[1] Corlis J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos Rift[J].Science,1979, 203: 1 073-1 083. [2] Jannasch H W, Mottl M J. Geomicrobiology of deep-sea hydrothermal vents[J].Science,1985, 229: 717-725. [3] Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: Microbe mineral interactions at and below the seafloor[J].TRENDS in Microbiology,2005, 13: 449-456. [4] Kelley D S, Baross J A , Delaney J R. Volcanoes, fluids, and life at midocean ridge spreading centers[J].Annual Review of Earth and Planetary Sciences, 2001, 30: 385-491. [5] Deming J W, Baross J A. Deep-sea smoker: Windows to a subsurface biosphere?[J].Geochimica et Cosmochimica Acta,1997, 57: 3 219-3 230. [6] Edwards K J, McCollom T M, Konishi H, et al. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies[J].Geochimica et Cosmochimica Acta,2003, 67:2 843-2 856. [7] Cowen J P. The microbial biosphere of sediment buried oceanic basement[J].Research of Microbiology,2004, 155: 497-506. [8] Blöchl E, Rachel R, Burggraf S, et al. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113℃[J].Extremophiles, 1997, 1: 14-21. [9] Kashefi K, Lovely D R. Extending the upper temperature limit for life[J].Science, 2003, 301: 934. [10] Inagaki F,Takai K,Nealson K H,et al.Sulfurovum lithotrophicum gen. nov.,sp.nov.,a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from the Okinawa Trough hydrothermal sediments[J].International Journal of Systematic and Evolutionary Microbiology,2004,54:1 477-1 482. [11] Corre E, Reysenbach A-L, Prieur D. ε-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge[J].FEMS Microbiology Letters, 2001, 205: 329-335. [12] Hoek J, Banta A, Hubler F,et al. Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the Central Indian Ridge[J].Geobiology,2003,1:119-127. [13] López-Garcia P, Duperron S, Philippot P, et al. Bacterial diversity in hydrothermal sediment and epsilon-proteobacterial dominance in experimental micro-colonizers at the Mid-Atlantic Ridge[J].Environmental Microbiology,2003, 5: 961-976. [14] Kormas K A, Tivey M K, Damm K V, et al. Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site[J].Environmental Microbiology, 2006, 8: 909-920. [15] Ehrhardt C J,Haymon R M,Lamontagne M G,et al.Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise[J].Environmental Microbiology,2007,9:900-912. [16] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation[J].Microbiology Reviews,1995, 59:143-169. [17] Cary S C,Campbell B J,DeLong E F.Studying the deep subsurface biosphere: Emerging technologies and applications[C]//Wilcock W S D,DeLong E F,Kelley D S, et al,eds.The subseafloor biosphere at Mid-Ocean Ridges,Geophysical Monograph 144,American Geophysical Union.Washington DC,2004:383-399. [18] Takai K, Nakagwa S, Reysenbach A-L, et al. Microbial ecology of mid-ocean ridges and back-arc basin[C]//Back-arc spreading systems: Geological biological, chemical, and physical interactions, Geophysical Monograph 166, American Geophysical Union. Washington DC,2004:185-213. [19] Zhou J, Bruns M, Tiedje J. DNA recovery from soils of diverse composition[J].Applied and Environmental Microbiology,1996, 62: 316-322. [20] Edwards K J, Bond P L, Gihring T M,et al. An archaea iron-oxidizing extreme acidophile important in acid mine drainage[J]. Science,2000,287:1 796-1 799. [21] Page A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology,2008, 10:874-884. [22] Tivey M K.Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007,20:50-65.[23] Woese C R, Fox G E. Phylogenetic structure of the Prokaryotic domain: the primary kingdom[J].Proceedings of the National Academy of Sciences,1977,74:5 088-5 090. [24] Bult C J, White O, Olsen G J, et al. Complete genome sequence of the Methanogenic Archaea,Methanococcus Jannasehii[J].Science,1996, 273: 1058-1073. [25] Corliss J B, Baross J A, Hoffman S E. A hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth[J].Oceanologica Acta,1981,4:59-69. [26] Nakagawa T, Nakagawa S, Inagaki F, et al. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures[J].FEMS Microbiology Letters,2004, 232: 145-152. [27] Dhillon A, Lever M, Lloyd K G, et al. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin[J].Applied and Environmental Microbiology, 2005, 71: 4 592-4 601. [28] Brazelton W, Schrenk M, Kelley D, et al. Methane-and sulfur-metabolizing microbial communities dominate the Lost City hydrothermal field ecosystem[J].Applied and Environmental Microbiology, 2006, 72: 6 257-6 270. [29] Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J].Applied and Environmental Microbiology,2003, 69:3 580-3 592. [30] Perner M, Kuever J, Seifert R, et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge[J].FEMS Microbiology Ecology,2007, 61: 97-109. [31] Takai K, Campbell B J, Cary S C, et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilon-proteobacteria[J].Applied and Environmental Microbiology,2005, 71: 7 310-7 320. [32] Fischer S G, Lerman L S. DNA fragments differing by single base pair substitutions are separated in Denaturing Gradient Gels: Correspondence with melting theory[J].Proceedings of the National Academy of Sciences,1983, 80: 1 579-1 583. [33] Muyzer G, Teske A, Wirsen C O, et al. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments[J].Archives of Microbiology, 1995, 164: 165-172. [34] Yu Z T, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by denaturing gradient gel electrophores[J].Applied and Environmental Microbiology,2004, 70: 4 800-4 806. [35] Sievert S, Brinkhoff T, Muyzer G,et al.Spatial Heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece)[J].Applied and Environmental Microbiology,1999,65: 3 834-3 842.[36] Nakagawa T, Ishibashi J I, Maruyama A, et al. Analysis of Dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific[J].Applied and Environmental Microbiology, 2004, 70: 393-403. [37] Takai K, Komatus T, Inagaki F, et al. Distribution of archaea in a black smoker chimney structure[J].Applied and Environmental Microbiology,2001, 67:3 618-3 629. [38] Taroncher-Oldenburg G, Francis C A, Ward B B. Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment[J].Applied and Environmental Microbiology, 2003, 69:1 159-1 171. [39] Wang F P, Zhou H Y, Meng J, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent[J].Proceedings of the National Academy of Sciences,2009(in print). [40] Pernthaler J, Glockner F O, Schonhuber W, et al. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes[C]//Paul J H, ed. Methods in Microbiology: Marine Microbiology. New York:Academic Press, 2001:207-226. [41] DeLong E F, Wickham G S, Pace N R. Phylogenetic stains: Ribosomal RNA based probes for the identification of single microbial cells[J].Science,1989, 243: 5 554-5 563. [42] Orphan V, House C, Hinrichs K, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J].Science,2001, 293: 484-487. [43] Takai K, Oida H, Suzuki Y, et al. Spatial distribution of marine crenarchaeota group I in the vicinity of Deep-Sea hydrothermal Systems[J].Applied and Environmental Microbiology,2004, 70: 2 404-2 413. [44] Taylor C D, Wirsen C O, Crail F. Rapid microbial production of filamentous sulfur mats at hydrothermal vents[J].Applied and Environmental Microbiology,1999, 65: 2 253-2 255. [45] Peng X T, Zhou H Y, Yao H Q, et al. Microbe-related precipitation of iron and silica in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge[J].Chinese Science Bulletin,2007, 52: 3 233-3 238. |