[1] |
Achard F, Eva H D, Stibig H J, et al.Determination of deforestation rates of the world’s humid tropical forests[J]. Science,2002, 297(5 583): 999-1 002.
|
[2] |
Achard F, DeFries R, Eva H,et al. Pan-tropical monitoring of deforestation[J].Environmental Research Letters, 2007, 2(4): 1-11.
|
[3] |
Saatchi S S, Harris N L, Brown S, et al.Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences,2011, 108(24): 9 899-9 904.
|
[4] |
Stibig H J, Achard F, Fritz S.A new forest cover map of continental southeast Asia derived from SPOT-VEGETATION satellite imagery[J]. Applied Vegetation Science, 2004, 7(2): 153-162.
|
[5] |
Stibig H J, Beuchle R, Achard F.Mapping of the tropical forest cover of insular Southeast Asia from SPOT4-vegetation images[J]. International Journal of Remote Sensing, 2003, 24(18): 3 651-3 662.
|
[6] |
Stibig H J, Achard F, Carboni S, et al.Change in tropical forest cover of Southeast Asia from 1990 to 2010[J]. Biogeosciences, 2014, 11(2): 247-258.
|
[7] |
Rosa I M D, Smith M J, Wearn O R, et al. The environmental legacy of modern tropical deforestation[J]. Current Biology, 2016, 26(16): 2 161-2 166.
|
[8] |
Burke L, Selig E, Spalding M.Reefs at Risk in Southeast Asia[M]. Cambridge,UK:UNEP-WCMC, 2002.
|
[9] |
Food and Agriculture Organization. The World’s Mangroves 1980-2005[C]. Forestry Paper 153. FAO, Rome, 2007.
|
[10] |
Friess D A, Thompson B S, Brown B, et al.Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia[J]. Conservation Biology, 2016, 30(5): 933-949.
|
[11] |
Pelejero C, Kienast M, Wang L, et al.The flooding of Sundaland during the last deglaciation: Imprints in hemipelagic sediments from the southern South China Sea[J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671.
|
[12] |
Woodruff D S.Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula[J]. Journal of Biogeography, 2003, 30(4): 551-567.
|
[13] |
Hanebuth T, Stattegger K, Grootes P M.Rapid flooding of the Sunda Shelf: A late-glacial sea-level record[J]. Science, 2000, 288(5 468): 1 033-1 035.
|
[14] |
Myers N, Mittermeier R A, Mittermeier C G, et al.Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6 772): 853-858.
|
[15] |
de Bruyn M, Rüber L, Nylinder S, et al. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots[J]. Systematic Biology, 2013, 62(3): 398-410.
|
[16] |
De Bruyn M, Stelbrink B, Morley R J, et al.Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity[J]. Systematic Biology, 2014, 63(6): 879-901.
|
[17] |
Krug A Z, Jablonski D, Valentine J W, et al.Generation of Earth’s first-order biodiversity pattern[J]. Astrobiology, 2009, 9(1): 113-124.
|
[18] |
Bush M B.Ecology of A Changing Planet (3rd Edition)[M]. Addison-Wesley, 2003.
|
[19] |
Schluter D, Pennell M W.Speciation gradients and the distribution of biodiversity[J]. Nature,2017, 546(7 656): 48-55.
|
[20] |
Bush M, Flenley J, Gosling W, eds.Tropical Rainforest Responses to Climatic Change[M]. Chichester,UK:Springer,2013.
|
[21] |
Mannion P D, Upchurch P, Benson R B J,et al. The latitudinal biodiversity gradient through deep time[J]. Trends in Ecology & Evolution, 2014, 29(1): 42-50.
|
[22] |
Tilman D.Competition and biodiversity in spatially structured habitats[J]. Ecology, 1994, 75(1): 2-16.
|
[23] |
Jablonski D, Roy K, Valentine J W.Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient[J]. Science, 2006, 314(5 796): 102-106.
|
[24] |
Pachl P, Lindl A C, Krause A, et al.The tropics as ancient cradle of oribatid mite diversity[J]. Acarologia, 2016, 57(2): 309-322.
|
[25] |
Mittelbach G G, Schemske D W, Cornell H V, et al.Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography[J]. Ecology Letters, 2007, 10(4): 315-331.
|
[26] |
Hall R.Southeast Asia’s changing palaeogeography[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009, 54(1): 148-161.
|
[27] |
Lohman D J, de Bruyn M, Page T, et al. Biogeography of the Indo-Australian archipelago[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 205-226.
|
[28] |
Metcalfe I.Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33.
|
[29] |
Lo E Y Y, Duke N C, Sun M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution[J]. BMC Evolutionary Biology, 2014, 14(1): 83.
|
[30] |
Metcalfe I.Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context[J]. Gondwana Research, 2006, 9(1): 24-46.
|
[31] |
Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19(1): 3-21.
|
[32] |
Hall R.The palaeogeography of Sundaland and Wallacea since the Late Jurassic[J]. Journal of Limnology, 2013, 72(Suppl.2): 1.
|
[33] |
Cannon C H, Manos P S.Phylogeography of the Southeast Asian stone oaks (Lithocarpus)[J]. Journal of Biogeography, 2003, 30(2): 211-226.
|
[34] |
Sirichamorn Y, Thomas D C, Adema F A C B,et al. Historical biogeography of Aganope, Brachypterum and Derris (Fabaceae, tribe Millettieae): Insights into the origins of Palaeotropical intercontinental disjunctions and general biogeographical patterns in Southeast Asia[J]. Journal of Biogeography, 2014, 41(5): 882-893.
|
[35] |
Thomas D C, Hughes M, Phutthai T, et al.West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago[J]. Journal of Biogeography, 2012, 39(1): 98-113.
|
[36] |
Kathuria S, Ganeshaiah K N.Tectonic activities shape the spatial patchiness in the distribution of global biological diversity[J]. Current Science, 2002, 82(1): 76-80.
|
[37] |
Beck J, Kitching I J, Linsenmair K E.Wallace’s line revisited: Has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)?[J]. Biological Journal of the Linnean Society, 2006, 89(3): 455-468.
|
[38] |
Brown R M, Guttman S I.Phylogenetic systematics of the Rana signata complex of Philippine and Bornean stream frogs: Reconsideration of Huxley’s modification of Wallace’s Line at the Oriental-Australian faunal zone interface[J]. Biological Journal of the Linnean Society, 2002, 76(3): 393-461.
|
[39] |
Esselstyn J A, Oliveros C H, Moyle R G, et al.Integrating phylogenetic and taxonomic evidence illuminates complex biogeographic patterns along Huxley’s modification of Wallace’s Line[J]. Journal of Biogeography, 2010, 37(11): 2 054-2 066.
|
[40] |
Lourie S A, Vincent A C J. A marine fish follows Wallace’s Line: The phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia[J]. Journal of Biogeography, 2004, 31(12): 1 975-1 985.
|
[41] |
Van Welzen P C, Parnell J A N, Slik J W F. Wallace’s Line and plant distributions: Two or three phytogeographical areas and where to group Java?[J]. Biological Journal of the Linnean Society, 2011, 103(3): 531-545.
|
[42] |
Gastauer M, Saporetti-Junior A W, Magnago L F S,et al. The hypothesis of sympatric speciation as the dominant generator of endemism in a global hotspot of biodiversity[J]. Ecology and Evolution, 2015, 5(22): 5 272-5 283.
|
[43] |
McArthur R H, Wilson E O. Theory of Island Biogeography[M]. Princeton, N J: Princeton University Press,1967.
|
[44] |
Cutter A D, Gray J C.Ephemeral ecological speciation and the latitudinal biodiversity gradient[J]. Evolution, 2016, 70(10): 2 171-2 185.
|
[45] |
Roy K, Goldberg E E.Origination, extinction, and dispersal: Integrative models for understanding present-day diversity gradients[J]. The American Naturalist, 2007, 170(Suppl.2): S71-S85.
|
[46] |
Wu Jihua. Plant Biogeography (4th edition)[M]. Beijing: Advanced Education Press, 2004.
|
|
[武吉华. 植物地理学[M].北京:高等教育出版社,2004.]
|
[47] |
Woodruff D S.Biogeography and conservation in Southeast Asia: How 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity[J]. Biodiversity and Conservation, 2010, 19(4): 919-941.
|
[48] |
De Deckker P, Tapper N J, Van der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum[J]. Global and Planetary Change, 2003, 35(1): 25-35.
|
[49] |
Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance[J]. Proceedings of the National Academy of Sciences, 2009, 106(27): 11 188-11 193.
|
[50] |
Bird M I, Taylor D, Hunt C.Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland?[J]. Quaternary Science Reviews, 2005, 24(20): 2 228-2 242.
|
[51] |
Wurster C M, Bird M I, Bull I D, et al.Forest contraction in north equatorial Southeast Asia during the Last Glacial Period[J]. Proceedings of the National Academy of Sciences, 2010, 107(35): 15 508-15 511.
|
[52] |
Broccoli A J.Tropical cooling at the Last Glacial Maximum: An atmosphere-mixed layer ocean model simulation[J]. Journal of Climate, 2000, 13(5): 951-976.
|
[53] |
Davis M B, Shaw R G.Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5 517): 673-679.
|
[54] |
Colwell R K, Brehm G, Cardelús C L, et al.Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics[J]. Science, 2008, 322(5 899): 258-261.
|
[55] |
Culmsee H, Pitopang R, Mangopo H, et al.Tree diversity and phytogeographical patterns of tropical high mountain rain forests in Central Sulawesi, Indonesia[J]. Biodiversity and Conservation, 2011, 20(5): 1 103-1 123.
|
[56] |
Haffer J.Speciation in Amazonian forest birds[J]. Science, 1969, 165(3 889): 131-137.
|
[57] |
Walker M J, Stockman A K, Marek P E, et al.Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data[J]. BMC Evolutionary Biology, 2009, 9(1): 25.
|
[58] |
Lorenzen E D, Masembe C, Arctander P, et al.A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: Insights from mtDNA and the common eland antelope[J]. Journal of Biogeography, 2010, 37(3): 571-581.
|
[59] |
Born C, Alvarez N, McKEY D,et al. Insights into the biogeographical history of the Lower Guinea Forest Domain: Evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana[J]. Molecular Ecology, 2011, 20(1): 131-142.
|
[60] |
Bigg G R.Environmental confirmation of multiple ice age refugia for Pacific cod, Gadus macrocephalus[J]. Evolutionary Ecology, 2014, 28(1): 177-191.
|
[61] |
Stewart J R, Lister A M, Barnes I, et al.Refugia revisited: Individualistic responses of species in space and time[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2010, 277(1 682): 661-671.
|
[62] |
Raes N, Cannon C H, Hijmans R J, et al.Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16 790-16 795.
|
[63] |
Colinvaux P A, Irion G, Räsänen M E, et al.A paradigm to be discarded: Geological and paleoecological data falsify the Haffer & Prance refuge hypothesis of Amazonian speciation[J]. Amazoniana, 2001, 16(3): 609-646.
|
[64] |
Bush M B, Oliveira P E.The rise and fall of the Refugial Hypothesis of Amazonian speciation: A paleoecological perspective[J]. Biota Neotropica, 2006, 6(1),doi:/10.1590/S1676-06032006000100002.
|
[65] |
Slik J W F, Aiba S I, Bastian M, et al. Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12 343-12 347.
|
[66] |
Tracewski Ł, Butchart S H M, Di Marco M,et al. Toward quantification of the impact of 21st-century deforestation on the extinction risk of terrestrial vertebrates[J]. Conservation Biology, 2016, 30(5): 1 070-1 079.
|