地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 310 -319. doi: 10.11867/j.issn.1001-8166.2016.03.0310.

所属专题: IODP研究

上一篇    下一篇

利用有孔虫氧同位素重建古海平面变化的研究进展
李悦 1( ), 王汝建 1,,A; *( ), 李文宝 2   
  1. 1.同济大学海洋地质国家重点实验室,上海 020092
    2.内蒙古农业大学水资源保护与利用自治区重点实验室,内蒙古 呼和浩特 010018
  • 收稿日期:2016-01-31 修回日期:2016-02-20 出版日期:2016-03-20
  • 通讯作者: 王汝建 E-mail:1335140liyue@tongji.edu.cn;rjwang@tongji.edu.cn
  • 基金资助:
    国家重大科学研究计划项目“近百年极地冰盖冰架变化对全球海平面上升的总体贡献定量研究”(编号:2012CB957701);南极专项项目“2016年度南极周边海域海洋地质考察”(编号:CHINARE2016-01-02)资助

Review on Research on Paleo-Sea Level Reconstruction Based on Foraminiferal Oxygen Isotope in Deep Sea Sediments

Yue Li 1( ), Rujian Wang 1, *( ), Wenbao Li 2   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
    2.IMARK Key Laboratory of Water Resources Protection and Utilization,Inner Mongolia Agriculture University, Hohhot 010018,China
  • Received:2016-01-31 Revised:2016-02-20 Online:2016-03-20 Published:2016-03-10
  • Contact: Rujian Wang E-mail:1335140liyue@tongji.edu.cn;rjwang@tongji.edu.cn
  • About author:

    First author:Li Yue(1989-), male, Tianjin City, Master student. Research area include Paleoceanography and paleoclimatology.E-mail:1335140liyue@tongji.edu.cn

    Corresponding author:Wang Rujian(1959-), male, Kunming City, Yunnan Province,Professor. Research area include Paleoceanography and paleoclimatology.E-mail:rjwang@tongji.edu.cn

  • Supported by:
    Project supported by the State Key Project of Scientific Research and Plan “Quantitative research on total contribution of polar ice-sheet change during the last 100 year to global sea-level rise”(No.2012CB957701);Antarctic and Arctic Special Project “Marine geology investigation around Antarctic in 2016”(No.CHINARE2016-01-02)

海平面变化重建结果是一个重要的气候变化指标,可以被用来与其他气候指示要素以及基于计算机模型的重建结果进行比较,从而可以更好地理解海平面变化以及与其气候系统其他要素之间的关系。从深海沉积物中的钙质有孔虫得到的氧同位素记录包含着全球大陆冰量的变化过程,因此可以用来重建地质历史时期海平面演化的历史。尽管诸多研究者利用海洋沉积物中有孔虫氧同位素比值作为基础数据重建了长时间尺度上连续的海平面变化记录,但是,在未来的海平面重建过程中,还需要与其他学科领域结合,并对海平面重建结果和其他气候指标进行对比和相互验证,才能获得可靠的海平面变化记录。

Sea level reconstruction is an important proxy for climate change. It can be compared with other reconstructed climatic factors as well as the results of the computer model-based reconstruction to offer a better recognition of the relationship between sea-level changes and other factors in the climate system. Oxygen isotope record obtained from calcium foraminiferal shell in deep-sea sediments contains global continental ice volume signal which can be used to reconstruct the evolution of paleo-sea level. Researchers reconstructed many long time scale and continuous records of sea level change by using foraminiferal oxygen isotope ratio data. In the future of paleo-sea level reconstruction, however, researchers need to contrast the sea level reconstruction with other climate proxy results to validate its accuracy and employ the interdisciplinary study method to acquire further development.

中图分类号: 

图1 水文循环对氧同位素比值影响的示意图(据参考文献[25]修改)
对海水的影响用斜体表示
Fig.1 Schematic diagram of the hydrological cycle influences on oxygen isotope ratios(modified after reference[25])
Effects on seawater are described in italics
图2 逆过程方法的图解纲要
该过程计算了模拟氧同位素值和0.1 ka之后的观测氧同位素值的平均地表空气温度异常值。平均地表温度异常(DT)的计算结果,会被导入到2个物理系统当中:①左侧的冰川和质量平衡模块;②右侧的大气深层海水温度耦合模块。质量平衡模块利用现在的降水中的同位素含量( Ip)、地表空气温度( T) 和降水量( P) 以及受轨道引起的随时间变化的太阳辐射( Q),计算了在空间上( x),季节上( s)和时间( t)上的变化的质量平衡( M)变化场和降水中的同位素含量( Ip)。 MIp被冰川模块用来计算新的冰川表层高度( H)和表层反射率( α)的分布,该新的计算结果将会返回代入质量平衡过程。 I o为观测氧同位素值,冰川过程决定了平均冰盖同位素含量( Ii),冰川体积( Vi)和全球海平面( S)。以上这些值,与深海温度( DT o)一起,被海洋过程用来计算代入逆过程的海水氧同位素值( Im)。这一过程产生了相互一致的 DTDT oViSIi的时间序列观测获得的数值用红色标注,模拟结果值用黑色标注(据参考文献[55]修改)
Fig.2 Schematic outline of the inverse procedure
The routine calculates a mean surface air temperature anomaly (DT) based on the difference between the modelled marine isotope value and the observed value 0.1 ka later. The value of DT feeds into two physical systems:① the ice-sheet and mass-balance module to the left and ② the atmosphere-deep ocean temperature coupling module to the right. The mass-balance module calculates spatially ( x), seasonally ( s) and temporally ( t) varying fields of surface mass balance ( M) and isotope content of precipitation ( Ip) using initial, present-day fields of Ip, surface air temperature ( T) and precipitation ( P) and temporally varying orbitally induced insolation ( Q) . M and Ip are used by the ice-sheet module to calculate new distributions of ice-sheet surface height ( H) and surface albedo ( α), which feed back into the mass balance routine. Io denotes observed value of oxygen isobope.The ice-sheet routine determines the mean ice-sheet isotope content ( Ii), the ice-sheet volume ( Vi) and global sea level ( S). These values, together with the deep ocean temperature ( DT o), are used by the ocean routine to evaluate the marine isotope value ( Im) that feeds into the inverse routine. This procedure yields mutually consistent time series of DT, DT o, Vi, S, and Ii. Observed variables are in red, modelled ones in black (modified after reference[55])
图3 全球相对海平面重建结果时间序列
蓝色曲线为全球平均海平面的重建结果,绿色曲线为北美大陆冰盖对海平面变化的贡献量,红色曲线为欧亚大陆冰盖对海平面变化的贡献量(据参考文献[55]修改)
Fig.3 Time series of past global sea level
Reconstructed global sea level (blue), and the contributions from Eurasia (red) and North America (green) in sea level equivalents (modified after reference[55])
[1] Clark P U, Dyke A S, Shakun J D, et al.The last glacial maximum[J]. Science, 2009, 325(5 941):710-714.
[2] Fairbanks R G.A 17 000 year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep ocean circulation[J]. Nature, 1989, 342(6 250): 637-642.
[3] Peltier W R, Fairbanks R G.Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Review, 2006, 25(23/24):3 322-3 337.
[4] Yokoyama Y, Lambeck K, De Deckker P, et al.Timing of the Last Glacial Maximum from observed sea-level minima[J]. Nature, 2000, 406(6 797): 713-716.
[5] Lambeck K, Chappell J.Sea level change through the last glacial cycle[J]. Science, 2001, 292(5 517): 679-686.
[6] Lambeck K, Rouby H, Purcell A, et al.Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences USA, 2014, 111(43): 15 296-15 303.
[7] Milne G A, Gehrels W R, Hughes C W, et al.Identifying the causes of sea-level change[J]. Nature Geoscience, 2009, 2(7): 471-478,doi:10.1038/ngeo544.
[8] Chappell J, Shackleton N J.Oxygen isotopes and sea level[J]. Nature, 1986, 324(6 093): 137-140.
[9] Ferranti L, Antonioli F, Mauz B, et al. Markers of the last interglacial sea-level high stand along the coast of Italy: Tectonic implications[J]. Quaternary International,2006, 145/146: 30-54,doi:10.1016/j.quaint.200507.009.
[10] Lambeck K, Purcell A, Flemming N, et al.Sea level and shoreline reconstructions for the Red Sea: Isostatic and tectonic considerations and implications for hominin migration out of Africa[J]. Quaternary Science Review, 2011, 30(25):3 542-3 574.
[11] Milne G A, Peros M.Data-model comparison of Holocene sea-level change in the circum-Caribbean region[J]. Global Planetary Change, 2013, 107: 119-131,doi:10.1016/j.qloplacha.2013.04.014.
[12] Church J A, Gregory J M, Huybrechts P, et al.‘Changes in Sea Level’a Climate Change 2001: The Scientific Basis[M].Cambridge: Cambridge University Press,2001.
[13] Berger A L, Hays I J, Imbrie J,et al.Milankovitch and Climate[M]. Dordrecht:D.Reidel Publishing Co., 1984.
[14] Rohling E J, Grant K, Bolshaw M, et al.Antarctic temperature and global sea level closely coupled over the past five glacial cycles[J]. Nature Geoscience, 2009, 2: 500-504,doi:10.1038/ngeo557.
[15] Naish T, Powell R, Levy R,et al.Obliquity-paced Pliocene West Antarctic ice sheet oscillations[J].Nature, 2009, 458: 322-328,doi:10.1038/nature07867.
[16] Miller K G, Wright J D, Browning J V, et al.High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation[J]. Geology, 2012, 40(5):407-410.
[17] Sigman D M, Jaccard S, Haug G H.Polar ocean stratification in a cold climate[J].Nature, 2004, 428(6 978):59-63.
[18] Lawrence K T, Herbert T D, Brown C M, et al.High amplitude variations in North Atlantic Sea surface temperature during the early Pliocene warm period[J]. Paleoceanography,2009, 24(2):134-144.
[19] Bailey I, Hole G M, Foster G L, et al.An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris[J].Quaternary Science Review, 2013, 75, 181-194,doi:10.1016/j.quascirirev.2013.06-004.
[20] Dutton A, Carlson A E, Long A J, et al.Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science,2015,349(6 244),doi:10.1126/science.aaa409.
[21] Shackleton N J.Oxygen isotopes, ice volume and sea level[J]. Quaternary Science Reviews, 1987, 6(3/4):183-190.
[22] Dansgaard W.Stable isotopes in precipitation[J]. Tellus,1964,16(4):436-468.
[23] Mix A C, Ruddiman W F.Oxygen isotope analyses and Pleistocene ice volumes[J]. Quaternary Research, 1984,21(1):1-20.
[24] Shackleton N J.Oxygen isotope analyses and pleistocene temperatures re-assessed[J]. Nature, 1967, 215: 15-17,doi:10.1038/21501590.
[25] Rohling E J.Oxygen isotope composition of seawater[C]∥Elias S A, ed. The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2013,2:915-922.
[26] Duplessy J, Ivanova E V, Murdmaa I O, et al.Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean[J]. Boreas,2001,30(1): 2-16.
[27] Waelbroeck C, Labeyrie L, Michel E, et al.Sea-level and deep water temperature changes derived from benthonic foraminifera isotopic records[J]. Quaternary Science Review,2002,21(1/3):295-305.
[28] Rohling E J, Bigg G R.Paleo-salinity and δ18O: A critical assessment[J].Geophysics Research, 1998,103(C1):1 307-1 318.
[29] Wadley M R, Bigg G R, Rohling E J, et al.On modelling present-day and last glacial maximum oceanic δ18O distribution[J].Global Planet Change,2002,32(2/3):89-109.
[30] Duplessy J C, Labeyrie L, Arnold M, et al.Changes in surface salinity of the North Atlantic Ocean during the last deglaciation[J]. Nature,1992,358(6 386):485-487.
[31] Zachos J C, Pagani M, Sloan L, et al.Trends, rythyms, and aberrations in global climate 65 Ma to Present[J]. Science,2001,292:686-693,doi:10.1126/science.1059412.
[32] Sosdian S, Rosenthal Y.Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions[J]. Science,2009,325(5 938):306-310.
[33] Elderfield H, Ferretti P, Greaves M, et al.Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition[J]. Science,2012,337(6 095):704-709.
[34] Siddall M, Rohling E J, Almogi-Labin A, et al.Sea-level fluctuations during the last glacial cycle[J]. Nature,2003,423(6 942):853-858.
[35] Labeyrie L D, Duplessy J C, Blanc P L.Variations in mode of formation and temperature of oceanic deep waters over the past 125 000 years[J]. Nature,1987,327:477-482,doi:10.1038/327477ao.
[36] Adkins J F, McIntyre K, Schrag D P. The salinity, temperature and δ18O content of the glacial deep ocean[J]. Science,2002,298(5 599):1 769-1 773.
[37] Cutler K B, Edwards R L, Taylor F W, et al.Rapid sea-level fall and deep-ocean temperature change since the last interglacial period[J]. Earth and Planetary Science Letters, 2003,206(3/4):253-271.
[38] Lea D W, Martin P A, Pak D K, et al.Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J].Quaternary Science Review,2002,21:283-293.
[39] Sofianos S S, Johns W, Murray S P.Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandab[J]. Deep-Sea Research Part II:Topical Studies in Oceanography,2002,49:1 323-1 340.
[40] Siddall M, Rohling E J, Thompson W G, et al.MIS 3 Sea-level fluctuations: Data synthesis and new outlook[J]. Reviews of Geophysics,2008,46(4),doi:10.1029/2007RG000226.
[41] Siddall M, Smeed D A, Matthiesen S,et al.Modelling the seasonal cycle of the exchange flow in Bab el Mandab (Red Sea)[J]. Deep-Sea Research Part I:Oceanographic Research Paper,2002,49(9):1 551-1 569.
[42] Griffiths R W, Hopfinger E J.The structure of mesoscale turbulence and horizontal spreading at ocean fronts[J].Deep-Sea Research I:Oceanographic Research Papers,1984,31(3):245-269.
[43] Rohling E J.Environmental control on Mediterranean salinity and δ18O[J]. Paleoceanography,1999,14(6):706-715.
[44] Siddall M, Smeed D A, Hemleben C, et al.Understanding the Red Sea response to sea level[J]. Earth and Planetary Science Letters, 2004, 225(3/4): 421-434.
[45] Grant K M, Rohling E J, Bar-Matthews M, et al.Rapid coupling between ice volume and polar temperature over the past 150 kyr[J]. Nature, 2012, 491: 744-747,doi:10.1038/nature11593.
[46] Rohling E J, Foster G L, Grant K M, et al.Sea-level and deep-sea-temperature variability over the past 5.3 million years[J]. Nature,2014,508:477-482,doi:10.1038/nature13230.
[47] Lourens L J,Antonarakou A,Hilgen F J,et al.Evaluation of the Plio-Pleistocene astronomical timescale[J].Paleoceanography,1996,11(4):410-413.
[48] Emeis K C, Sakamoto T, Wehausen R,et al.The sapropel record of the eastern Mediterranean Sea—Results of Ocean Drilling Program Leg 160[J]. Palaeogeography, Palaeoclimatology, Palaeoecol,2000,158(3/4):371-395.
[49] Wang P, Tian J, Lourens L J.Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records[J].Earth and Planetary Science Letters,2010,290(3/4):319-330.
[50] Bryden H L, Kinder T H.Steady two-layer exchange through the Strait of Gibraltar[J]. Deep-Sea Research Part I:Oceanographic Research Paper,1991,38(Suppl.1):445-463.
[51] Rohling E J, Bryden H L.Estimating past changes in the eastern Mediterranean freshwater budget, using reconstructions of sea level and hydrography[J].Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen(Series B),1994,97(2):201-217.
[52] Rohling E J.Review and new aspects concerning the formation of Mediterranean sapropels[J]. Marine Geology,1994,122(1/2):1-28.
[53] Rohling E J, Marsh R, Wells N C, et al.Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets[J].Nature,2004, 430:1 016-1 021,doi:10.1038/nature02859.
[54] Shackleton N J.The 100 000 year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity[J]. Science,2000,289(5 486):1 897-1 902.
[55] Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature,2005,437:125-128,doi:10.1038/nature03975.
[56] Lisiecki L E, Raymo M E.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005,20(1):1-16.
[57] Bintanja R, van de Wal R S W, Oerlemans J. A new method to estimate ice age temperatures[J]. Climate Dynamics,2005,24(2):197-211.
[58] Hanebuth T, Stattegger K, Grootes P M.Rapid flooding of the Sunda Shelf: A Late-Glacial sea-level record[J]. Science,2000,288(5 468):1 033-1 035.
[59] Bard E,Hamelin B,Fairbanks R G.U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000[J]. Nature,1990,346:456-458,doi:10.1038/346456ao.
[60] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda sea-level record revisited[J]. Global Planetary Change,2009,66(1/2):76-84.
[61] Church J A,Shindell D, Alexander L V, et al.Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press,2013.
[62] Kemp A C, Horton B P, Donnelly J P, et al.Climate related sea-level variations over the past two millennia[J]. Proceedings of the National Academy of Sciences USA,2011,108(27):11 017-11 022.
[63] Fleming K, Johnston P, Zwartz D, et al.Refining the eustatic sea-level curve since the Last Glacial Maximum using far and intermediate-field sites[J]. Earth and Planetary Science Letters,1998,163(1/4):327-342.
[64] Bentley M J.The Antarctic palaeo record and its role in improving predictions of future Antarctic Ice Sheet change[J]. Quaternary Science,2010,25(1):5-18.
[65] Stone J O, Balco J A, Sugden D, et al.Holocene deglaciation of Marie Byrd Land, West Antarctica[J]. Science,2003,299(5 603):99-102.
[66] Long A J, Roberts D H, Dawson S.Early Holocene history of the west Greenland Ice Sheet and the GH-8.2 event[J]. Quaternary Science Review,2006,25(9/10):904-922.
[67] Long A J, Barlow N L M, Gehrels L R, et al. Contrasting records of sea-level change in the eastern and western North Atlantic during the last 300 years[J]. Earth and Planetary Science Letters,2014,388:110-122,doi:10.1016/j.epsl.2013.11.012.
[68] Kopp R E, Mitrovica J X, Griffies S M, et al.The impact of Greenland melt on local sea levels: A partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments[J].Climate Change,2012,103(3):619-625.
[69] Wang Zongtai, Su Hongchao.Glaciers in the world and China:Distribution and their significance as water resources[J].Journal of Glaciology and Geocryology,2003, 25(5): 498-503.
[王宗太,苏宏超. 世界和中国的冰川分布及其水资源意义[J]. 冰川冻土,2003,25(5):498-503.]
[70] Wu Shanshan, Yao Zhijun, Jiang Liguang, et al.Method review of modern glacier volume change[J].Advances in Earth Science,2015, 30(2):237-246.
[吴珊珊,姚治君,姜丽光,等.现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.]
[71] Raymo M E, Mitrovica J X.Collapse of polar ice sheets during the stage 11 interglacial[J].Nature,2012, 483: 453-456,doi:10.1038/nature10891.
[72] Dutton A, Lambeck K.Ice volume and sea level during the last interglacial[J].Science,2012, 337(6 091): 216-219.
[73] Austermann J, Mitrovica J X, Latychev K, et al.Barbados based estimate of ice volume at Last Glacial Maximum effected by subducted plate[J].Nature Geoscience,2013, 6: 553-557,doi:10.1038/ngeo1859.
[74] Yu Kefu, Zhang Guangxue, Wang Ren.Stduies on the coral reefs of the South China Sea: From global change to oil das exploration[J].Advances in Earth Science,2014, 29(11): 1 287-1 293.
[余克服,张光学,汪稔.南海珊瑚礁:从全球变化到油气勘探——第三届地球系统科学大会专题评述[J]. 地球科学进展,2014, 29(11): 1 287-1 293.]
[1] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[2] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[3] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[4] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[5] 吴涛,康建成,王芳,郑琰明. 全球海平面变化研究新进展[J]. 地球科学进展, 2006, 21(7): 730-737.
[6] 钟广法. 海平面变化的原因及结果[J]. 地球科学进展, 2003, 18(5): 706-712.
[7] 李增学,魏久传,韩美莲. 海侵事件成煤作用——一种新的聚煤模式[J]. 地球科学进展, 2001, 16(1): 120-124.
[8] 李荣西,魏家庸,杨卫东,郭庆军. 87Sr/ 86Sr研究海平面变化与全球对比问题[J]. 地球科学进展, 2000, 15(6): 729-733.
[9] 许厚泽,蒋福珍,张赤军. 我国动力大地测量学的进展[J]. 地球科学进展, 2000, 15(2): 127-133.
[10] 李祥辉,包向农. 海平面变化成因及其盆地响应[J]. 地球科学进展, 2000, 15(1): 71-75.
[11] 杨学祥; 王瑞庭. 全球海面变化的两极冰盖模型[J]. 地球科学进展, 1993, 8(4): 66-69.
[12] 杨学祥. 地壳均衡与海平面变化[J]. 地球科学进展, 1992, 7(5): 22-.
[13] 张志强. 温室变暖与海平面变化[J]. 地球科学进展, 1991, 6(2): 84-84.
阅读次数
全文


摘要