地球科学进展 ›› 2009, Vol. 24 ›› Issue (9): 1024 -1032. doi: 10.11867/j.issn.1001-8166.2009.09.1024

研究论文 上一篇    下一篇

云南腾冲上新统 Carpinus miofangiana的发现及古气候意义
戴静,孙柏年 *,解三平,吴靖宇,李娜   
  1. 兰州大学资源环境学院,甘肃  兰州  730000
  • 收稿日期:2009-01-16 修回日期:2009-07-07 出版日期:2009-09-10
  • 通讯作者: 孙柏年(1955-),男,山东沂水人,教授,博导,主要从事古生物地层学的研究. E-mail:bnsun@lzu.edu.cn
  • 基金资助:

    国家自然科学基金项目“滇西腾冲—陇川新近纪植物化石角质层及古气候指示作用”(编号:40772012);“云南临沧地区中新世壳斗科、桦木科环境古植物学研究”(编号:40802008);高等学校博士学科点专项科研基金项目“青藏高原东缘第三纪植物化石与古气候定量重建”(编号:200807301005)资助.

Carpinus miofangiana from the Pliocene of Tengchong in Yunnan Province and its Palaeoclimatic Significance

Dai Jing, Sun Bainian, Xie Sanping, Wu Jingyu, Li Na   

  1. College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China
  • Received:2009-01-16 Revised:2009-07-07 Online:2009-09-10 Published:2009-09-10
  • Supported by:

    戴静(1984),女,云南玉溪人,博士研究生,主要从事古生物地层学的研究.E-mail:daij06@lzu.cn

      在云南省腾冲县上新统芒棒组发现了保存较好的被子植物化石密脉鹅耳枥Carpinus miofangiana Hu et Chaney。该种化石曾在我国山东山旺组有过报道,当前化石在叶形及叶脉特征上都和山旺的标本非常相似。进一步分析了化石叶片的角质层微细构造特征,并结合叶结构分析提高了对化石植物分类鉴定的准确性。基于化石Carpinus miofangiana与现生植物Carpinus fangiana 在生态环境及其结构特征上的相似性,将Carpinus fangiana 作为化石的现生对应种进行对比,并统计二者的气孔密度和气孔指数,用气孔比率的方法推测上新世的大气CO2浓度为464×10-6,基本上与Berner全球碳平衡模型GEOCARB III中CO2浓度变化曲线上的数值一致,说明C. miofangiana叶片可以作为古大气CO2浓度变化的生物指标。最后通过化石和现生叶片角质层的对比分析推断滇西地区上新世时气候比现在温暖湿润。

       A fossil leaf identified as Carpinus miofangiana Hu et Chaney was discovered in the Late Pliocene sediments of the Mangbang Formation, Tengchong Country, Yunnan Province, China. It was well preserved with gross morphological structure and microstructure of cuticles in situ. The gross morphological characteristics of it were similar to that of the fossil species Carpinus miofangiana from the Shanwang Formation in Shandong Province: both of them are oblong-ovate, base obliquely cordate, leaf margin doubly minutely serrate. Their primary veins are straight and moderately thick, secondary veins are pinnate. Additionally, the anatomical characteristics of the present specimen are investigated here and compared with the modern leaf Carpinus fangiana, it is more credible to decide the taxonomic position of fossil plant using leaf architecture and cuticular characteristics together. As both the fossil and modern species shared similar ecological habits and clearly possessed very similar gross morphological characteristics and epidermic features, Carpinus fangiana was selected to be the fossil species’s nearest living equivalent species for comparative study in stomatal index. Consequently, the palaeo-atmospheric CO2 concentration, 464ppmv, was estimated based on stomatal ratio approach. The result was consistent with the CO2 value of Berner’s global carbon budget model (GEOCARB III). It therefore suggested that the leaf of Carpinus miofangiana can be a good proxy for palaeo-CO2 levels. Based on the comparing in cuticular characteristics between the fossil and the modern leaves, it can be inferred that the climate was warmer and more humid in the Pliocene of western Yunnan than that of the present.

中图分类号: 

[1] Woodward F I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels[J].Nature,1987,327: 617-618.
[2] Royer D L, Wing S L, Beerling D J,et al. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary[J].Science,2001, 292: 2 310-2 313.
[3] Kürschner W M. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)—implications for their use as biosensors of palaeoatmospheric CO2 levels[J].Review of Palaeobotany and Palynology,1997, 96: 1-30.
[4] Beerling D J, Woodward F I. Stoamtal responses of variegated leaves to CO2 enrichment[J].Annals of Botany,1995, 75: 507-511.
[5] Bettarini I, Vaccari P F, Miglietta F. Elevated CO2 concentrations and stomatal densily: Observations from 17 plant species growing in a CO2 spring in central Italy[J].Global Change Biology,1998, 4: 17-22.
[6] Sun Qigao, Chen Liqun, Li Chengsen. Impact of changing atmospheric CO2 concentrations over the Phanerozoic on stomatal parameters of vascular plants[J].Chinese Science Bulletin,1998, 43(23): 2 478-2 482.[孙启高,陈立群,李承森. 地质历史时期CO2浓度变化对陆地维管植物气孔参数的影响[J]. 科学通报, 1998, 43(23): 2 478-2 482.]
[7] Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration[J].Review of Palaeobotany and Palynology, 2001,114: 1-28.
[8] Beerling D J. Low atmospheric CO2 levels during the Permo-Carboniferous glaciation inferred from fossil lycopsids[J].PNAS, 2002, 99 (20): 12 567-12 571.
[9] Greenwood D R, Scarr M J, Christophel D C. Leaf stomatal frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric pCO2[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2003,196: 375-393.
[10] Kürschner W M, Kvacek Z, Dilcher D L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems[J].PNAS,2008, 105 (2): 449-453.
[11] Editor Group of Yunnan′s Vegetation. Vegetation of Yunnan[M]. Beijing: Science Press, 1987: 28-29.[云南植被编写组. 云南植被[M]. 北京: 科学出版社,1987: 28-29.]
[12] Ge Hongru,Li Daiyun.Cenozoic Coal-bearing Basins and Coalforming Regularity in West Yunnan[M]. Kunming: Yunnan Science and Technology Press, 1999: 20-23; 55-62.[戈宏儒,李代芸. 云南西部新生代含煤盆地及聚煤规律[M]. 昆明:云南科技出版社,1999: 20-23; 55-62.]
[13] Li Xikang, Tan Youhong, Gao Ziying, et al. The geological period and sedimentation environment Mangbang Formation in Tengchong area, Yunnan[J].Yunnan Geology,2004, 23(2): 241-251.[李锡康,谭筱虹,高子英,等. 腾冲上新统芒棒组地质时代及沉积环境[J]. 云南地质, 2004, 23(2): 241-251.]
[14] Mu Zhiguo, Tong Wei, Garniss H C. Times of volcanic activity and origin of magma in Tengchong geothermal area, west Yunnan Province[J].Chinese Journal of Geophysics,1987, 3: 45-54.[穆治国,佟伟,Garniss H C. 腾冲火山活动的时代和岩浆来源问题[J]. 地球物理学报, 1987, 3: 45-54.]
[15] Li Daming, Li Qi, Chen Wenji. Volcanic activities in the Tengchong volcano area since Pliocene[J].Acta Petrologica Sinica,2000,16(3):362-370.[李大明,李齐,陈文寄. 腾冲火山区上新世以来的火山活动[J]. 岩石学报,2000, 16(3): 362-370.]
[16] McElwain J C, Chaloner W G. Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic[J].Annals of Botany,1995, 76: 389-395.
[17] Berner R A. Kothavala Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time[J].American Journal of Science,2001, 301: 182-204.
[18] McElwain J C. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past?[J].Philosophical Transactions of the Royal Society London: Series B,1998, 353: 83-96.
[19] Dilcher D L. Approaches to the identification of angiosperm leaf remains[J].The Botanical Review,1974, 40: 1-157.
[20] Liu Y S. Foliar architecture of Betulaceae and a revision of Chinese Betulaceous megafossils[J].Palaeontographica Abteilung B,1996, 239: 23-57.
[21] Worobiec G, Szynkiewicz A. Betulaceae leaves in Miocene deposits of the Belchatów Lignite Mine (Central Poland)[J].Review of Palaeobotany and Palynology,2007, 147: 28-59.
[22] Cenozoic Plants from China Writing Group of Institute of Botany, Nanjing Institute of Geology and Palaeontology, Academia Sinica. Fossil Plants of China[C]//Cenozoic Plants from China, Volume 3. Beijing: Science Press, 1978:57-71.[中国科学院北京植物研究所,南京地质古生物研究所《中国新生代植物》编写组.中国植物化石(第三册)[C]//中国新生代植物. 北京:科学出版社,1978:57-71.]
[23] Delectis Florae Reipublicae Popularis Sinica Agendae Academiae Sinicae Edita. Flora Reipublicae Popularis Sinica, Tomus 21[M]. Beijing: Science Press, 1979:58-65.[中国科学院中国植物志编辑委员会.中国植物志(第二十一卷)[C]. 北京:科学出版社,1979:58-65.]
[24] Sun Bainian, Cong Peiyun, Yan Defei, et al. Cuticular structure of two angiosperm fossils in Neogene from Tengchong, Yunnan Province and its palaeoenvironmental significance[J].Acta Palaeontologica Sinica,2003, 42(2): 216-222.[孙柏年,丛培允,阎德飞,等. 云南腾冲新近纪两种被子植物化石的角质层构造及其古环境意义[J]. 古生物学报, 2003, 42(2): 216-222.]
[25] Wolfe J A. A palaeobotanical interpretation of Tertiary climates in the Northern Hemisphere[J].American Scientist,1978, 66: 694-703.
[26] Guo shuangxing. A brief review on megaflora successions and climate changes of the Cretaceous and Early Tertiary in China[C]//Krobloch E, Kvacek Z, eds. Proceedings of the Symposium “Palaeofloristic and Palaeo Climatic Changes in the Cretaceous and Tertiarg”. Prague: Geological Survey Publisher, 1990: 23-28.
[27] Chen Zhiduan. Phylogeny and phytogeography of the Betulaceae[J].Acta Phytotaxonomica Sinica,1994, 32(1): 1-31;32(2):101-153.[陈之端. 桦木科植物的系统发育和地理分布[J]. 植物分类学报, 1994, 32(1):1-31; 32(2): 101-153.]
[28] Tao Junrong, Zhou Zhekun, Liu Yusheng. The Evolution of the Late Cretaceous-Floras in China[M]. Beijing: Science Press, 2000: 73-77;92-102.[陶君容,周浙昆,刘裕生. 中国晚白垩世至新生代植物区系发展演变[M]. 北京:科学出版社,2000: 73-77;92-103.]
[29] Sun Qigao, Wang Yufei, Li Chengsen. The Miocene vegetation succession and environmental changes in Shangwang Basin, Shandong Province, China[J].Earth Science Frontiers,2002, 9(3): 15-23.[孙启高,王宇飞,李承森. 中新世山旺盆地植被演替与环境变迁[J]. 地学前缘, 2002, 9(3): 15-23.]
[30] Wang Yufei, Li Chengsen, Collinson M E, et al. Eucommia (Eucommiaceae), a potential biothermometer for the reconstruction of paleoenvironments[J].American Joural of Botany,2003, 90(1): 1-7.
[31] Tao Junrong, Du Naiqiu. Neogene flora of Tengchong basin in western Yunnan, China[J].Acta Botanica Sinica,1982, 24(3): 273-281.[陶君容,杜乃秋. 云南腾冲新第三纪植物群及其时代[J].植物学报, 1982, 24(3): 273-281.]
[32] Zhang Xujiao,He Kezhao, Zhou Zhiguang. Features of sporopollen assemblages and environment changes of Neogene in area of Western Yunnan[J].Geoscience,1996, 10(2): 187-201.[ 张绪教,何科昭,周志广. 滇西地区新第三纪孢粉组合特征及环境变迁[J]. 现代地质, 1996, 10(2): 187-201.]
[33] Xu Jingxian. Palynology, Paleovegetation and Paleoclimate of Neogene Central-Wesrern Yunnan, China[D]. Beijing: Graduate school of the Chinese Academy of Science, 2002.[徐景先. 云南中西部地区晚第三纪孢粉植物群及其古植被和古气候研[D]. 北京:中国科学院研究生院,2002.]
[34] Wu Jingyu, Sun bainian, Xie Sanping, et al. Two Neogene Machilus (Lauraceae) fossils leaves from Tengchong, Yunnan Province and its paleoenvironmental significance[J].Geological Journal of China Universities,2008,14(1): 90-98.[吴靖宇,孙柏年,解三平,等. 云南腾冲新近系樟科润楠属两种化石及其古环境意义[J]. 高校地质学报, 2008,14(1): 90-98.]
[35] Kerp H. The study of fossil gymnosperms by means of cuticular analysis[J].Palaios,1990, 5: 548-569.
[36] Yoo K O, Wen J. Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae)[J].International Journal of Plant Sciences,2002,163(4): 641-650.
[37] Xu Jingxian, Wang Yufei, Du NaiQiu. Late Pliocene vegetation and palaeoclimate of Yangyi and Longling of western Yunnan Province[J].Journal of Palaeogeography,2003, 5(2): 217-223.[徐景先,王宇飞,杜乃秋. 云南西部羊邑合龙林地区晚上新世植被和古气候[J]. 古地理学报, 2003, 5(2): 217-223.]

[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[6] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[7] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[8] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[9] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[10] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[11] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[12] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[13] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[14] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[15] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
阅读次数
全文


摘要