地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 678 -690. doi: 10.11867/j.issn.1001-8166.2020.059

所属专题: 地球系统科学大会纪念专刊

综述与评述 上一篇    下一篇

冲绳海槽地质构造对热液活动的控制机理
张玉祥 1, 2, 3( ),曾志刚 1, 2, 3( ),王晓媛 1, 2, 3,陈帅 1, 2, 3,殷学博 1, 2, 3,陈祖兴 1, 2, 3   
  1. 1.中国科学院海洋研究所, 海洋地质与环境重点实验室, 山东 青岛 266071
    2.青岛海洋科学与技术 试点国家实验室 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266071
    3.中国科学院海洋大科学中心, 山东 青岛 266071
  • 收稿日期:2020-04-30 修回日期:2020-06-20 出版日期:2020-07-10
  • 通讯作者: 曾志刚 E-mail:yxzhang@qdio.ac.cn;zgzeng@qdio.ac.cn
  • 基金资助:
    国家自然科学基金项目“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213);中国科学院国际合作局对外合作重点项目“冲绳海槽热液活动成矿机理及其沉积效应”(133137KYSB20170003)

Geologic Control on Hydrothermal Activities in the Okinawa Trough

Yuxiang Zhang 1, 2, 3( ),Zhigang Zeng 1, 2, 3( ),Xiaoyuan Wang 1, 2, 3,Shuai Chen 1, 2, 3,Xuebo Yin 1, 2, 3,Zuxing Chen 1, 2, 3   

  1. 1.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Laboratory for Marine Mineral Resources, Qingdao National;Laboratory for Marine Science and Technology, Qingdao 266071, China
    3.Center for Ocean;Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2020-04-30 Revised:2020-06-20 Online:2020-07-10 Published:2020-08-21
  • Contact: Zhigang Zeng E-mail:yxzhang@qdio.ac.cn;zgzeng@qdio.ac.cn
  • About author:Zhang Yuxiang (1990-), male, Qingzhou County, Shandong Province, Postdoctor. Research areas include marine petrology. E-mail: yxzhang@qdio.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Magmatism and its constraints on the hydrothermal material supply in the Western Pacific subduction system”(91958213);The International Partnership Program of Chinese Academy of Sciences “Metallogenic mechanism and sedimentary effect of hydrothermal activity in Okinawa Trough”(133137KYSB20170003)

海底热液活动一直是当代海洋科学研究的重要前沿领域之一,了解地质构造对海底热液活动的控制作用对于认识热液系统的形成机理及寻找海底硫化物资源具有重要的指示意义。总结了冲绳海槽中部和南部地形与断裂构造、地壳结构、重磁场、热流及岩浆活动等方面的地质构造特征以及海槽热液区分布和热液产物的基本特征。通过比较冲绳海槽与马努斯海盆、马里亚纳海槽、北斐济海盆、劳海盆等基底和扩张阶段不同的弧后盆地构造特征的差异,归纳了冲绳海槽地质构造的特殊性,包括过渡性地壳性质、低扩张程度、高热流值、巨厚沉积层及双峰式火山作用等。冲绳海槽热液活动受到断裂构造、岩浆活动、扩张速率等构造因素的控制,同时受到基岩类型和沉积物盖层等地质条件的影响。海槽中部和南部平行和垂直盆地走向的两组断裂带为流体循环提供了通道,大规模的岩浆活动则为热液系统提供了充足的热量。此外,海槽内广泛分布的酸性火山岩和较厚的沉积盖层与流体相互作用,使得热液产物富含有机质、二氧化碳以及Ag和Au等金属元素。根据冲绳海槽的扩张速率和地质构造特征,推测冲绳海槽仍具有发现新热液区的潜力,其中部和南部两组断裂交汇的部位、轴部火山、受海脊俯冲影响的区域以及靠近岛弧一侧的新火山带是最有潜力的海底热液活动探索远景区。

Revealing the controlling effect of geological structure on seafloor hydrothermal activities is of great significance in understanding the formation mechanism of hydrothermal system and searching for seafloor sulfide resources. This article summarized the topography and faults, crustal structure, gravity and magnetic field, heat flow and magmatism in the middle and southern Okinawa Trough, as well as the general characteristics of hydrothermal field distributions and hydrothermal products. By comparing the Okinawa Trough with the Manus Basin, Mariana Trough, North Fiji Basin and Lau Basin with different rock basements and extension stages, we generalized some specific geological characteristics of the Okinawa Trough, including the transitional crustal nature, low extension degree, high heat flow value, extremely thick sediments, and bimodal volcanism. The hydrothermal activities in the Okinawa Trough are controlled by fault structures, magmatism, and spreading rate, and at the same time, are affected by basement rock types and sediment covers. In the middle and southern parts of the trough, two group of faults that are parallel and perpendicular to the strike of the back-arc basin promote the fluid circulation, and large-scale magmatic activity provides sufficient heat for the hydrothermal system. In addition, the interaction of fluids with the widespread silicic volcanic rocks and thick sediments leads to the enrichment of organic matter, CO 2, and metals such as Ag and Au in the hydrothermal products. According to the extension rate and geological features of the Okinawa Trough, we believe that the Okinawa Trough has potential to have new hydrothermal fields discovered and we speculate that new hydrothermal fields most possibly exist in the regions influenced by ridge subduction as well as the neo-volcanic zones closed to the island arc.

中图分类号: 

表1 冲绳海槽热液区位置及水深
Table 1 Location and water depth of the hydrothermal fields in the Okinawa Trough
图1 冲绳海槽构造水深图
数字对应的热液区名称见表1,断裂数据引自参考文献[ 9 ],热液区数据引自InterRidge数据库(http://vents-data.interridge.org/)及参考文献[ 7 , 8 ],岩浆岩数据引自PetDB数据库(http://www.earthchem.org/petdb)及GEOROC数据库(http://georoc.mpch-mainz.gwdg.de/georoc/)
Fig.1 Tectonic and bathymetric map of the Okinawa Trough
The names of the hydrothermal fields indicated by figures are given in Table 1, the data of faults are cited from reference [ 9 ], the data of hydrothermal fields are cited from InterRidge database (http://vents-data.interridge.org/) and references [7,8], the data of igneous rocks are cited from PetDB database (http://www.earthchem.org/petdb) and GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/)
表2 冲绳海槽及部分弧后盆地扩张轴热液活动发生频率及平均扩张速率
Table 2 Hydrothermal field frequency and spreading rate for the axis of the Okinawa Trough and other back arc basins
表3 冲绳海槽部分热液区热液流体地球化学特征(据参考文献[ 29 ]修改)
Table 3 Geochemistry of hydrothermal fluids in some hydrothermal fields of the Okinawa Trough ( modified after reference[ 29 ])
图2 冲绳海槽及部分弧后盆地火山岩 SiO 2含量分布图
数据引自PetDB数据库http://www.earthchem.org/petdb
Fig.2 SiO 2 concentrations for the volcanic rocks from the Okinawa Trough and other back arc basins
Data from PetDB database:http://www.earthchem.org/petdb
图3 热液活动发生率与全扩张速率相关图(据参考文献[ 35 ]修改)
Fig.3 Plot of hydrothermal field frequency versus full spreading rate (modified after reference [ 35 ])
图4 冲绳海槽伊平屋北热液区流体循环示意图(据参考文献[ 79 ]修改)
Fig.4 Schematic diagram of fluid circulation in the Iheya North hydrothermal field, Okinawa Trough (modified after reference [ 79 ])
图5 冲绳海槽第四与那国热液区发育在沉积物上的热液烟囱体照片
Fig.5 Photo of hydrothermal chimney growing on the sediments in the Yonaguni Knoll IV hydrothermal field, Okinawa Trough
1 Jing Chunlei, Zheng Yanpeng, Liu Baohua, et al. Distribution pattern of submarine hydrothermal sulfide deposits and controlling factors [J]. Marine Geology & Quaternary Geology, 2013, 33( 1): 57- 64.
景春雷, 郑彦鹏, 刘保华, 等. 海底热液多金属硫化物分布及控矿因素[J]. 海洋地质与第四纪地质, 2013, 33( 1): 57- 64.
2 Gamo T, Ishibashi J, Tsunogai U, et al. Unique geochemistry of submarine hydrothermal fluids from arc-back-arc settings of the Western Pacific [M]//Back-arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington DC: American Geophysical Union, 2006: 147- 161.
3 Ishibashi J I, Urabe T. Hydrothermal activity related to arc-backarc magmatism in the Western Pacific [M]// Back Arc Basins. New York: Plenum Press, 1995: 451- 495.
4 Zhang Xunhua, Shang Luning. Study on crustal structure and nature of the Okinawa Trough [J]. Periodical of Ocean University of China, 2014, 44( 6): 72- 80.
张训华, 尚鲁宁. 冲绳海槽地壳结构与性质研究进展和新认识[J]. 中国海洋大学学报: 自然科学版, 2014, 44( 6): 72- 80.
5 Liu Guangding. Geological and Geophysical Characteristics of the China Seas and Adjacent Areas [M]. Beijing: Science Press, 1992.
刘光鼎. 中国海区及邻域地质地球物理特征[M]. 北京: 科学出版社, 1992.
6 Yamano M, Uyeda S, Foucher J P, et al. Heat flow anomaly in the middle Okinawa Trough [J]. Tectonophysics, 1989, 159( 3): 307- 318.
7 Zeng Z, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough [J]. Ore Geology Reviews, 2017, 87: 172- 191.
8 Miyazaki J, Kawagucci S, Makabe A, et al. Deepest and hottest hydrothermal activity in the Okinawa Trough: The Yokosuka site at Yaeyama Knoll [J]. Royal Society Open Science, 2017, 4( 12): 171570.
9 Shang Luning, Zhang Xunhua, Han Bo. Fault belts and igneous rocks of the Okinawa Trough and adjacent areas: Evidence from gravity and magnetic data [J]. Marine Geology & Quaternary Geology, 2016, 36( 1): 99- 106.
尚鲁宁, 张训华, 韩波. 重磁资料揭示的冲绳海槽及邻区断裂和岩浆岩分布[J]. 海洋地质与第四纪地质, 2016, 36( 1): 99- 106.
10 Jin Xianglong, Yu Puzhi, Lin Meihua, et al. Preliminary study on the characteristics of crustal structure in the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 1983, 14( 2): 105- 116.
金翔龙, 喻普之, 林美华, 等. 冲绳海槽地壳结构性质的初步探讨[J]. 海洋与湖沼, 1983, 14( 2): 105- 116.
11 Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin [J]. Journal of Geophysical Research: Solid Earth, 1999, 104( B5): 10 591- 10 608.
12 Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough [J]. Journal of Geophysical Research: Solid Earth, 1987, 92( B13): 14 041- 14 063.
13 Liu Zhan, Zhao Wenju, Wu Shiguo, et al. The basement tectonics in south of the Okinawa Trough [J]. Progress in Geophysics, 2006, 21( 3): 814- 824.
刘展, 赵文举, 吴时国, 等. 冲绳海槽南部基底构造特征[J]. 地球物理学进展, 2006, 21( 3): 814- 824.
14 Sibuet J C, Hsu S K, Shyu C T, et al. Structural and kinematic evolutions of the Okinawa Trough backarc basin [M]// Back Arc Basins. New York: Plenum Press, 1995: 343- 379.
15 Kimura M, Furukawa M, Izawa E, et al. Report on DELP 1988 Cruises in the Okinawa Trough: Part 7. Geologic Investigation of the Central Rift in the Middle to Southern Okinawa Trough [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1991, 66: 179- 209.
16 Hsu S K, Sibuet J C, Shyu C T. Magnetic inversion in the East China Sea and Okinawa Trough: Tectonic implications [J]. Tectonophysics, 2001, 333( 1): 111- 122.
17 Han Bo, Zhang Xunhua, Pei Jianxin, et al. Characteristics of crust-mantle in East China Sea and adjacent regions [J]. Progress in Geophysics, 2007, 22( 2): 376- 382.
韩波, 张训华, 裴建新, 等. 东海及其邻域壳—幔结构与展布特征[J]. 地球物理学进展, 2007, 22( 2): 376- 382.
18 Hirata N, Kinoshita H, Katao H, et al. Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough [J]. Bulletin of the Earthquake Research Institute, 1991, 66: 37- 70.
19 Jiang Weiwei, Liu Shaohua, Hao Tianyao, et al. Character of geophysical field and crustal structure of Okinawa Trough and adjacent region [J]. Progress in Geophysics, 2003, 18( 2): 287- 292.
江为为, 刘少华, 郝天珧, 等. 冲绳海槽及其邻域地球物理场与地壳结构特征[J]. 地球物理学进展, 2003, 18( 2): 287- 292.
20 Jin Xingchun, Dai Nanxun. Preliminary analysis on the anomalous mantle and the crustal nature of the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 1984, 4( 3): 17- 27.
金性春, 戴南浔. 冲绳海槽异常地幔与地壳性质的初步分析[J]. 海洋地质与第四纪地质, 1984, 4( 3): 17- 27.
21 Lee C S, Shor Jr G G, Bibee L D, et al. Okinawa Trough: Origin of a back-arc basin [J]. Marine Geology, 1980, 35( 1): 219- 241.
22 Yu Puzhi, Li Naisheng. Gravity field and deep structural characteristics of the Ryukyu tench-arc-back arc system and adjacent sea area [J]. Acta Oceanologica Sinica, 1989, 11( 3): 325- 332.
喻普之, 李乃胜. 琉球沟弧盆系及邻近海区的重力场和深部构造特征[J]. 海洋学报, 1989, 11( 3): 325- 332.
23 Meng Xiangjun, Zhang Xunhua, Han Bo, et al. Features of geophysical field and crustal structure of Okinawa Trough and its adjacent regions [J]. Marine Geology Frontiers, 2015, 31( 9): 1- 6.
孟祥君, 张训华, 韩波, 等. 冲绳海槽地区地球物理场特征及地壳结构分析[J]. 海洋地质前沿, 2015, 31( 9): 1- 6.
24 Nagumo S, Kinoshita H, Kasahara J, et al. Report on DELP 1984 cruises in the Middle Okinawa Trough: Part II: Seismic structural studies [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1986, 61: 167- 202.
25 Li Naisheng, Jiang Lili, Li Changzhen. A study on the nature of crustal structures of the Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 1998, 29( 4): 441- 450.
李乃胜, 姜丽丽, 李常珍. 冲绳海槽地壳结构的研究[J]. 海洋与湖沼, 1998, 29( 4): 441- 450.
26 Zeng Zhigang, Zhang Yuxiang, Chen Zuxing, et al. Geological tectonics, magmatism and seafloor hydrothermal activity in the back-arc basins of the Western Pacific [J]. Studia Marina Sinica, 2016, 51: 3- 36.
曾志刚, 张玉祥, 陈祖兴, 等. 西太平洋典型弧后盆地的地质构造, 岩浆作用与热液活动[J]. 海洋科学集刊, 2016, 51: 3- 36.
27 Kimura M. Back-arc rifting in the Okinawa Trough [J]. Marine and Petroleum Geology, 1985, 2( 3): 222- 240.
28 Oshida A, Tamaki K, Kimura M. Origin of the magnetic anomalies in the southern Okinawa Trough [J]. Journal of Geomagnetism and Geoelectricity, 1992, 44( 5): 345- 359.
29 Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: An overview [J]. Ore Geology Reviews, 2003, 23( 3): 299- 339.
30 Li Naisheng. Study on the heat flow in the Okinawa Trough [J]. Acta Oceanologica Sinica, 1992, 14( 4): 78- 83.
李乃胜. 冲绳海槽海底热流的研究[J]. 海洋学报, 1992, 14( 4): 78- 83.
31 Luan Xiwu. Study of heatflow distribution of Ryukyu Ta-B-A system and thermo dynamic modeling of Okinawa Trough [J]. Oceanologia et Limnologia Sinica, 1997, 28( 1): 44- 48.
栾锡武. 琉球沟弧盆系的海底热流分布特征及冲绳海槽热演化的数值模拟[J]. 海洋与湖沼, 1997, 28( 1): 44- 48.
32 Luan Xiwu, Zhang Xunhua. Heat flow measurement and distribution of East China Sea and Ryukyu Trench Arc Back-Arc system [J]. Progress in Geophysics, 2003, 18( 4): 670- 678.
栾锡武, 张训华. 东海及琉球沟弧盆系的海底热流测量与热流分布[J]. 地球物理学进展, 2003, 18( 4): 670- 678.
33 Zhai S, Xu S, Yu Z, et al. Two possible hydrothermal vents in the northern Okinawa Though [J]. Chinese Science Bulletin, 2001, 46( 11): 943- 945.
34 Baker E T, German C R. On the global distribution of hydrothermal vent fields [M]// Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington: American Geophysical Union, 2004: 245- 266.
35 Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges? [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202- 212.
36 Kawagucci S, Chiba H, Ishibashi J I, et al. Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems [J]. Geochemical Journal, 2011, 45( 2): 109- 124.
37 Konno U, Tsunogai U, Nakagawa F, et al. Liquid CO 2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough [J]. Geophysical Research Letters, 2006, 33( 16): L16607.
38 Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: Case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin [J]. Resource Geology, 2008, 58( 3): 267- 288.
39 Kishida K, Sohrin Y, Okamura K, et al. Tungsten enriched in submarine hydrothermal fluids [J]. Earth and Planetary Science Letters, 2004, 222( 3): 819- 827.
40 Zeng Zhigang. Submarine Hydrothermal Geology [M]. Beijing: Science Press, 2011.
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.
41 Herzig P M, Hannington M D. Polymetallic massive sulfides and gold mineralization at mid-ocean ridges and in subduction-related environments [M]// Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 347- 368.
42 Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan [J]. Economic Geology, 1993, 88( 8): 2 210- 2 225.
43 Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor a review [J]. Ore Geology Reviews, 1995, 10( 2): 95- 115.
44 Fryer P. Geology of the Mariana Trough [M]// Back Arc Basins. New York: Plenum Press, 1995: 237- 279.
45 Hawkins J W. The geology of the Lau Basin [M]// Back Arc Basins. New York: Plenum Press, 1995: 63- 138.
46 Martinez F, Taylor B. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin [J]. Marine Geophysical Researches, 1996, 18( 2): 203- 224.
47 Auzende J M, Pelletier B, Eissen J P. The North Fiji Basin geology, structure, and geodynamic evolution [M]// Back Arc Basins. New York: Plenum Press, 1995: 139- 175.
48 Johnson R W, Mutter J C, Arculus R J. Origin of the Willaumez-Manus Rise, Papua New Guinea [J]. Earth and Planetary Science Letters, 1979, 44( 2): 247- 260.
49 Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/ 16O, 87Sr/ 86Sr and 143Nd/ 144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin [J]. Geochemical Journal, 1991, 25( 2): 121- 136.
50 Martinez F, Taylor B. Controls on back-arc crustal accretion: Insights from the Lau, Manus and Mariana basins [J]. Geological Society, London, Special Publications, 2003, 219( 1): 19- 54.
51 Kato T, Beavan J, Matsushima T, et al. Geodetic evidence of back-arc spreading in the Mariana Trough [J]. Geophysical Research Letters, 2003, 30( 12): 1 625.
52 Yan Q, Shi X. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review [J]. Acta Oceanologica Sinica, 2014, 33( 4): 1- 12.
53 Anderson R N. Heat flow in the Mariana marginal basin [J]. Journal of Geophysical Research, 1975, 80( 29): 4 043- 4 048.
54 Parson L M, Wright I C. The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading [J]. Tectonophysics, 1996, 263( 1): 1- 22.
55 Sclater J G. Heat flow and elevation of the marginal basins of the western Pacific [J]. Journal of Geophysical Research, 1972, 77( 29): 5 705- 5 719.
56 Liu Jun, Wu Shuyu, Li Qing. High resolution sequence stratigraphy of the Okinawa Trough [J]. Marine Geology Frontiers, 2015, 31( 3): 6- 13.
刘俊, 吴淑玉, 李清. 冲绳海槽高分辨率层序地层研究[J]. 海洋地质前沿, 2015, 31( 3): 6- 13.
57 Connelly J B. A structural interpretation of magnetometer and seismic profiler records in the Bismarck Sea, Melanesian Archipelago [J]. Journal of the Geological Society of Australia, 1974, 21( 4): 459- 469.
58 Whitman J M. Sedimentation and subsidence history of the East Mariana Basin, western Pacific [J]. Geology, 1986, 14( 9): 771- 775.
59 Crawford W C, Hildebrand J A, Dorman L M, et al. Tonga Ridge and Lau Basin crustal structure from seismic refraction data [J]. Journal of Geophysical Research: Solid Earth, 2003, 108( B4): 2195.
60 Beier C, Bach W, Turner S, et al. Origin of silicic magmas at spreading centres—An example from the South East Rift, Manus Basin [J]. Journal of Petrology, 2015, 56( 2): 255- 272.
61 Sinton J M, Ford L L, Chappell B, et al. Magma genesis and mantle heterogeneity in the manus back-arc basin, Papua New Guinea [J]. Journal of Petrology, 2003, 44( 1): 159- 195.
62 Zhai Shikui. The distribution and mineralogical characteristics of the pumice in the Okinawa Trough [J]. Oceanologia et Limnolgia Sinica, 1986, 17( 6): 504- 512.
翟世奎. 冲绳海槽浮岩的分布及其斑晶矿物学特征[J]. 海洋与湖沼, 1986, 17( 6): 504- 512.
63 Curewitz D, Karson J A. Geological consequences of dike intrusion at mid-ocean ridge spreading centers [M]// Faulting and Magmatism at Mid-ocean Ridges. Washington: American Geophical Union, 1998: 117- 136.
64 Fornari D J, Embley R W. Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: An overview based on near-bottom and submersible studies [M]//Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington: American Geophysical Union, 1995: 1- 46.
65 Shi Xuefa, Li Bing, Yan Quanshu, et al. Hydrothermal activities and mineralization in the arc and back-arc basin systems, Western Pacific [J]. Journal of Jilin University (Earth Science Edition), 2016, 46( 4): 1 124- 1 138.
石学法, 李兵, 鄢全树, 等. 西太平洋岛弧—弧后盆地热液活动及成矿作用[J]. 吉林大学学报:地球科学版, 2016, 46( 4): 1 124- 1 138.
66 Canales J P, Sohn R A, deMartin B J. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10′N): Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges [J]. Geochemistry, Geophysics, Geosystems, 2007, 8( 8): Q08004. DOI: 10.1029/2007GC001629.
doi: 10.1029/2007GC001629    
67 Hekinian R, Renard V, Cheminée J L. Hydrothermal deposits on the East Pacific Rise vear 13°N: Geological setting and distribution of active sulfide chimneys [M]// Hydrothermal Processes at Seafloor Spreading Centers. Boston, MA: Springer US, 1983: 571- 594.
68 Lonsdale P. Deep-tow observations at the mounds abyssal hydrothermal field, Galapagos Rift [J]. Earth and Planetary Science Letters, 1977, 36( 1): 92- 110.
69 Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans?[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1997, 355( 1 723): 427- 441.
70 Von Damm K L, Oosting S E, Kozlowski R, et al. Evolution of East Pacific Rise hydrothermal vent fluids following avolcanic eruption [J]. Nature, 1995, 375( 6 526): 47- 50.
71 Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39( 12): 1 155- 1 158.
72 Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa trough backarc basin: Early tectonic and magmatic evolution [J]. Journal of Geophysical Research: Solid Earth, 1998, 103( B12): 30 245- 30 267.
73 Herzig P M, Hannington M D, Arribas Jr A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: Implications for magmatic contributions to seafloor hydrothermal systems [J]. Mineralium Deposita, 1998, 33( 3): 226- 237.
74 Yang K, Scott S D. Magmatic fluids as a source of metals in seafloor hydrothermal systems [M]//Back-arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Washington: American Geophysical Union, 2006: 163- 184.
75 Baker E T, Embley R W, Walker S L, et al. Hydrothermal activity and volcano distribution along the Mariana arc [J]. Journal of Geophysical Research: Solid Earth, 2008, 113( B8): B0S 098. DOI: 10.1029/2007JB005423.
doi: 10.1029/2007JB005423    
76 Zhang Liang, Qin Yunshan. The characteristic of deep sea hydrothermal ecosystem and their impact on the extreme microorganism [J]. Advances in Earth Science, 2017, 32( 7): 696- 706.
张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32( 7): 696- 706.
77 Chiba H. Geochemistry of Active Hydrothermal Systems in Okinawa Trough Back Arc Basin [Z]. JAMSTEC Deep-Sea Research, Special Volume, 1997: 63- 68.
78 Whitham A G, Sparks R S J. Pumice [J]. Bulletin of Volcanology, 1986, 48( 4): 209- 223.
79 Tsuji T, Takai K, Oiwane H, et al. Hydrothermal fluid flow system around the Iheya North Knoll in the mid-Okinawa Trough based on seismic reflection data [J]. Journal of Volcanology and Geothermal Research, 2012, 213: 41- 50.
80 Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54( 3): 117- 137.
81 Li Naisheng. Approaching the submarine faults of the Okinawa Trough on the basis of gravity data [J]. Marine Sciences, 1987, 11( 6): 11- 16.
李乃胜. 利用重力资料探讨冲绳海槽海底断裂构造[J]. 海洋科学, 1987, 11( 6): 11- 16.
[1] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[2] 刘仲兰, 李江海, 姜佳奇, 于涵. 四川峨眉山地质遗迹及其地学意义[J]. 地球科学进展, 2015, 30(6): 691-699.
[3] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[4] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[5] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[6] 李江涛,周怀阳,彭晓彤,吴自军. 海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1015-1023.
[7] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[8] 赵青,赵其华,彭社琴,陈近中,黄河清. 某水电站坝区高地应力释放现象及成因研究[J]. 地球科学进展, 2009, 24(6): 636-642.
[9] 李小虎,初凤友,雷吉江,赵建如. 慢速—超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 2008, 23(6): 595-603.
[10] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[11] 刘长华,殷学博. 关于现代浅海型海底热液活动的研究进展[J]. 地球科学进展, 2006, 21(9): 918-924.
[12] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
[13] 曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展, 2003, 18(5): 764-772.
[14] 李乃胜. 大洋钻探与冲绳海槽[J]. 地球科学进展, 1995, 10(3): 240-245.
[15] 蔡祖煌. 构造水文地质学[J]. 地球科学进展, 1991, 6(3): 96-97.
阅读次数
全文


摘要