地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 298 -309. doi: 10.11867/j.issn.1001-8166.2016.03.0298.

所属专题: IODP研究

上一篇    下一篇

奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义
周烨 1, 3( ), 蒋富清 1, 2,,A; *( ), 南青云 1, 2, 刘华华 1, 3, 李安春 1   
  1. 1.中国科学院海洋研究所 中国科学院海洋地质与环境重点实验室,山东 青岛 266071
    2.海洋国家实验室海洋地质过程与环境功能实验室,山东 青岛 266061
    3.中国科学院大学, 北京 100049
  • 收稿日期:2016-02-10 修回日期:2016-03-01 出版日期:2016-03-20
  • 通讯作者: 蒋富清 E-mail:zhouye066@163.com;fqjiang@qdio.ac.cn
  • 基金资助:
    国家自然科学基金项目“中新世以来奄美三角盆地的风尘记录及其对构造尺度东亚古气候的指示”(编号:41576050);国家海洋局“全球变化与海气相互作用”专项“西太平洋古气候研究”(编号:GASI-04-01-02)资助

Grain-Size Distribution of Detrital Sediment in the Amami Sankaku Basin Since Late Pleistocene and Its Provenance and Palaeoclimate Implications

Ye Zhou 1, 3( ), Fuqing Jiang 1, 2, *( ), Qingyun Nan 1, 2, Huahua Liu 1, 3, Anchun Li 1   

  1. 1.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266061,China
    3.University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2016-02-10 Revised:2016-03-01 Online:2016-03-20 Published:2016-03-10
  • Contact: Fuqing Jiang E-mail:zhouye066@163.com;fqjiang@qdio.ac.cn
  • About author:

    First author:Zhou Ye(1992-), female,Jiujiang City,Jiangxi Province,Master student.Research area include marine sedimentology.E-mail:zhouye066@163.com

    Corresponding author:Jiang Fuqing(1972-), male, Hutubi County, Xinjiang Province, Associate Professor. Research area include marine sedimentology.E-mail:fqjiang@qdio.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Eolian dust record in the Amami Sankaku Basin and its indication of tectonic time-scale paleoclimate of East Asia since Miocene”(No.41576050);The State Oceanic Administration “Research on the Plaeoclimate of western Pacific” in the Project “Global Change and air-sea interaction” (No.GASI-04-01-02)

对菲律宾海西北部奄美三角盆地U1438A孔约350 ka以来沉积物中碎屑组分的粒度组成进行了分析,结果表明,沉积物中碎屑组分的平均粒径为13.1 μm,粒径变化范围为0.04~160 μm,粒度频率分布呈四峰正偏态分布。利用Weibull分布函数将沉积物碎屑组分的粒度组成分离出4个相对独立的组分。其中超细组分众数约0.3 μm,粒度分布范围为0.04~0.9 μm,可能是海洋自生黏土。细粒端元众数粒径约3.5 μm,粒度分布范围为0.2~32 μm,比北太平洋中部风尘略粗,推测主要为来源于亚洲大陆的风尘。粗粒端元众数粒径约10 μm,粒度分布范围为0.3~90 μm;超粗粒端元众数粒径约40 μm,粒度分布范围为3~160 μm。粗粒组分和超粗粒组分均主要来自于周围海脊和岛弧的火山物质。细粒和粗粒敏感粒级组分的比值(1.3~2.2 μm/28~40 μm)与细粒风尘组分和粗粒火山组分的比值(0.9~3 μm/>10 μm)类似,表现为冰期高、间冰期低,与北太平洋风尘通量、亚洲大陆黄土堆积速率,以及黄土粒径所指示的冰期干旱和东亚季风/西风环流增强的气候变化是一致的,表明冰期由于亚洲大陆的干旱和季风/西风的增强,使得奄美三角盆地中细粒亚洲风尘组分的输入相对增加。因此细粒风尘和粗粒火山物质的比值可以作为亚洲大陆干旱化和大气环流增强的示踪指标。这些研究结果表明奄美三角盆地沉积物的粒度组成可用于重建东亚大陆干旱和大气环流演化历史。

The grain size composition of detrital sediments in Hole U1438A from the Amami Sankaku Basin(ASB) in the northwest of the Philippine Sea since the last 350 ka was analyzed. The result shows that the mean grain size of the detrital sediment is about 13.1 μm, ranging from 0.04 to 160 μm. The grain size distribution displays a four-peak pattern and positive skewness. Four independent grain size components were separated by using Weibull distribution function. The ultra-fine component varies from 0.04 to 0.9 μm, with a size mode at about 0.3 μm, which may be genetically related to marine authigenetic clay. The fine-grained fraction ranges from 0.2 to 32 μm, with a size mode at about 3.5 μm, and slightly coarser than the eolian dust of the North Pacific. We argued that this fraction was mainly derived from Asian dust. The coarse-grained and ultra-coarse-grained fractions show distinct size mode at about 10 μm and 40 μm, and range from 0.3 to 90 μm, and from 3 to 160 μm respectively. Both the coarse and ultra-coarse components represent volcanic materials which were mainly derived from the ridges and islands around ASB. The variation of the ratio of environmentally sensitive size population 1.3~2.2 μm/28~40 μm was similar with the ratio of fine-sized component (Asian dust) and coarse-sized component (volcanic material) (0.9~3 μm/>10 μm), showing higher value during glacial period than that during interglacial, which is also identical with the variation of the mass accumulation of eolian dust in the North Pacific and Chinese Loess Plateau, and grain size in Chinese Loess Plateau. The increased ratio responded to the enhanced aridity of Asian continent and strengthened East Asia Winter Monsoon (EAWM)/westerly during glacial period. We argued that the increase of eolian fraction was driven by the enhanced aridity of Asian continent and strengthened East Asia Winter Monsoon (EAWM)/westerly during glacial period. Therefore, the ratio of 0.9~3 μm/>10 μm can be used as a proxy of the increased aridity and enhanced atmospheric circulation of Asian continent. These results suggest that the grain size composition of the detrial sediment in the ASB can be used to reconstruct the history of Asian aridity and atmospheric circulation.

中图分类号: 

图1 奄美三角盆地U1438A孔位置和主要洋流示意图(据参考文献[7]修改)
Fig.1 Location of Hole U1438A in Amami Sankaku Basin and major ocean circulation (modified after reference[7])
图2 U1438A孔年代地层框架
红色方框代表火山灰层
Fig.2 Age-depth plot of Hole U1438A
Red square indicates ash layer
图3 U1438A孔粒度组成和粒度参数变化
Fig.3 The variation of grain-size composition and parameters in Hole U1438A
图4 U1438A孔不同层位典型样品和U1438B孔火山灰层粒度频率分布曲线
(a),(b)和(c)分别代表U1438A孔270~271 cm,460~461 cm和240~241 cm的样品;(d)为U1438B孔246~248 cm火山灰层;图中还分别给出了通过Weibull函数分离后的4个不同粒度组分的分布曲线
Fig.4 The grain-size frequency distribution curve of typical samples in Hole U1438A and ash layer in Hole U1438B
(a), (b) and (c)Indicate samples at 270~271 cm,460~461 cm and 240~241 cm in Hole U1438A respectively; (d)Indicate samples at ash layer at 246~248 cm in Hole U1438B; The four different grain size components separated with Weibull function fitting are also show in this figure
图5 U1438A孔不同粒级组分的相关性图解
Fig.5 Correlation diagrams between different size fractions in Hole U1438A
表1 U1438A孔碎屑沉积物各粒级组分的因子载荷矩阵
Table 1 Component matrix of different size fraction of detrital sediment in Hole U1438A
图6 U1438A孔粒级—因子载荷图
Fig.6 Grain size vs. factor loading diagram in Hole U1438A
图7 U1438A孔不同粒级组分含量变化
Fig.7 The variation of the content of different size fractions in Hole U1438A
图8 U1438A孔碎屑组分约350 ka以来粒度参数与其他古气候代用指标
δ 18O为全球底栖氧同位素曲线LRO4 [ 48 ];(a)为西北太平洋V21-146孔风尘通量(g /(cm·ka)) [ 42 ];(b)为灵台剖面黄土堆积速率(g/( cm 2· ka)) [ 46 ];(c)为黄土石英平均粒径(标准化) [ 47 ]
Fig.8 The grain-size parameters of detritual sediment in Hole U1438A over the past 350 ka and other paleoclimate proxies
δ 18O represent the stacked global benthic δ 18O record of LRO4 [ 48 ];(a)Represent the eolian flux record of the northwestern from core V21-146(g/(cm· ka)) [ 42 ];(b)Represent the mass accumulation rate of loess in Lingtai section(g/( cm 2· ka)) [ 46 ];(c)Represent the normalized grain-size of quart [ 47 ]
[1] Zeng Jingjing,Qu Jiansheng,Pei Huijuan,et al.An overview of international climate change conferences and analysis of recent hot issues[J].Advances in Earth Science,2015,30(11):1 210-1 217,doi:10.11867/j.issn 1001-8166.2015.11.1210.
[曾静静,曲建升,裴慧娟,等.国际气候变化会议回顾与近期热点问题分析[J].地球科学进展,2015,30(11):1 210-1 217,doi:10.11867/j.issn 1001-8166.2015.11.1210.]
[2] Gao Huiwang, Yao Xiaohong,Guo Zhigang,et al.Atmospheric deposition connected with marine primary production and nitrogen cycle:A review[J].Advances in Earth Science,2014,29(12):1 325-1 332,doi:10.11867/j. issn.1001-8166.2014.12.1325.
[高会旺,姚小红,郭志刚,等. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展,2014,29(12):1 325-1 332,doi:10.11867/j.issn.1001-8166.2014.12.1325.]
[3] Rea D K.The paleoclimatic record provided by eolian deposition in the deep sea:The geologic history of wind[J].Reviews of Geophysics,1994,32(2):159-195.
[4] Rea D K,Snoeckx H,Joseph L H.Late Cenozoic eolian deposition in the North Pacific:Asian drying,Tibetan uplift,and cooling of the northern hemisphere[J].Paleoceanography,1998,13(3):215-224.
[5] Han Y,Chen Y,Fang X,et al.The possible effect of dust aerosol on precipitation in Tarim basin[J].China Environmental Science,2008,28(2):102-106.
[6] Sun J.Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J].Earth and Planetary Science Letters,2002,203(3/4):845-859.
[7] Scott R,Kroenke L.Evolution of back arc spreading and arc volcanism in the Philippine Sea:Interpretation of Leg 59 DSDP results[J].Geophysical Monograph Series,1980,23:283-291,doi:10.1029/GM023p0283.
[8] Expedition 351 Scientists.xpedition 351 Scientists.Izu-Bonin-Mariana arc origins: Continental crust formation at an intra-oceanic arc: Foundation, inception, and early evolution[J/OL]. International Ocean Discovery Program Preliminary Report,http://dx.doi.org/10.14379/iodp.pr.351.2015:1-49.
[9] Sun Shouxun,Teng Jun.Climate character of the Philippine Sea[J].Marine Forecasts,2003,20(3):31-39.
[孙守勋,滕军. 菲律宾海的气候特征[J]. 海洋预报,2003,20(3):31-39.]
[10] Blank M,Leinen M,Prospero J M.Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific[J].Nature,1985,314(7):84-86.
[11] Rea D K,Hovan S A.Grain size distribution and depositional processes of the mineral component of abyssal sediments:Lessons from the North Pacific[J].Paleoceanography,1995,10(2):251-258.
[12] Zhou Yu,Jiang Fuqing,Xu Zhaokai,et al.Grain-size distribution of detrital sediment in the Parece Vela Basin and its implication of provenance and palaeoclimate over the last 2 Ma[J].Marine Sciences,2015,39(9):86-93.
[周宇,蒋富清,徐兆凯,等. 近2 Ma帕里西—维拉海盆沉积物中碎屑组分粒度特征及其物源和古气候意义[J]. 海洋科学,2015,39(9):86-93.]
[13] Arculus R J,Ishizuka O,Bogus K,et al. Expedition 351: Izu-Bonin-Mariana Arc Origins: College Station, TX[R/OL].International Ocean Discovery Program,http://dx.doi.org/10.14379/iodp.proc.351.103.2015:1-64.
[14] Chun J,Ikehara K,Han S.Evidence in Ulleung Basin sediment cores for a termination II (Penultimate deglaciation) eruption of the Aso-3 tephra[J]. The Quaternary Research (Japan Association for Quaternary Research),2004,43(2):99-112.
[15] Ikehara K,Fujine K.Fluctuations in the Late Quaternary East Asian winter monsoon recorded in sediment records of surface water cooling in the northern Japan Sea[J]. Journal of Quaternary Science,2012,27(9): 866-872.
[16] Bayon G,German C R,Boella R M,et al.An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis[J].Chemical Geology,2002,187(3): 179-199.
[17] Gutjahr M,Frank M,Stirling C,et al.Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments[J].Chemical Geology,2007,242(3): 351-370.
[18] Jiang F,Frank M,Li T,et al.Asian dust input in the western Philippine Sea:Evidence from radiogenic Sr and Nd isotopes[J].Geochemistry,Geophysics,Geosystems,2013,14(5):1 538-1 551.
[19] McManus J. Grain size determination and interpretation[M]∥Tucker Med,ed. Techniques in Sedimentology. Oxford:Oxford Backwell,1988:63-85.
[20] Visher G S.Grain size distributions and depositional processes[J].Journal of Sedimentary Petrology,1969,39(3): 1 074-1 106.
[21] Sun D,Bloemendal J,Rea D K.Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components[J].Sedimentary Geology,2002,152(3):263-277.
[22] Sun D,Chen F,Bloemendal J,et al.Seasonal variability of modern dust over the Loess Plateau of China[J]. Journal of Geophyscal Research,2003,108(D21):4 665-4 674.
[23] Sun D,Bloemendal J,Rea D K,et al.Bimodal grain-size distribution of Chinese loess,and its palaeoclimatic implications[J]. Catena,2004,55(3):325-340.
[24] Leinen M.Quartz content of northwest Pacific Hole-576a and implications for Cenozoic eolian transport[J].Initial Reports of the Deep Sea Drilling Project,1985,86(NOV):581-588.
[25] Rex R W,Syers J K,Jackson M L.Eolian origin of quartz in soils of Hawaiian Islands and in Pacific Pelagic sediments[J].Science,1969,163(3 864):277-279.
[26] Ming J,Li A,Huang J,et al.Assemblage characteristics of clay minerals and its implications for evolution of eolian dust input to Parece Vela Basin since 1.95 Ma[J]. Chinese Journal of Oceanology and Limnology,2014,32(1):174-186.
[27] Asahara Y,Tanaka T,Kamioka H,et al.Provenance of the North Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics[J].Chemical Geology,1999,158:271-291.
[28] Jones C E,Halliday A N,Rea D K,et al.Eolian inputs of lead to the North Pacific[J].Geochimica et Cosmochimica Acta,2000,64(8):1 405-1 416.
[29] Mahoney J B.Nd and Sr isotopic signatures of fine-grained clastic sediments:A case study of western Pacific marginal basins[J].Sedimentary Geology,2005,182(1/4):183-199.
[30] Ming Jie.The Characteristics and Provenance of the Sediment in the Parece Vela Basin Since the Quaternary and Their Environment Implications[D].Qingdao:Institute of Oceanology,Chinese Academy of Sciences,2013.
[明洁. 东菲律宾海帕里西维拉海盆第四纪沉积特征和物质来源及其古环境意义[D].青岛:中国科学院海洋研究所,2013.]
[31] Seo I,Lee Y I,Yoo C M,et al.Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr:Implications for the transport mechanism of Asian dust[J].Journal of Geophysical Research Atmospheres,2014,119:11 492-11 504.
[32] Sun Donghuai.Supper-fine grain size components in Chinese Loess and their Palaeoclimatic implication[J].Quaternary Sciences,2006,26(6):928-936.
[孙东怀. 黄土粒度分布中的超细粒组分及其成因[J]. 第四纪研究,2006,26(6):928-936.]
[33] Sun D,Su R,Bloemendal J,et al.Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2008,264(1/2):39-53.
[34] Pye K.Aeolian Dust and Dust Deposits[M]. London:Academic Press London,1987.
[35] Ziegler C L,Murray R W,Hovan S A,et al.Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean[J].Earth and Planetary Science Letters,2007,254: 416-432.
[36] Severmann S,Mills R A,Palmer M R,et al.The origin of clay minerals in active and relict hydrothermal deposits[J].Geochimica et Cosmochimica Acta,2004,68(1):73-88.
[37] Ling H,Jiang S,Frank M,et al.Differing controls over the Cenozoic Pb and Nd isotope evolution of deep water in the central North Pacific Ocean[J].Earth Planetary Science Letters,2005,232(3/4):345-361.
[38] Chen G,Zheng H,Li J,et al.Dynamic control on grain-size distribution of terrigenous sediments in the western South China Sea:Implication for East Asian monsoon evolution[J].Chinese Science Bulletin,2008,53(10):1 533-1 543.
[39] Sun Donghuai,An Zhisheng,Su Ruixia,et al.The aeolian sedimentary records on the monsoon and westerlies circulation in northern China since recent 2.6Ma[J]. Science in China(Series D),2003,33(6):497-504.
[孙东怀,安芷生,苏瑞侠,等.最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录[J]. 中国科学:D辑,2003,33(6):497-504.]
[40] Petit J R,Jouzel J,Raynaud D,et al.Climate and atmospheric history of the past 420 000 years from the Vostok ice core,Antarctica[J].Nature,1999,399(6 735):429-436.
[41] Guo Zhengtang.The variation of monsoon intensity in Loess Plateau since 0.85Ma[J].Chinese Science Bulletin,1993,38(2):143-146.
[郭正堂. 约0.85Ma前后黄土高原区季风强度的变化[J]. 科学通报,1993,38(2):143-146.]
[42] Hovan S A,Rea D K,Pisias N G.Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments[J].Paleoceanography,1991,6(3):349-370.
[43] Pisias N G,Moore T C.The evolution of Pleistocene climate:A time series approcach[J].Earth and Planetary Science Letter,1981,52(2):450-458.
[44] Liu Dongsheng,Zheng Mianping,Guo Zhengtang.Initiation and evolution of the Asian monsoon system timely coupled with the ice sheet growth and the tectonic movements in Asia[J].Quaterrnary Sciences,1998,(3):194-204.
[刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,(3):194-204.]
[45] An Zhisheng,Zhang Peizheng,Wang Erqi,et al.Changes of the monsoon arid environment in China and growth of the Tibetan Plateau since the Miocene[J].Quaternary Sciences,2006,26(5):678-693.
[安芷生,张培震,王二七. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究,2006,26(5):678-693.]
[46] Sun Y,An Z.Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research,2005,110(D23101):1-8.
[47] Sun Y,Clemens S C,An Z,et al.Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews,2006,25(1):33-48.
[48] Lisiecki L E, Raymo M E.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-17, doi:10.1029/2004PA001071.
[1] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[2] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[3] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[7] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[8] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[9] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[10] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[11] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[12] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[13] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[14] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[15] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
阅读次数
全文


摘要