地球科学进展 ›› 2010, Vol. 25 ›› Issue (5): 552 -560. doi: 10.11867/j.issn.1001-8166.2010.05.0552

生态学研究 上一篇    

深海化能合成生态系统研究进展
孙晓霞 1,孙  松 1,2*   
  1. 1.中国科学院山东胶州湾海洋生态系统国家野外科学观测研究站,山东  青岛;   2.中国科学院海洋研究所 海洋生态与环境科学重点实验室,山东  青岛  266071
  • 收稿日期:2009-04-28 修回日期:2010-03-08 出版日期:2010-05-10
  • 通讯作者: 孙松(1959-),男,山东莱阳人,研究员,主要从事海洋生态学研究. E-mail:xxsun2006@gmail.com
  • 基金资助:

     国家自然科学基金项目“营养盐结构失衡对海洋浮游生物群落的影响机制”(编号:40876083)和“黄东海浮游动物优势种种群动态变化机制”(编号:40631008);中国科学院知识创新工程重要方向项目群项目“我国近海基础生产力分布格局及关键控制过程”(编号:KZCX2-YW-Q07-01);国家重点基础研究发展计划项目“浮游动物功能群在食物生产中的调控作用”(编号:2006CB400606)资助

Research Progress of Deep Sea Chemosynthetic Ecosystems

Sun Xiaoxia 1,Sun Song 1,2   

  1. 1.Jiaozhou Bay Marine Ecosystem Research Station, Chinese Academy of Sciences, Qingdao  266071, China;
    2. Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao  266071, China
  • Received:2009-04-28 Revised:2010-03-08 Online:2010-05-10 Published:2010-05-10
  • Contact: Xiao-Xia SUN E-mail:xxsun2006@gmail.com

  深海化能合成生态系统(ChEss)是当前最大的国际海洋生物多样性研究计划——国际海洋生物普查计划的现场研究项目之一。深海化能合成生态系统主要包括热液、冷泉、鲸骨生态系统以及由其他高度还原型生境形成的生态系统。确定上述系统动物区系间的进化和生态学关系,对于了解全球尺度上化能合成生态系统物种分布的形成过程至关重要。重点介绍深海化能合成生态系统科学计划发起的背景、研究内容和目标、研究区域、研究技术与方法以及当前在该领域的研究进展和展望,综合国际上在深海化能合成生态系统生物地理学和生物多样性方面的最新进展,了解其中的驱动过程,以期为我国在深海化能合成生态系统、极端环境下的生物多样性和生物地理学研究提供参考。

  ChEss is a pilot project within the Census of Marine Life (CoML) initiative. The main objective of ChEss was to determine the biogeography and biodiversity of deep-water chemosynthetic ecosystems and to understand the processes driving them. Chemosynthetic ecosystems include hydrothermal vents, cold seeps, whale fall and other highly reduced ecosystems. To assess the biogeography and biodiversity of chemosynthetic ecosystems it is essential that all the above systems be studied in combination. Determining the evolutionary and ecological relationships among their fauna is crucial to understanding the processes that shape the distribution of species from chemosynthetic ecosystems at the global scale. The background, content, goal, research area, technique, methods, progress and future plan are introduced in this paper, which is expected to be useful for the study of biodiversity and biogeography in deep sea chemosynthetic systems and other extreme environment in China.

中图分类号: 

[1] Sibuet M, Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J].Deep-Sea Research II,1998, 45: 517-567.
[2] Smith C R, Kukert H, Wheatcroft R A,et al. Vent fauna on whale remains[J]. Nature, 1989, 341: 27-28. 
[3] Smith C R, Baco A R. The ecology of whale falls at the deep-sea floor[J].Oceanography and Marine Biology Annual Review, 2003, 41: 311-354.
[4] Levin L A. Oxygen minimum zone benthos: Adaptation and community response to hypoxia[J].Oceanography and Marine Biology: An Annual Review,2003, 41: 1-45.
[5] ChEss steering committee. Developing a Long Term Field Phase for Understanding the Biogeography of Deep-water Chemosynthetic Ecosystems at the Global Scale[R].ChEss, Biogeo-graphy of Deep-Water Chemosynthetic Tcosystems Science Plan, 2005:1-10.
[6] Edmonds H N, Michael P J, Baker E T,et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J].Nature,2003, 421: 252-256.
[7] Pedersen R, Kelly D, Thorseth I,et al. ROV exploration of the Kolbeinsey Ridge: preliminary results of the SUBMAR-99 cruise[J].InterRidge News,1999, 8: 32-34.
[8] Connelly D P, German C R. Total dissolvable manganese anomalies over the Knipovich Ridge: Evidence for hydrothermal activity[J]. EOS, Transactions, American Geophysical Union, 2002, 83:205-206.
[9] Domaneschi O, Lopes S.Calyptogena (Calyptogena) birmani, a new species of Vesicomyidae (Mollusca-Bivalvia) from Brazil[J].Malacologia,1990, 31: 363-370.
[10] German C R, Livermore R A, Baker E T,et al.Hydrothermal plumes above the East Scotia Ridge: An isolated high-latitude back arc spreading centre[J].Earth and Planetary Science Letters,2001, 184: 241-250. 
[11] Klinkhammer G, Chin C, Keller R,et al. Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica[J].Earth and Planetary Science Letters,2001, 193: 395-407.
[12] German C R, Baker E T, Mevel C,et al. Hydrothermal activity along the southwest Indian ridge[J].Nature,1998, 395: 490-493.
[13] Bach W, Alt J C, Niu Y,et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176)[J].Geochimica et Cosmochimica Acta,2001,65:3 267-3 287. 
[14] Baker M, Ramírez-Llodra E,Tyler P,et al. ChEss Protocols: Exploration and investigation of deep-water chemosynthetic ecosystems[R/OL].http//www.noc.soton.ac.uk/chess,2005.
[15] German C R, Richards K J, Rudnicki M D,et al. Topographic control of a dispersing hydrothermal plume[J].Earth Planetary Science Letters,1998,156:267-273.
[16] Cave R R, German C R. Hydrothermal plume detection in the deep ocean—A combination of technologies[J].Journal of Society Underwater Technology,1998, 23: 71-75.
[17] Baker E T, Hey R N, Lupton J E,et al. Hydrothermal venting along earth′s fastest spreading center: East Pacific Rise, 27.5 degrees-32.3 degrees[J].Journal of Geophysical Research,107 (B7): EPM21-EPM2.14.
[18] Gamo T, Chiba H, Yamanaka T,et al. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge[J].Earth Planetary Science Letters,2001, 193: 371-379.
[19] Van Dover C L. Community structure of mussel beds at deep-sea hydrothermal vents[J].Marine Ecology Progress Series,2002, 230: 137-158.
[20] German C R, Yoergera D R, Jakubaa M,et al. Hydrothermal exploration with the Autonomous Benthic Explorer[J].Deep-Sea Research I,2008, 55: 203-219.
[21] MacDonald I R, Guinasso N L, Ackleson S G,et al. Natural oil slicks in the Gulf of Mexico visible from space[J]. Journal of Geophysical Research,1993, 98(C9):16 351-16 364.
[22] MacDonald I R, Reilly J F, Best S E,et al. A remote-sensing inventory of active oil seeps and chemosynthetic communities in the northern Gulf of Mexico[C]//Schumacher D, Abrams M A.Hydrocarbon Migration and Its Near-surface Expression.  American Association of Petroleum Geologists,1996,66:27-37.
[23] MacDonald I R, Arvidson R, Carney R S,et al. Stability and Change in Gulf of Mexico Chemosynthetic Communities: Final Report[R]. New Orleans, LA, US Deptartment of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, 2002, Contract 14-35-001-31813.
[24] Sellanes J, Quiroga E, Gallardo V A. First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile[J].Journal of the Marine Biological Association of the United Kingdom,2004, 84: 1 065-1 066.
[25] Ramirez-Llodra E, Shank T M, German C R. Biodiversity and biogeography of hydrothermal vent species: Thirty years of discovery and investigations[J].Oceanography,2001, 20(1): 31-40.
[26] Urcuyo I A, Massoth G J, Julian D, et al. Habitat, growth and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge[J]. Deep Sea Research I, 2003, 50: 763-780.
[27] Weber R E, Hourdez S, Knowles F, et al. Hemoglobin function in deep-sea and hydrothermal vent endemic fish: Symenchelis arasitica (Anguillidae) and Thermarces Cerberus (Zoarcidae)[J]. Journal of Experimental Biology, 2003, 206: 2 697-2 702.
[28] Hilario A, Young C M, Tyler P A. Sperm storage, internal fertilization and embryonic dispersal in vent and seep tubeworms (Polychaeta:Siboglinidae:Vestimentifera)[J]. Biological Bulletin,2005, 208: 20-28.
[29] Metaxas A. Spatial and temporal patterns in larval supply at hydrothermal vents on the northwest Pacific Ocean[J]. Limnology & Oceanography,2004, 49: 1949-1 956.
[30] Mullineaux L S, Peterson C H, Micheli F, et al. Successional mechanism varies along a gradient in hydrothermal fluid flux at deep-sea vents[J]. Ecological Monographs, 2003, 73: 523-542.
[31] Mullineaux L S, Mills S W, Sweetman A K, et al. Vertical, lateral and temporal structure in larval distributions at hydrothermal vents[J]. Marine Ecology Progress Series, 2005, 293: 1-16.
[32] Mullineaux L S, Kim S L, Pooley A, et al. Identification of archaeogastropod larvae from a hydrothermal vent community[J]. Marine Biology,1996, 124: 551-560.[33] Taylor C-WHOI (used on cruise-Extreme 2002)[EB/OL]. http://www.ocean.udel.edu/extreme2002/creatures/microbes/,2009.
[34] Kouris A, Juniper S K, Fre bourg G,et al.Protozoan bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge[J].Marine Ecology,2007, 28: 63-71.
[35] Cowen R K, Lwiza K M M, Sponaugle S,et al. Connectivity of marine populations: Open or closed?[J].Science,2000, 287: 857-859.
[36] Mullineaux L S, Mills S W, Sweetman A K,et al. Vertical, lateral and temporal structure in larval distributions at hydrothermal vents[J].Marine Ecology Proggress Series,2005, 293:1-16.
[37] Ramirez-Llodra E. Fecundity and life-history strategies in marine invertebrates[J].Advances in Marine Biology,2002, 43: 88-170.
[38] Marsh A G, Mullineaux L S, Young C M,et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents[J].Nature,2001, 411: 77-80.
[39] Yoerger Dana R, Bradley Albert M, Jakuba Michael,et al.Autonomous and remotely operated vehicle technology for hydrothermal vent discovery[J].Exploration and Sampling, Oceanography,2007, 20(1): 152-161.

[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[3] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[4] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[5] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[6] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[7] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[8] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[9] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[10] 方捷, 孙静雯, 徐宏庆, 叶锦华, 陈建平, 任梦依, 唐超. 北大西洋中脊海底多金属硫化物资源预测[J]. 地球科学进展, 2015, 30(1): 60-68.
[11] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[12] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[13] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[14] 焦 鑫,柳益群,周鼎武,汪双双,南 云,周宁超,杨焱钧. “白烟型”热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2): 221-232.
[15] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
阅读次数
全文


摘要