155.
[3]Nunoura T,  Takai K. Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough[J].FEMS Microbiology Ecology, 2009,67: 351-370. 
[4]Takai K, Gamo T, Tsunogai U, et al. Geochemical and microbiological evidence for a hydrogen-based, hyperthermo-philic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field[J].Extremophiles,2004,8(4): 269-282.
[5]Takai K, Nunoura T, Ishibashi J, et al. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin[J].Journal of Geophysical Research,2008,113(G2): G02031.
[6]Takai K, Nunoura T, Horikoshi K, et al. Variability in microbial communities in black smoker chimneys at the NW caldera vent field, Brothers Volcano, Kermadec arc[J].Geomicrobiology Journal,2009,26(8): 552-569. 
[7]Qin Yunshan, Zhai Shikui, Mao Xueying, et al. The trace element characteristics of the pumice in the Okinawa Trough and its geological significance[J]. Oceanologia et Limnologia Sinica, 1987, 18(4): 313-319.[秦蕴珊, 翟世奎, 毛雪英, 等. 冲绳海槽浮岩微量元素特征及其地质意义[J]. 海洋与湖沼, 1987, 18(4): 313-319.]
[8]Zhai Shikui, Gan Xiaoqun. Study of basal from the hydrothermal field of the Okinawa Trough[J].Oceanologia et  Limnologia Sinica, 1995, 26(2): 115-123.[翟世奎, 干晓群. 冲绳海槽热液活动区玄武岩的矿物学和岩石化学特征及其地质意义[J]. 海洋与湖沼, 1995, 26( 2): 115-123.]
[9]Chen Lirong, Zhai Shikui, Shen Shunxi. Isotopic characteristics of pumice and its age dating in the Okinawa Trough[J]. Science in China (Series B), 1993, 23(3): 324-329.[陈丽蓉,翟世奎,申顺喜. 冲绳海槽浮岩的同位素特征及年龄测定[J]. 中国科学: B辑, 1993, 23(3):324-329.]
[10]Li Weiran, Yang Zuosheng, Wang Yongji, et al. The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance[J]. Acta Petrologica Sinica, 1997, 13(4): 538-550.[李巍然, 杨作升, 王永吉, 等.冲绳海槽火山岩岩石化学特征及其地质意义[J]. 岩石学报, 1997, 13(4): 538-550.]
[11]Hou Zengqian, Zhang Qiling. CO2-Hydrocarbon fluids of the Jade hydrothermal field in the Okinawa Trough: Fluid inclusion evidence[J]. Science in China (Series D), 1998, 28(2): 142-148.[侯增谦, 张绮玲. 冲绳海槽现代活动热水区CO2—烃类流体: 流体包裹体证据[J]. 中国科学:D辑, 1998, 28(2): 142-148.]
[12]Zhai Shikui, Yu Zenghui, Du Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Acta Oceanologica Sinica, 2007, 29(1): 58-65.[翟世奎,于增慧,杜同军. 冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J]. 海洋学报, 2007, 29(1): 58-65.]
[13]Zhai Shikui, Chen Lirong, Zhang Haiqi, et al. Igneous Process and Subseafloor Hydrothermal Activity in the Okinawa Trough[M]. Beijing: Ocean Press, 2001.[翟世奎, 陈丽蓉, 张海启, 等. 冲绳海槽的岩浆作用与海底热液活动[M]. 北京: 海洋出版社, 2001.]
[14]Zeng Zhigang, Jiang Fuqing, Zhai Shikui, et al. Sulfur isotopic composition of seafloor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance[J]. Acta Oceanologica Sinica, 2000, 22(40): 74-82.[曾志刚, 蒋富清, 翟世奎, 等.冲绳海槽中部Jade热液活动区中海底热液沉积物的硫同位素组成及其地质意义[J]. 海洋学报, 2000, 22(40): 74-82.]
[15]Zeng Zhigang, Yu Shaoxiong, Yin Xuebo, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China (Series D), 2009, 39(11): 1 579-1 590.[曾志刚, 余少雄, 殷学博, 等. 冲绳海槽Jade热液区热液硫化物的元素富集与铀系同位素组成[J]. 中国科学: D辑, 2009, 39(11): 1 579-1 590.]
[16]Halbach P, Nakamura K, Wahsner M, et al. Probable modern analogue of Kuroko-type massive sulfide deposits in the Okinawa Trough back-arc basin[J].Nature,1989,338(6 215): 496-499.
[17]Sakai H, Gamo T, Kim E S, et al. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin[J].Science,1990,248(4 959): 1 093-1 096.
[18]Glasby G P,  Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview[J].Ore Geology Review,2003,23(3/4): 299-339.
[19]Kawagucci S, Chiba H, Ishibashi J, et al. Hydrothermal fluid geochemistry at the Iheya north field in the mid-Okinawa Trough:Implication for origin of methane in subseafloor fluid circulation systems[J].Geochemical Journal,2011,45(2):109-124.
[20]Takai K, Horikoshi K. Genetic diversity of archaea in deep-sea hydrothermal vent environments[J].Genetics,1999,152:1 285-1 297.
[21]Takai K, Inagaki F, Nakagawa S, et al. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields[J].FEMS Microbiology Letters,2003,218(1): 167-174.
[22]Takai K, Nakagawa S, Reysenbach A L, et al. Microbial ecology of mid-ocean ridges and backarc basins[C]Christie D M, Fisher C R, Lee S M, et al,eds. Back-Arc Spreading Systems: Geological, Biological, Chemical and Physical Interactions. Geo- physical Monograph,2006,166:185-213. 
[23]Takai K, Nakamura K. Compositional, physiological and metabolic variability in microbial communities associated with geochemically diverse, deep-sea hydrothermal vent fluids[M]Barton L, Mendl M, Loy A, eds. Geomicrobiology: Molecular and Environmental Perspective. New York: Springer,2010:251-283. 
[24]Halbach P, Pracejus B,  Maerten A.  Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan[J].Society of  Economic Geologists,1993,88(8): 2 210-2 225.
[25]Sakai H, Gamo T, Kim E S, et al.Unique chemistry of the hydrothermal solution in the mid-Okinawa Trough backarc basin[J].Geophysical Research Letters,1990,17(12): 2 133-2 136.
[26]Gamo T, Ishibashi J, Tsunogai U,et al. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the Western Pacific[C]Christie D M, Fisher C R, Lee S M, et al,eds. Back-arc Spreading Systems: Geological, Biological, Chemical, and Physical interactions. Geophysical Monograph,2006,166:147-161. 
[27]Konno U, Tsunogai U, Nakagawa F, et al.Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough[J].Geophysical Research Letters,2006,33(16): L16607.
[28]Suzuki R, Ishibashi J, Nakaseama M,et al.  Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin[J].Resource Geology,2008,58(3): 267-288. 
[29]Expedition 331 Scientists. Integrated Ocean Drilling Program Expedition 331 Preliminary Report Deep Hot Biosphere[M].US:Integrated Ocean Drilling Program Management Interational, Inc.2011:1-63.
[30]Schrum H N, Spivack A J, Kastner M, et al.Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment[J].Geology,2009,37(10): 939-942.

[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 王风平, 陈云如. 深部生物圈研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1277-1286.
[3] 李江涛,周怀阳,彭晓彤,吴自军. 海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1015-1023.
[4] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[5] 李小虎,初凤友,雷吉江,赵建如. 慢速—超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 2008, 23(6): 595-603.
[6] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[7] 刘长华,殷学博. 关于现代浅海型海底热液活动的研究进展[J]. 地球科学进展, 2006, 21(9): 918-924.
[8] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[9] 党宏月;宋林生;李铁刚;秦蕴珊. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1306-1313.
[10] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
[11] StevenD'Hondt. 大洋钻探对洋底以下生命的探索[J]. 地球科学进展, 2003, 18(5): 759-763.
[12] 曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展, 2003, 18(5): 764-772.
[13] 李乃胜. 大洋钻探与冲绳海槽[J]. 地球科学进展, 1995, 10(3): 240-245.
阅读次数
全文


摘要