地球科学进展 ›› 2017, Vol. 32 ›› Issue (11): 1163 -1173. doi: 10.11867/j.issn.1001-8166.2017.11.1163

所属专题: 深海科学研究

上一篇    下一篇

巽他区域地质气候环境演变与陆地生物多样性形成与变化
翁成郁( )   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2017-09-06 修回日期:2017-10-22 出版日期:2017-11-10
  • 基金资助:
    国家自然科学基金项目“南海演变过程中海洋花粉沉积和南海周边地区的环境演变历史”(编号:91028010)和“南海由张裂到关闭演化过程中台湾的第三纪地层、古环境和沉积响应”(编号:91128211)资助

The Influences of Geological History, Climatic Variations and the Environment Changes on the Terrestrial Biodiversity of Sunda Region

Chengyu Weng( )   

  1. State Key Laboratory of Marine Geology,Tongji University, Shanghai 200092, China
  • Received:2017-09-06 Revised:2017-10-22 Online:2017-11-10 Published:2018-01-10
  • About author:

    First author:Weng Chengyu(1965-),male, Kunming City, Yunnan Province, Professor. Research areas include quaternary geology, palaeoecology and palaeogeography.E-mail:weng@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Marine pollen deposit and the environmental changes in the surrounding regions during the development of South China Sea”(No.91028010) and “The responses of the stratigraphy, paleoenvironment and sedimentation to the process of splitting and closure of South China Sea in Taiwan during Tertiary”(No.91128211)

巽他地区位于东南亚热带环境,是世界最主要的三大热带雨林分布区之一,也是世界生物多样性最高的区域之一,同时也是受到物种绝灭威胁最强烈的区域。该区域多样性的形成主要是因其位于温暖湿润的热带、地质历史上位于欧亚板块与印度—澳大利亚板块之间,另外该区域主要为陆架区,被海水分割成分散隔离的众多岛屿,在冰期—间冰期的气候旋回中受到气候与海平面变化的强烈影响加速物种与基因的交流,从而累计大量的物种。在第四纪气候变化时期,温度与海平面变化强烈地影响了物种的分布范围与彼此间的隔离与融合,使得它们的多样性受到较大影响。冰期时海平面的下降使得大面积陆地出露,利于物种的传播与扩展及基因的交流,间冰期时上升的海平面隔离了许多生境,隔离的环境有利于新物种生成,但是绝灭也更容易发生。生物避难所对于物种的存续起着重要作用。而在当前快速气候变暖与人类活动的影响下,避难所显得更加重要,然而,一部分物种虽然可以由此延续,但是大多数物种面临的生存危机可能更大,这是未来该地区生态保护的一大挑战。

Sunda region, located in the tropical region of Southeast Asia, is one of the three main regions of the tropical rainforests with the highest biodiversity in the world, and also the most endangered ranges of species extinction. The high biodiversity in the region was due to several reasons: ①the lucky geographical location in the warm and moist tropics, ②joint zone between the two large tectonic plates Eurasia and India-Australia, ③with abundant of islands separated with different distances. ④In the cycles of glacial-interglacial during the geological history, the variations of the temperature and the fluctuations of the sea level created opportunities for the species interactions and gene mixture, therefore resulting in the formation of new species and contributing more species to the region. In particular, during Quaternary period, the continental shelves exposed repeatedly during the glacial times, and the many islands were often merged into one or a few continuous and large territories, making the gene flows within species easier. During the interglacials, the sea-level rose and the continental shelved were submerged, and the scattered and isolated territories might make the speciation and extinction occurred more frequently. Biological refugia might be important for many species’ survival. Today, with the rapid global warming and intensive human disturbance, the refugia may be more crucial for many species to survive. However, the extinction of many species may be inevitable.

中图分类号: 

图1 世界主要热带雨林的分布
Fig.1 The global distribution of the tropical rainforests
图2 东南亚岛屿分布、大陆架(浅蓝区)范围 [ 27 ]
黑实线为华莱士线,虚线为不同的生物区系分界线
Fig.2 Geographical map of the Southeast Asia, showing the lands (green), continental shelves (light-blue region) [ 27 ]
The black solid line is the Wallace’s Line, dashed lines is the other proposed boundary lines thereafter
图3 过去冰期—间冰期中巽他区域的陆地面积波动模拟结果 [ 49 ]
(a)冰期降温1.4 ℃;(b)降温3 ℃
Fig.3 Simulated oscillations of the land area of Sunda region in the cycles of glacial-interglacials during last one million years for two different scenarios [ 49 ]
(a)Temperature dropped 1.4 ℃;(b)Temperature dropped 3 ℃
图4 避难所面积与绝灭时间的关系示意图 [ 61 ]
图中关系还决定于生物体的个体大小、一代生物生活的时间长短及在食物链中的位置等,所以图中显示了不同斜率的2条线
Fig.4 Conceptual relationship between size of a potential refugium and the time to extinction [ 61 ]
The slope of the line is also determined by body size, generation time and the trophy level, which is represented by two different lines in the figure
[1] Achard F, Eva H D, Stibig H J, et al.Determination of deforestation rates of the world’s humid tropical forests[J]. Science,2002, 297(5 583): 999-1 002.
[2] Achard F, DeFries R, Eva H,et al. Pan-tropical monitoring of deforestation[J].Environmental Research Letters, 2007, 2(4): 1-11.
[3] Saatchi S S, Harris N L, Brown S, et al.Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences,2011, 108(24): 9 899-9 904.
[4] Stibig H J, Achard F, Fritz S.A new forest cover map of continental southeast Asia derived from SPOT-VEGETATION satellite imagery[J]. Applied Vegetation Science, 2004, 7(2): 153-162.
[5] Stibig H J, Beuchle R, Achard F.Mapping of the tropical forest cover of insular Southeast Asia from SPOT4-vegetation images[J]. International Journal of Remote Sensing, 2003, 24(18): 3 651-3 662.
[6] Stibig H J, Achard F, Carboni S, et al.Change in tropical forest cover of Southeast Asia from 1990 to 2010[J]. Biogeosciences, 2014, 11(2): 247-258.
[7] Rosa I M D, Smith M J, Wearn O R, et al. The environmental legacy of modern tropical deforestation[J]. Current Biology, 2016, 26(16): 2 161-2 166.
[8] Burke L, Selig E, Spalding M.Reefs at Risk in Southeast Asia[M]. Cambridge,UK:UNEP-WCMC, 2002.
[9] Food and Agriculture Organization. The World’s Mangroves 1980-2005[C]. Forestry Paper 153. FAO, Rome, 2007.
[10] Friess D A, Thompson B S, Brown B, et al.Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia[J]. Conservation Biology, 2016, 30(5): 933-949.
[11] Pelejero C, Kienast M, Wang L, et al.The flooding of Sundaland during the last deglaciation: Imprints in hemipelagic sediments from the southern South China Sea[J]. Earth and Planetary Science Letters, 1999, 171(4): 661-671.
[12] Woodruff D S.Neogene marine transgressions, palaeogeography and biogeographic transitions on the Thai-Malay Peninsula[J]. Journal of Biogeography, 2003, 30(4): 551-567.
[13] Hanebuth T, Stattegger K, Grootes P M.Rapid flooding of the Sunda Shelf: A late-glacial sea-level record[J]. Science, 2000, 288(5 468): 1 033-1 035.
[14] Myers N, Mittermeier R A, Mittermeier C G, et al.Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6 772): 853-858.
[15] de Bruyn M, Rüber L, Nylinder S, et al. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots[J]. Systematic Biology, 2013, 62(3): 398-410.
[16] De Bruyn M, Stelbrink B, Morley R J, et al.Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity[J]. Systematic Biology, 2014, 63(6): 879-901.
[17] Krug A Z, Jablonski D, Valentine J W, et al.Generation of Earth’s first-order biodiversity pattern[J]. Astrobiology, 2009, 9(1): 113-124.
[18] Bush M B.Ecology of A Changing Planet (3rd Edition)[M]. Addison-Wesley, 2003.
[19] Schluter D, Pennell M W.Speciation gradients and the distribution of biodiversity[J]. Nature,2017, 546(7 656): 48-55.
[20] Bush M, Flenley J, Gosling W, eds.Tropical Rainforest Responses to Climatic Change[M]. Chichester,UK:Springer,2013.
[21] Mannion P D, Upchurch P, Benson R B J,et al. The latitudinal biodiversity gradient through deep time[J]. Trends in Ecology & Evolution, 2014, 29(1): 42-50.
[22] Tilman D.Competition and biodiversity in spatially structured habitats[J]. Ecology, 1994, 75(1): 2-16.
[23] Jablonski D, Roy K, Valentine J W.Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient[J]. Science, 2006, 314(5 796): 102-106.
[24] Pachl P, Lindl A C, Krause A, et al.The tropics as ancient cradle of oribatid mite diversity[J]. Acarologia, 2016, 57(2): 309-322.
[25] Mittelbach G G, Schemske D W, Cornell H V, et al.Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography[J]. Ecology Letters, 2007, 10(4): 315-331.
[26] Hall R.Southeast Asia’s changing palaeogeography[J]. Blumea-Biodiversity, Evolution and Biogeography of Plants, 2009, 54(1): 148-161.
[27] Lohman D J, de Bruyn M, Page T, et al. Biogeography of the Indo-Australian archipelago[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 205-226.
[28] Metcalfe I.Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66: 1-33.
[29] Lo E Y Y, Duke N C, Sun M. Phylogeographic pattern of Rhizophora (Rhizophoraceae) reveals the importance of both vicariance and long-distance oceanic dispersal to modern mangrove distribution[J]. BMC Evolutionary Biology, 2014, 14(1): 83.
[30] Metcalfe I.Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:The Korean Peninsula in context[J]. Gondwana Research, 2006, 9(1): 24-46.
[31] Metcalfe I.Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19(1): 3-21.
[32] Hall R.The palaeogeography of Sundaland and Wallacea since the Late Jurassic[J]. Journal of Limnology, 2013, 72(Suppl.2): 1.
[33] Cannon C H, Manos P S.Phylogeography of the Southeast Asian stone oaks (Lithocarpus)[J]. Journal of Biogeography, 2003, 30(2): 211-226.
[34] Sirichamorn Y, Thomas D C, Adema F A C B,et al. Historical biogeography of Aganope, Brachypterum and Derris (Fabaceae, tribe Millettieae): Insights into the origins of Palaeotropical intercontinental disjunctions and general biogeographical patterns in Southeast Asia[J]. Journal of Biogeography, 2014, 41(5): 882-893.
[35] Thomas D C, Hughes M, Phutthai T, et al.West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago[J]. Journal of Biogeography, 2012, 39(1): 98-113.
[36] Kathuria S, Ganeshaiah K N.Tectonic activities shape the spatial patchiness in the distribution of global biological diversity[J]. Current Science, 2002, 82(1): 76-80.
[37] Beck J, Kitching I J, Linsenmair K E.Wallace’s line revisited: Has vicariance or dispersal shaped the distribution of Malesian hawkmoths (Lepidoptera: Sphingidae)?[J]. Biological Journal of the Linnean Society, 2006, 89(3): 455-468.
[38] Brown R M, Guttman S I.Phylogenetic systematics of the Rana signata complex of Philippine and Bornean stream frogs: Reconsideration of Huxley’s modification of Wallace’s Line at the Oriental-Australian faunal zone interface[J]. Biological Journal of the Linnean Society, 2002, 76(3): 393-461.
[39] Esselstyn J A, Oliveros C H, Moyle R G, et al.Integrating phylogenetic and taxonomic evidence illuminates complex biogeographic patterns along Huxley’s modification of Wallace’s Line[J]. Journal of Biogeography, 2010, 37(11): 2 054-2 066.
[40] Lourie S A, Vincent A C J. A marine fish follows Wallace’s Line: The phylogeography of the three-spot seahorse (Hippocampus trimaculatus, Syngnathidae, Teleostei) in Southeast Asia[J]. Journal of Biogeography, 2004, 31(12): 1 975-1 985.
[41] Van Welzen P C, Parnell J A N, Slik J W F. Wallace’s Line and plant distributions: Two or three phytogeographical areas and where to group Java?[J]. Biological Journal of the Linnean Society, 2011, 103(3): 531-545.
[42] Gastauer M, Saporetti-Junior A W, Magnago L F S,et al. The hypothesis of sympatric speciation as the dominant generator of endemism in a global hotspot of biodiversity[J]. Ecology and Evolution, 2015, 5(22): 5 272-5 283.
[43] McArthur R H, Wilson E O. Theory of Island Biogeography[M]. Princeton, N J: Princeton University Press,1967.
[44] Cutter A D, Gray J C.Ephemeral ecological speciation and the latitudinal biodiversity gradient[J]. Evolution, 2016, 70(10): 2 171-2 185.
[45] Roy K, Goldberg E E.Origination, extinction, and dispersal: Integrative models for understanding present-day diversity gradients[J]. The American Naturalist, 2007, 170(Suppl.2): S71-S85.
[46] Wu Jihua. Plant Biogeography (4th edition)[M]. Beijing: Advanced Education Press, 2004.
[武吉华. 植物地理学[M].北京:高等教育出版社,2004.]
[47] Woodruff D S.Biogeography and conservation in Southeast Asia: How 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity[J]. Biodiversity and Conservation, 2010, 19(4): 919-941.
[48] De Deckker P, Tapper N J, Van der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum[J]. Global and Planetary Change, 2003, 35(1): 25-35.
[49] Cannon C H, Morley R J, Bush A B G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance[J]. Proceedings of the National Academy of Sciences, 2009, 106(27): 11 188-11 193.
[50] Bird M I, Taylor D, Hunt C.Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland?[J]. Quaternary Science Reviews, 2005, 24(20): 2 228-2 242.
[51] Wurster C M, Bird M I, Bull I D, et al.Forest contraction in north equatorial Southeast Asia during the Last Glacial Period[J]. Proceedings of the National Academy of Sciences, 2010, 107(35): 15 508-15 511.
[52] Broccoli A J.Tropical cooling at the Last Glacial Maximum: An atmosphere-mixed layer ocean model simulation[J]. Journal of Climate, 2000, 13(5): 951-976.
[53] Davis M B, Shaw R G.Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5 517): 673-679.
[54] Colwell R K, Brehm G, Cardelús C L, et al.Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics[J]. Science, 2008, 322(5 899): 258-261.
[55] Culmsee H, Pitopang R, Mangopo H, et al.Tree diversity and phytogeographical patterns of tropical high mountain rain forests in Central Sulawesi, Indonesia[J]. Biodiversity and Conservation, 2011, 20(5): 1 103-1 123.
[56] Haffer J.Speciation in Amazonian forest birds[J]. Science, 1969, 165(3 889): 131-137.
[57] Walker M J, Stockman A K, Marek P E, et al.Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data[J]. BMC Evolutionary Biology, 2009, 9(1): 25.
[58] Lorenzen E D, Masembe C, Arctander P, et al.A long-standing Pleistocene refugium in southern Africa and a mosaic of refugia in East Africa: Insights from mtDNA and the common eland antelope[J]. Journal of Biogeography, 2010, 37(3): 571-581.
[59] Born C, Alvarez N, McKEY D,et al. Insights into the biogeographical history of the Lower Guinea Forest Domain: Evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana[J]. Molecular Ecology, 2011, 20(1): 131-142.
[60] Bigg G R.Environmental confirmation of multiple ice age refugia for Pacific cod, Gadus macrocephalus[J]. Evolutionary Ecology, 2014, 28(1): 177-191.
[61] Stewart J R, Lister A M, Barnes I, et al.Refugia revisited: Individualistic responses of species in space and time[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2010, 277(1 682): 661-671.
[62] Raes N, Cannon C H, Hijmans R J, et al.Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima[J]. Proceedings of the National Academy of Sciences, 2014, 111(47): 16 790-16 795.
[63] Colinvaux P A, Irion G, Räsänen M E, et al.A paradigm to be discarded: Geological and paleoecological data falsify the Haffer & Prance refuge hypothesis of Amazonian speciation[J]. Amazoniana, 2001, 16(3): 609-646.
[64] Bush M B, Oliveira P E.The rise and fall of the Refugial Hypothesis of Amazonian speciation: A paleoecological perspective[J]. Biota Neotropica, 2006, 6(1),doi:/10.1590/S1676-06032006000100002.
[65] Slik J W F, Aiba S I, Bastian M, et al. Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12 343-12 347.
[66] Tracewski Ł, Butchart S H M, Di Marco M,et al. Toward quantification of the impact of 21st-century deforestation on the extinction risk of terrestrial vertebrates[J]. Conservation Biology, 2016, 30(5): 1 070-1 079.
[1] 效存德,陈卓奇,江利明,丁明虎,窦挺峰. 格陵兰冰盖监测、模拟及气候影响研究[J]. 地球科学进展, 2019, 34(8): 781-786.
[2] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[3] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[4] 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
[5] 王军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[6] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[7] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[8] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[9] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[10] 王国栋, 康建成, Han Guoqi, 刘超, 闫国东. 中国东海海平面变化多尺度周期分析与预测[J]. 地球科学进展, 2011, 26(6): 678-684.
[11] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[12] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.
[13] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
[14] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[15] 张永民. 生物多样性的保育及可持续利用对策[J]. 地球科学进展, 2009, 24(6): 662-667.
阅读次数
全文


摘要