地球科学进展 ›› 2018, Vol. 33 ›› Issue (11): 1112 -1129. doi: 10.11867/j.issn.1001-8166.2018.11.1112.

上一篇    下一篇

沉积岩中溶蚀作用对储集层的改造研究进展 *
陈启林( ), 黄成刚   
  1. 中国石油勘探开发研究院 西北分院,甘肃 兰州 730020
  • 收稿日期:2018-08-22 修回日期:2018-10-07 出版日期:2018-11-20
  • 基金资助:
    国家科技重大专项项目“岩性地层油气藏成藏规律、关键技术及目标评价”(编号:2017ZX05001);中国石油集团公司重大科技专项项目“大中型岩性地层油气藏富集规律与关键技术”(编号:2016B-0301)资助.

Research Progress of Modification of Reservoirs by Dissolution in Sedimentary Rock

Qilin Chen( ), Chenggang Huang   

  1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China
  • Received:2018-08-22 Revised:2018-10-07 Online:2018-11-20 Published:2018-12-21
  • About author:

    First author:Chen Qilin(1963-),male,Dingxi City,Gansu Province,Professor. Research areas include petroleum exploration research and sedimentary analysis. E-mail:chenql@petrochina.com.cn

  • Supported by:
    Foundation item:Project supported by the Major National Science and Technology Projects "Accumulation regulation, key technologies and target evaluation of litho-stratigraphic reservoirs"(No. 2017ZX05001);The Major Science and Technology Project of China National Petroleum Corporation "Enrichment law and key technologies of large and medium-sized lithologic-stratigraphic reservoirs" (No.2016B-0301) .

随着油气勘探程度的加深、勘探技术的进步以及对油气资源需求的日益增长,一些埋藏较深、物性相对较差的储集层也越来越受到地质学家们的关注。经过数十年的勘探,许多油田埋藏较浅、原生孔隙保存较好的优质储层已被广泛发现并投入生产,而埋藏较深、以次生溶蚀孔为主要储集空间的较致密储层,正日益成为成熟探区勘探挖潜的重点。因此,寻找次生孔隙发育带的溶蚀孔隙甜点储层成为精细勘探的重要新领域。通过研究一些典型实例及大量研究成果的综述,从以下4个方面系统阐述了溶蚀作用对储集层的改造:①溶蚀作用发生的成岩阶段;②溶蚀流体的类型;③溶蚀作用强弱的主控因素;④溶蚀作用对储集层的改造效果。近年来,已有较多的研究成果在溶蚀机理和对储集层的改造效果方面取得了重要进展,通过对这些主流观点的系统梳理,可对今后类似地质条件的研究提供重要的参考。

With the deepening of exploration degree, the progress of exploration technology and the increasing demands for oil and gas resources, some deep buried reservoirs with relatively poor physical properties have attracted more and more attention of geologists. After decades of exploration, many high-quality reservoirs with shallow burial and well-preserved primary pores have been widely discovered and put into production. However, deep buried tight reservoirs with secondary dissolved pores as the main reservoir space are increasingly becoming the focus of exploration in mature exploration areas. Therefore, searching for secondary pore development zones and dissolved "sweet" reservoirs will become an important new field for fine exploration in the future. Based on some typical case studies and a large number of research results, this paper systematically expounded the modification of reservoirs by dissolution from the following four aspects:①Diagenetic stage of dissolution; ②Types of dissolution fluids;③Main controlling factors of dissolution; ④Effect of dissolution on reservoir modification. In recent years, more and more research achievements have made important progress in dissolution mechanism and reservoir modification effect. The systematic analysis of these mainstream views has some reference value for similar geological conditions in the future.

中图分类号: 

图1 柴达木盆地英西地区渐新统有机酸溶蚀现象
(a)S3-1井,2 893.00 m,与晶间孔连通的长石碎屑被有机酸溶蚀改造,氩离子抛光后的扫描电镜照片;(b)S41-2井,4 081.88 m,白云石晶间孔被有机酸溶蚀改造,氩离子抛光后的扫描电镜照片
Fig.1 Organic acid dissolution of Oligocene reservoirs in the Yingxi area of Qaidam Basin
(a)Well S3-1,2 893.00 m,dissolution of feldspar crumbs connected with intercrystalline pores by organic acids,scanning electron microscope photograph after argon ion polishing;(b)Well S41-2,4 081.88 m,modification of intercellular pore of dolomite by organic acid,scanning electron microscope photograph after argon ion polishing
图2 鄂尔多斯盆地三叠系延长组各油层组孔隙度值与自生高岭石质量百分含量 (据参考文献[ 13 ]修改)
Fig.2 Porosity and authigenic kaolinite content in in all oil formations of Yanchang Formation in Triassic, Ordos Basin(modified after reference[13])
图3 四川盆地各时代硫化氢和石膏的硫同位素值分布特征(据参考文献[ 28 ]修改)
Fig.3 H 2S and gypsum sulfur isotopic distributions in different ages in the Sichuan Basin(modified after reference[28])
图4 柴达木盆地英西地区S32X井渐新统(4 151.82 m)裂缝中的热液矿物(据参考文献[ 29 ]修改)
(a)~(b)裂缝中的热液天青石,扫描电镜图片;(c)为(a)中的天青石能谱谱图
Fig.4 Hydrothermal mineral in fracture of Oligocene reservoirs from the well S32X(4 151.82 m) of Yingxi area,Qaidam Basin(modified after reference[29])
(a)~(b)Hydrothermal origin celestite in fractures,scanning electron microscope photograph;(c)Energy spectrum of celestite in figure (a)
图5 塔里木盆地塔中地区奥陶系中—粗晶热液白云岩(据参考文献[ 35 ]修改)
(a)TZ162井,雾心亮边中—细晶热液白云岩,5 978.20 m,铸体薄片(红色);(b)TZ408井,4 414.85 m,雾心亮边中—细晶热液白云岩,铸体薄片(红色)
Fig.5 Medium coarse grained hydrothermal dolomite of Ordovician in Tazhong area, Tarim Basin(modified after reference[35])
(a) Well TZ162, Fine-grained hydrothermal dolomite with foggy center and bright edge,5 978.20 m,cast thin section (red);(b)Well TZ408,4 414.85 m,medium fine crystal hydrothermal dolomite with foggy center and bright edge,cast thin section (red)
图6 地层条件下灰岩和白云岩可溶性对比(据参考文献[ 1 ]修改)
Fig.6 Solubility comparison of limestone and dolomite under stratum conditions(modified after reference[1])
图7 硬石膏的溶解作用受盐度和温度的控制(据参考文献[ 56 ]修改)
Fig.7 The dissolution of anhydrite is controlled by salinity and temperature(modified after reference[56])
图8 柴达木盆地英西地区渐新统石盐的岩心照片、偏光显微镜照片以及扫描电镜照片(S37井,2 697.08 m)
(a)作为最优质盖层的石盐,岩心照片; (b)和(d)石盐晶体与晶体之间的结晶缝,不发育任何孔隙,扫描电镜照片; (c),(e~g)沿石盐晶体结晶缝敲开后,结晶缝面上残存着轻质油,缝面光滑,未见溶蚀痕迹,扫描电镜照片; (h)轻质油沿氯化钠结晶缝渗出,未见任何孔隙,单偏光,为5张偏光显微镜照片拼接而成
Fig.8 Core photographs, polarizing microscope photographs and scanning electron microscope photographs of Oligocene halite in the Yingxi area of Qaidam Basin(Well S37, 2 697.08 m)
(a)Halite as the best quality cap rock, core photo; (b)and(d)Crystallization seams between halite crystals and crystals,no pore development, scanning electron microscope photograph; (c),(e~g)Break from the crystal seams of halite crystals, light oil remained on the surface of the crystal seams,the surface of the seam is smooth, no traces of corrosion were found, scanning electron microscope photograph; (h)Light oil seeps through the crystal seams of sodium chloride, without any pore, single polarized light, which is made up of five polarized microscope photographs
图9 柴达木盆地英西地区渐新统晶间孔中的充填物被溶蚀(S41-2井,4 071.86 m)
Fig.9 The filling in the intercrystalline pores is corroded of Oligocene reservoirs in the Yingxi area of Qaidam Basin(Well S41-2, 4 071.86 m)
图10 全球碎屑岩油藏储集岩的孔隙度、渗透率及埋深相关关系(据参考文献[3,4]修改)
Fig.10 Average porosity vs. depth and Arithmetic-average permeability vs. average porosity for global petroleum reservoirs composed of sandstone(modified after references[3,4])
图11 塔西南地区奥陶系热液溶蚀作用对白云岩储层的改造(据参考文献[ 73 ]修改)
(a)灰白色中—粗晶白云岩呈斑豹状分布于深灰色粉晶白云岩中;(b)硅质和粗晶白云石晶体沿孔洞壁生长;(c)马鞍状中晶白云岩的溶蚀孔洞;(d)溶蚀孔洞中含热液矿物天青石;(e)白云岩溶蚀孔洞中的自生石英与高岭石;(f)裂缝中高含Mn的中晶白云石,阴极发光下桔黄色,具环带特征
Fig.11 Modification of dolomite reservoirs by hydrothermal dissolution of Ordovician in Southwest Tarim Basin (modified after reference[73])
(a)Grayish white coarse-grained dolomite is leopard like distributed in deep gray powder dolomite;(b)Siliceous and coarse grained dolomite crystals grow in the hole wall;(c)Saddle shaped medium-grained dolomite corroded and formed holes;(d)Hydrothermal mineral containing celestite in dissolution pores;(e)Authigenic quartz and kaolinite in dissolution pores of dolomite;(f)The medium-grained dolomite with high Mn content in the fissure is orange yellow with circular band under cathodoluminescence
[1] Shen Anjiang, Zhao Wenzhi, Hu Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5):546-554.
[沈安江,赵文智,胡安平,等. 海相碳酸盐岩储集层发育主控因素[J]. 石油勘探与开发, 2015, 42(5):546-554.]
doi: 10.11698/PED.2015.05.01     URL    
[2] Zhang Jianyong,Ni Xinfeng,Wu Xingning,et al. Main controlling factors and distribution of high quality reservoirs of deep buried dolomite in typical craton basins in China[J]. Natural Gas Geoscience,2017, 28(8):1165-1175.
[张建勇,倪新锋,吴兴宁,等.中国主要克拉通盆地深层白云岩优质储层发育主控因素及分布[J].天然气地球科学, 2017, 28(8):1165-1175.]
[3] Ehrenberg S N, Nadeau P H.Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships[J].AAPG Bulletin, 2005, 89(4):435-445.
doi: 10.1306/11230404071     URL    
[4] Ni Xianglong, Huang Chenggang, Du Binshan, et al. Main control factors of dessert reservoirs and patterns of "oil reservoirs below source" in basin margin depression: A case study of Oligocene reservoirs in the Zhahaquan area, Qaidam Basin[J]. Journal of China University of Mining & Technology, 2019,48(1):164-175.
[倪祥龙,黄成刚,杜斌山,等. 盆缘凹陷区甜点储层主控因素与源下成藏模式——以柴达木盆地扎哈泉地区渐新统为例[J]. 中国矿业大学学报, 2019,48(1):164-175.]
[5] He Gengsheng, Tang Hai.Petrophysics[M]. Beijing:Petroleum Industry Press, 2011: 25-26.
[何更生, 唐海. 油层物理[M]. 北京:石油工业出版社, 2011: 25-26.]
[6] Huang Chenggang, Wang Jiangong, Wu Lirong,et al. Characteristics of lacustrine carbonate reservoirs in Paleogene and oil-bearing property analysis: A case study of the Yingxi area from the Western Qaidam Basin[J]. Journal of China University of Mining & Technology, 2017, 46(5): 909-922.
[黄成刚,王建功,吴丽荣,等. 古近系湖相碳酸盐岩储集特征与含油性分析:以柴达木盆地英西地区为例[J]. 中国矿业大学学报, 2017, 46(5): 909-922.]
URL    
[7] National Energy Administration.Method for Reservoir Evaluation of Oil and Gas:SY/T 6285-2011[M]. Beijing: Petroleum Industry Press, 2011.
[国家能源局. 油气储层评价方法:SY/T 6285-2011[M]. 北京: 石油工业出版社, 2011.]
[8] Shan Xiuqin, Zhang Jing, Zhang Baomin, et al. Dolomite Karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation,Sichuan Basin[J]. Acta Petrolei Sinica, 2016,37(1):17-29.
[单秀琴,张静,张宝民,等.四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J].石油学报,2016,37(1):17-29.]
doi: 10.7623/syxb201601002     URL    
[9] Peng Jun, Wang Xuelong, Han Haodong, et al. Simulation for the dissolution mechanism of Cambrian carbonate rocks in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(3):416-425.
[彭军,王雪龙,韩浩东,等. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验[J]. 石油勘探与开发,2018,45(3):416-425.]
[10] Luo Xiangjian,Tian Jingchun,Zhang Jinquan.The karstification and porosity evolution of Mawu 1-2 submember,Odovician Majiagou Formation,Gaoqiao Region[J]. Geological Science and Technology Information, 2014,33(4):60-65.
[罗香建,田景春,张锦泉. 高桥地区奥陶系马家沟组马五1-2亚段岩溶作用与孔隙演化[J].地质科技情报,2014,33(4) :60-65.]
[11] Elizabeth T B, Martin J K,Stefan C L, et al. Feldspar dissolution enhanced porosity in Paleoproterozoic shale reservoir facies from the Barney Creek Formation (McArthur Basin, Australia)[J]. AAPG Bulletin, 2015,99(9): 1 745-1 770.
doi: 10.1306/04061514181     URL    
[12] Liu Chunyan.Formation and preservation mechanism of sweet spot in tight clastic reservoirs—A case study of Chang 8 oil layer of Yanchang Formation in Zhenjing area,southwest Ordos Basin[J]. Oil & Gas Geology, 2015, 36(6):873-879.
[刘春燕. 致密碎屑岩储层“甜点”形成及保持机理——以鄂尔多斯盆地西南部镇泾地区延长组长8油层组为例[J].石油与天然气地质, 2015, 36(6):873-879.]
doi: 10.11743/ogg20150601     URL    
[13] Huang Sijing,Wu Wenhui,Liu Jie, et al. Generation of secondary porosity by meteoric water during time of Subaerial Exposure: An example from Yanchang Formation sandstone of Triassic of Ordos Basin[J]. Earth Science—Journal of China University of Geosciences, 2003,28(4):420-424.
[黄思静,武文慧,刘洁,等. 大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J]. 地球科学——中国地质大学学报, 2003, 28(4):420-424.]
doi: 10.3321/j.issn:1000-2383.2003.04.010     URL    
[14] Wei Wei, Zhu Xiaomin,Tan Mingxuan, et al. Distribution and origin analysis of anomalously high porosity zones of the Bayingebi Formation in the Cretaceous in the Chagan Sag[J]. Geological Journal of China Universities, 2015, 21(4):664-673.
[魏巍,朱筱敏,谈明轩,等. 内蒙查干凹陷下白垩统碎屑岩储层异常高孔带分布特征与成因分析[J].高校地质学报, 2015, 21(4):664-673.]
doi: 10.16108/j.issn1006-7493.2015046     URL    
[15] Li Yanju, Zhao Long, Shi Ji'an. Diagenesis and pore evolution of Jurassic Sangonghe Clastic rock formation of Fudong Slope Zone,Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(Suppl.2):44-51.
[李彦举,赵龙,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组碎屑岩成岩作用及孔隙演化[J].天然气地球科学, 2015, 26(增刊2):44-51.]
[16] Schmidt V,Mcdonald D A.Texture and recognition of secondary porosity in sandstones[J]. Special Publication-Society of Economic Paleontologists and Mineralogists, 1979,26: 209-225.
[17] Lundegard P D,Land L S,Galloway W E.Problem of secondary porosity: Frio Formation (Oligocene),Texas Gulf Coast[J]. Geology,1984,12:399-402.
doi: 10.1130/0091-7613(1984)122.0.CO;2     URL    
[18] Surdam R C,Boese S W,Crossey L J.The chemistry of secondary porosity[J]. AAPG Memoir, 1984,37:127-149.
[19] Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bulletin,1989, 73:1-23.
[20] Hayes M J, Boles J R.Volumetric relations between dissolved plagioclase and kaolinite in sandstones: Implications for aluminum mass transfer in the San Joaquin Basin, California[J]. Special Publication Society of Economic Paleontologists and Mineralogists,1992,47:111-123.
[21] Surdam R C, Crossey L J.Integ rated diagenetic modeling: A process-oriented approach for clastic systems[J]. Annual Review of Earth and Planetary Sciences,1987,15:141-170.
doi: 10.1146/annurev.ea.15.050187.001041     URL    
[22] Meshri I D.On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. SEPM Special Publication,1986,28:123-128.
URL    
[23] Huang Liying,Cao Jianhua,He Xunyang, et al. Simulation experiment on limestone dissolution by some low-molecular-weight organic acids[J]. Earth and Environment, 2006, 34(3):44-50.
[黄黎英,曹建华,何寻阳,等.几种低分子量有机酸对石灰岩溶蚀作用的室内模拟试验[J].地球与环境, 2006, 34(3):44-50.]
doi: 10.3969/j.issn.1672-9250.2006.03.007     URL    
[24] Huang Chenggang, Chang Haiyan, Cui Jun, et al. Sedimentary characteristics and hydrocarbon accumulation model of Oligocene reservoirs in the Western Qaidam Basin, China[J]. Acta Petrolei Sinica, 2017, 38(11):1 230-1 243.
[黄成刚,常海燕,崔俊,等. 柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J].石油学报,2017,38(11): 1 230-1 243.]
[25] Bjφrlykke K, Nedkvitne T, Ramm M, et al. Diagenetic processes in the Brent Group (Middle Jurassic) reservoirs of the North Sea: An overview[J]. Geological Society Special Publications,1992,61:263-287.
doi: 10.1144/GSL.SP.1992.061.01.15     URL    
[26] Huang Chenggang, Huang Sijing, Chen Qilin, et al. Geochernical evidence of influence up on the reservoir of buried hill by meteoric water in the regions of Zhuangxi and Chengdao[J]. Fault-Block oil & Gas Field, 2005 , 12(4):1-4.
[黄成刚,黄思静,陈启林,等. 桩西、埕岛地区古潜山储层受大气水影响的地球化学证据[J].断块油气田,2005,12(4):1-4.]
[27] Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan Basin, southwestern China[J]. Acta Petrologica Sinica, 2006, 22(8):2182-2194.
[朱光有,张水昌,梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8):2182-2194.]
doi: 10.3969/j.issn.1000-0569.2006.08.008     URL    
[28] Zhu Guangyou, Fei Anguo, Zhao Jie, et al. Sulfur isotopic fractionation and mechanism for Thermochemical Sulfate Reduction genetic H2S[J]. Acta Petrologica Sinica, 2014, 30(12): 3 772-3 786.
[朱光有,费安国,赵杰,等. TSR成因H2S的硫同位素分馏特征与机制[J]. 岩石学报, 2014, 30(12): 3 772-3 786.]
URL    
[29] Zhang Hao, Chen Gang, Zhu Yushuang, et al. The discovery and significance of dolomites altered by hydrothermal fluid in Oligocene reservoirs of the Yingxi area, Qaidam[J]. Geological Science and Technology Information, 2017,36(1):87-97.
[张浩,陈刚,朱玉双,等. 柴达木盆地英西地区渐新统热液改造型白云岩的发现及意义[J].地质科技情报,2017,36(1):87-97.]
URL    
[30] Han Yinwen, Ma Zhendong.Geochemistry[M]. Beijing:Geological Publishing House, 2003: 133.
[韩吟文,马振东. 地球化学[M]. 北京: 地质出版社, 2003: 133.]
[31] Huang Chenggang,Yuan Jianying,Tian Guangrong, et al. The geochemical characteristics and formation mechanism of the Eocene lacustrine dolomite reservoirs in the Western Qaidam[J]. Earth Science Frontiers,2016, 23(3): 230-242.
[黄成刚,袁剑英,田光荣,等. 柴西地区渐新统湖相白云岩储层地球化学特征及形成机理[J]. 地学前缘,2016,23(3):230-242.]
doi: 10.13745/j.esf.2016.03.027     URL    
[32] Yuan Jianying, Huang Chenggang, Xia Qingsong, et al. The characteristics of carbonate reservoir, and formation mechanism of pores in the saline lacustrine basin: A case study of the lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geological Review, 2016, 62(1):111-126.
[袁剑英,黄成刚,夏青松,等. 咸化湖盆碳酸盐岩储层特征及孔隙形成机理——以柴西地区渐新统下干柴沟组为例[J]. 地质论评, 2016, 62(1):111-126.]
doi: 10.16509/j.georeview.2016.01.010     URL    
[33] Zhu Dongya, Jin Zhijun, Hu Wenxuan.Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science in China (Series D), 2010, 40(2):156-170.
[朱东亚,金之钧,胡文瑄. 塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J]. 中国科学:D辑, 2010, 40(2): 156-170.]
[34] Zhu Dongya,Jin Zhijun,Hu Wenxuan.Hydrothermal alteration dolomite reservoir in Tazhong area[J]. Acta Petrolei Sinica, 2009, 30(5): 698-703.
[朱东亚,金之钧,胡文瑄. 塔中地区热液改造型白云岩储层[J]. 石油学报, 2009, 30(5): 698-703.]
doi: 10.3321/j.issn:0253-2697.2009.05.011     URL    
[35] Ni Xinfeng, Zhang Lijuan,Shen Anjiang, et al. Characteristics and genesis of ordovician carbonate Karst reservoir in Yingmaili-Halahatang area,Tarim Basin[J]. Acta Sedimentologica Sinica, 2011,29(3):465-474.
[倪新锋,张丽娟,沈安江,等. 塔里木盆地英买力—哈拉哈塘地区奥陶系碳酸盐岩岩溶型储层特征及成因[J]. 沉积学报,2011,29(3):465-474.]
URL    
[36] Carothers W W, Kharaka Y K.Aliphatic acid an ions in oil fields waters-implications for origin of natural gas[J]. AAPG Bulletin,1978,62:2 441-2 453.
[37] Cai Chunfang, Mei Bowen, Li Wei.The hydro geochemistry of oil-fields in Tarim Basin[J]. Geochimica,1996,25(6):614-622.
[蔡春芳,梅博文,李伟. 塔里木盆地油田水文地球化学[J]. 地球化学,1996,25(6):614-622.]
URL    
[38] Huang Chenggang, Yuan Jianying, Cao Zhenglin, et al. The study of simulate experiment about the saline fluid-rock interaction in clastic reservoir in saline lacustrine basin[J]. Bulletin of Mineralogy,Petrology and Geochemist, 2015, 34(2): 345-350.
[黄成刚,袁剑英,曹正林,等. 咸化湖盆储层中咸水流体与岩石矿物相互作用实验模拟研究[J]. 矿物岩石地球化学通报, 2015, 34(2): 345-350.]
doi: 10.3969/j.issn.1007-2802.2015.02.016     URL    
[39] Huang Chenggang, Yuan Jianying, Cao Zhenglin, et al. Reconstruction of acid fluid on clastic reservoir in saline lacustrine Basin[J]. Journal of Earth Sciences and Environment, 2014,36(3):52-60.
[黄成刚,袁剑英,曹正林,等. 咸化湖盆中酸性流体对碎屑岩储层的改造作用[J]. 地球科学与环境学报, 2014, 36(3): 52-60.]
doi: 10.3969/j.issn.1672-6561.2014.03.007     URL    
[40] Huang Chenggang,Yuan Jianying,Cao Zhenglin, et al. Simulation experiment for the ankerite dissolution in clastic reservoir of saline lacustrine basin[J]. Petroleum Geology & Experiment,2014,36(5):650-655.
[黄成刚,袁剑英,曹正林,等. 咸化湖盆碎屑岩储层中铁白云石的溶蚀作用模拟实验研究[J].石油实验地质, 2014,36(5):650-655.]
doi: 10.11781/sysydz201405650     URL    
[41] Cao Zhenglin, Yuan Jianying, Huang Chenggang, et al. Influence of plaster dissolution on calcite precipitation in clastic reservoirs under high-temperature and high-pressure conditions[J]. Acta Petrolei Sinica, 2014, 35(3): 450-454.
[曹正林,袁剑英,黄成刚,等.高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响[J].石油学报,2014,35(3):450-454.]
[42] Yu Chuanqi, Song Xiaojiao, Li Jingjing, et al. Impact of feldspar dissolution on reservoir physical properties: A case from Dongying Sag,the Bohai Bay Basin[J]. Oil & Gas Geology, 2013,34(6):765-770.
[于川淇,宋晓蛟,李景景,等. 长石溶蚀作用对储层物性的影响——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质,2013,34(6):765-770.]
doi: 10.11743/ogg20130608     URL    
[43] Luo Jinglan, Morad S, Yan Shike, et al. Fluvial facies, lacustrine facies and delta facies sandstone diagenesis reconstruction and its effect on reservoir quality evolution—Take Yanchang oil region Upper Triassic sandstone as example[J]. Science in China (Series D), 2001,31(12): 1 006-1 016.
[罗静兰,Morad S,阎世可,等. 河流—湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响——以延长油区保罗系上三叠统砂岩为例[J]. 中国科学:D辑, 2001,31(12): 1 006-1 016.]
[44] Huang Sijing, Huang Keke, Feng Liwen, et al. Mass exchanges among feldspar, kaolinite and illite and their influen ces on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506.
[黄思静,黄可可,冯立文,等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5): 498-506.]
[45] Zhang Meng, Huang Sijing, Feng Mingshi, et al. Thermodynamics model for dissolution of petrogenetic minerals of clasolite and its geological significances[J]. Journal of Earth Sciences and Environment, 2006, 28(4): 21-25.
[张萌,黄思静,冯明石,等. 碎屑岩骨架颗粒溶解的热力学模型及地质意义[J]. 地球科学与环境学报, 2006, 28(4): 21-25.]
doi: 10.3969/j.issn.1672-6561.2006.04.004     URL    
[46] Huang Sijing, Liu Jie, Shen Licheng, et al. Thermodynamic interpretation for the conditions of the formation of laumonite related to clastic diagenesis[J]. Geological Review, 2001, 47(3): 301-308.
[黄思静,刘洁,沈立成,等. 碎屑岩成岩过程过中浊沸石形成条件的热力学解释[J].地质论评, 2001, 47(3): 301-308.]
doi: 10.3321/j.issn:0371-5736.2001.03.013     URL    
[47] Huang Sijing, Huang Peipei, Wang Qingdong, et al. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007,19(3): 7-13.
[黄思静,黄培陪,王庆东,等. 胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏, 2007,19(3): 7-13.]
doi: 10.3969/j.issn.1673-8926.2007.03.002     URL    
[48] Guo Chunqing, Shen Zhongming, Zhang Linye, et al. The corrosion and its mechanism of organic acids on main minerals in oil-gas reservoir sand rocks[J]. Geology-Geochemistry,2003, 31(3): 53-57.
[郭春清,沈忠明,张林晔,等.砂岩储层中有机酸对主要矿物的溶蚀作用及机理研究综述[J]. 地质地球化学, 2003, 31(3): 53-57.]
doi: 10.3969/j.issn.1672-9250.2003.03.010     URL    
[49] Sjoeberg E L, Riekard D T.Temperature dependence of calcite dissolution kinetics between 1 and 62 ℃ pH 2.7 to 8.4 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1984,48: 485-493.
doi: 10.1016/0016-7037(84)90276-X     URL    
[50] Fan Ming, Hu Kai, Jiang Xiaoqiong, et al. Effect of acid fluid on carbonate reservoir reconstruction[J]. Geochimic, 2009, 38(1): 20-25.
[范明,胡凯,蒋小琼,等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学,2009,38(1):20-25.]
doi: 10.3321/j.issn:0379-1726.2009.01.002     URL    
[51] Cao Zhonghong, Liu Guoyong, Zhang Hongchen, et al. Experimental research of carbonate rocks dissolution characteristics in Paleozoic group of Nanpu sag and surrounding bulge areas[J]. Journal of China University of Petroleum, 2014,38(1): 8-13.
[曹中宏,刘国勇,张宏臣,等.南堡凹陷及周边凸起区古生界碳酸盐岩溶解特性的试验研究[J].中国石油大学学报:自然科学版,2014,38(1): 8-13.]
doi: 10.3969/j.issn.1673-5005.2014.01.002     URL    
[52] Jin Zhenkui, Yu Kuanhong.Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development,2011,38(4): 428-434.
[金振奎,余宽宏. 白云岩储集层埋藏溶蚀作用特征及意义——以塔里木盆地东部下古生界为例[J]. 石油勘探与开发, 2011,38(4): 428-434.]
[53] Huang Sijing,Yang Junjie,Zhang Wenzheng, et al. Effects of plaster (or Anhydrite) on dissolution of dolomite under different temperatures and pressures of epigenesis and burial diagenesis[J]. Acta Sedimentologica Sinica,1996,14(1):103-109.
[黄思静,杨俊杰,张文正,等. 石膏对白云岩溶解影响的实验模拟研究[J]. 沉积学报,1996,14(1):103-109.]
doi: 10.1007/BF02029074     URL    
[54] Fang Shaoxian, Hou Fanghao.Diagenesis of Carbonate Rocks[M]. Beijing: Geological Publishing House,2013:136.
[方少仙,侯方浩. 碳酸盐岩成岩作用[M]. 北京:地质出版社,2013:136.]
[55] Bouch J E,Milodowski A E,Ambrose K.Contrasting patterns of pore-system modification due to dolomitization and fracturing in Dinantian basin-margin carbonates from the UK[M]∥Braithwaite C J R,Rizzi G,Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society Special Publication, 2004, 235: 325-348.
[56] Lu Yaoru, Zhang Feng'e, Yan Baorui, et al. Mechanism of Karst development in sulphate rocks and its main geoenvironmental impacts[J]. Acta Geoscientia Sinica, 2002, 23(1): 1-6.
[卢耀如,张凤娥,阎葆瑞,等. 硫酸盐岩岩溶发育机理与有关地质环境效应[J]. 地球学报, 2002, 23(1): 1-6.]
doi: 10.3321/j.issn:1006-3021.2002.01.001     URL    
[57] Huang Chenggang, Li Zhiyong, Ni Xianglong, et al. Origin of salt minerals and oil-gas geological significance of $E^{2}_{3}$reservoirs in saline lacustrine basin of the Yingxi area, Qaidam Basin[J]. Geoscience,2017,31(4):779-790.
[黄成刚,李智勇,倪祥龙,等. 柴达木盆地英西地区$E^{2}_{3}$盐类矿物成因及油气地质意义[J].现代地质,2017,31(4): 779-790.]
URL    
[58] Yan Zhiwei,Zhang Zhiwei.The effect of chloride on the solubility of calcite and dolomite[J]. Hydrogeology & Engineering Geology, 2009,36(1):113-118.
[闫志为,张志卫. 氯化物对方解石和白云石矿物溶解度的影响[J]. 水文地质工程地质,2009,36(1):113-118.]
[59] Huang Sijing, Cheng Xinyi, Zhao Jie,et al. Test on the dolomite dissolution under subaerial temperature and pressure[J]. Carsologica Sinica,2012,31(4): 349-359.
[黄思静,成欣怡,赵杰,等. 近地表温压条件下白云岩溶解过程的实验研究[J]. 中国岩溶,2012,31(4): 349-359.]
doi: 10.3969/j.issn.1001-4810.2012.04.002     URL    
[60] Ni Xinfeng, Huang Lili,Chen Yongquan, et al. Characteristics and main controlling factors of the Cambrian pre-salt dolomite reservoirs in Tazhong Block,Tarim Basin[J]. Oil & Gas Geology,2017,38(3):490-498.
[倪新锋, 黄理力, 陈永权,等. 塔中地区深层寒武系盐下白云岩储层特征及主控因素[J].石油与天然气地质,2017,38(3):490-498.]
doi: 10.11743/ogg20170308     URL    
[61] Huang Chenggang, Ni Xianglong, Ma Xinmin, et al. Petroleum and gas enrichment pattern and major controlling factors of stable and high production of tight lacustrine carbonate rock reservoirs:A case study of the Yingxi area in Qaidam Basin[J]. Journal of Northwest University(Natural Science Edition), 2017, 47(5): 724-738.
[黄成刚, 倪祥龙, 马新民,等. 致密湖相碳酸盐岩油气富集模式及稳产、高产主控因素[J]. 西北大学学报:自然科学版, 2017, 47(5): 724-738.]
[62] Wang Jiangong, Zhang Daowei,Yuan Jianying,et al. Characteristics of reservoir genesis and oil-gas accumulation in lacustrine carbonate in Yingxi area of Qaidam Basin[J]. Journal of China University of Mining & Technology, 2019,48(1):110-120.
[王建功,张道伟,袁剑英,等.英西湖相碳酸盐岩储层成因与含油性分析[J].中国矿业大学学报,2019,48(1):110-120.]
[63] Jimenez C F, Laredo G C.Molecular size evaluation of linear and branched paraffins from the gasoline pool by DFT quantum chemical calculations[J]. Fuel, 2004, 83(16): 2 183-2 188.
doi: 10.1016/j.fuel.2004.06.010     URL    
[64] Cushman J H.The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles[M]. Dordrecht: Springer Netherlands, 1997: 467.
[65] Mitchell J K, Soga K.Fundamentals of Soil Behavior[M]. New Jersey: John Wiley and Sons, 2005: 577.
[66] Ma Yongsheng, Cai Xunyu, Zhao Peirong,et al. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4):181-192.
[马永生,蔡勋育,赵培荣,等. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4):181-192.]
[67] Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219.
[远光辉, 操应长, 杨田, 等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘, 2013, 20(5):207-219.]
URL    
[68] Yuan G, Cao Y, Gluyas J, et al. Petrography, fluid-inclusion,isotope, and trace-element constraints on the origin of quartz cementation and feldspar dissolution and the associated fluid evolution in arkosic sandstones[J]. AAPG Bulletin, 2018,102(5):761-792.
doi: 10.1306/0608171616017066     URL    
[69] Feng Jiarui,Gao Zhiyong,Cui Jinggang,et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic Deep reservoir from Dibei in Kuqa Depression:Insight from Diagenesis modeling experiments under the influence of burial mode[J]. Advances in Earth Science,2018,33(3): 305-320.
[冯佳睿,高志勇,崔京钢,等. 库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展,2018,33(3): 305-320.]
URL    
[70] Jin Fengming,Zhang Kaixun,Wang Quan,et al. Formation mechanisms of good-quality clastic reservoirs in deep formations in rifted basins: A case study of Raoyang sag in Bohai Bay Basin, east China[J]. Petroleum Exploration and Development, 2018, 45(2):248-256.
[金凤鸣,张凯逊,王权,等. 断陷盆地深层优质碎屑岩储集层发育机理——以渤海湾盆地饶阳凹陷为例[J]. 石油勘探与开发,2018,45(2):248-256.]
[71] Chen Qilin,Deng Yilin,Wei Jun,et al. Types,distribution and play targets of Lower Cretaceous tight oil in Jiuguan Basin,NW,China[J]. Petroleum Exploration and Development, 2018, 45(2):212-222.
[陈启林,邓毅林,魏军,等.酒泉盆地下白垩统致密油类型、分布特征及勘探领域[J].石油勘探与开发,2018,45(2):212-222.]
[72] Huang Sijing,Zhang Xuehua,Liu Lihong, et al. Progress of research on carbonate diagenesis[J]. Earth Science Frontiers, 2009, 16(5): 219-231.
[黄思静,张雪花,刘丽红,等, 碳酸盐成岩作用研究现状与前瞻[J]. 地学前缘, 2009, 16(5):219-231.]
[73] Tian Lei,Cui Haifeng,Feng Xiaojun, et al. Reconstruction effect of the Ordovician hydrothermal dissolution fluid on interior dolomite reservoirs in Maigaiti slope,Tarim Basin[J]. Oil & Gas Geology,2015,36(3):402-408.
[田雷,崔海峰,冯晓军,等.麦盖提斜坡奥陶系热液溶蚀流体对内幕白云岩储层的改造作用[J].石油与天然气地质,2015,36(3): 402-408.]
doi: 10.11743/ogg20150308     URL    
[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[3] 冯佳睿, 高志勇, 崔京钢, 周川闽. 深层、超深层碎屑岩储层勘探现状与研究进展[J]. 地球科学进展, 2016, 31(7): 718-736.
[4] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[5] 方捷, 孙静雯, 徐宏庆, 叶锦华, 陈建平, 任梦依, 唐超. 北大西洋中脊海底多金属硫化物资源预测[J]. 地球科学进展, 2015, 30(1): 60-68.
[6] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[7] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[8] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[9] 焦 鑫,柳益群,周鼎武,汪双双,南 云,周宁超,杨焱钧. “白烟型”热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2): 221-232.
[10] 胡庆成,吕新彪,高奇,刘洪,朱江,杨恩林. 热液金矿金的溶解和迁移研究进展[J]. 地球科学进展, 2012, 27(8): 847-856.
[11] 方维萱. 论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J]. 地球科学进展, 2012, 27(10): 1178-1184.
[12] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[13] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
[14] 汪小妹,曾志刚,欧阳荷根,殷学博,王晓媛,陈帅,张国良,武力. 大洋橄榄岩的蛇纹石化研究进展评述[J]. 地球科学进展, 2010, 25(6): 605-616.
[15] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
阅读次数
全文


摘要