地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 1011 -1024. doi: 10.11867/j.issn.1001-8166.2014.09.1011

上一篇    下一篇

智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化
方维萱( ), 李建旭   
  1. 北京矿产地质研究院,北京 100012
  • 收稿日期:2014-05-15 修回日期:2014-08-25 出版日期:2014-09-10
  • 基金资助:
    国家科技部科技支撑计划项目“东川—易门铜矿山深部及外围勘查技术研究”(编号:2006BAB01B09);国家科技部转制院所专项资金项目 “铁氧化物铜金型矿床元素赋存状态及岩相构造学填图技术研发”(编号:2011EG115022)资助

Metallogenic Regulations, Controlling Factors, and Evolutions of Iron Oxide Copper and Gold Deposits in Chile

Weixuan Fang( ), Jianxu Li   

  1. Beijing Mineral and Geology Institute, Beijing 100012
  • Received:2014-05-15 Revised:2014-08-25 Online:2014-09-10 Published:2014-09-10

智利中生代铁氧化物铜金型(IOCG)矿床成矿带位于海岸科迪勒拉山带,与斑岩铜金和浅成低温热液型金银矿床共同组成了南美安第斯型活动大陆边缘上成矿系统组合。在成矿时代上, IOCG矿床成矿时代集中在175.6~141,140~100和99~66 Ma BP。IOCG矿床位于弧前盆地、主岛弧带和弧后盆地等五级构造单元中;而斑岩铜金和浅成低温热液型金银矿床位于主岛弧带和弧后盆地中,与IOCG矿床成矿带成对出现。综述了智利超大型IOCG矿床研究和勘查进展, 认为智利IOCG矿床主要为富铁质岩浆的火山喷溢作用、岩浆热液—盆地流体混合成矿和岩浆热液成矿作用等3种端元类型。侏罗—白垩纪弧前盆地、主火山岛弧带和弧后盆地等五级构造单元是IOCG矿床定位构造,在晚白垩世发生构造反转后,在安第斯大陆边缘从伸展构造体制转变为走滑挤压收缩构造体制,同时形成了平行于岛弧带的阿卡塔玛(AFZ)断裂系统,AFZ断裂系统导致弧前盆地—主岛弧带—弧后盆地发生构造变形并伴有同构造期岩浆侵入,主岛弧带岩浆活动停滞, 晚白垩世深成岩浆弧向东迁移,在岛弧带和弧后盆地反转过程中因岩浆—构造叠加程度不同,形成了IOCG矿床叠加成矿序列, 同期,白垩纪斑岩型铜金矿床和浅成低温热液型金银矿床相伴形成。提出富铁基性—超基性岩、IOCG矿床和斑岩型铜金矿床等与弧后盆地构造变形的动力学机制是今后的研究方向。

The Mesozoic metallogenic belt of iron-oxide copper and gold (IOCG) deposits is located at the Coastal Cordillera Range in Northern Chile. IOCG system, porphyry Cu-Au and epithermal Au-Ag systems consist of co-associations of metallogenic system on the Andean-type active continental margin. However, metallogenic ages of IOCG deposits may be classified into three main groups from 175.6~141 Ma BP, 140~100 Ma BP, and 99~66 Ma BP. IOCG deposits are located at front-arc basin, main arc zone, and back-arc basin, whereas the Cretaceous porphyry Cu-Au and epithermal Au-Ag systems, as a pair of the IOCG system, are located at the deformation of the main arc zone and the back-arc basin. After reviews on the study and exploration achievement for IOCG deposits, it may be considered that the end member of the Chilean IOCG deposits might have been formed by eruption of the Fe-rich magma, mixing of magmatic and basin-fluids, and magmatic fluids. The Jurassic-Cretaceous front-arc basin, main arc zone, and back-arc basin may be the fifth-order tectonic unit for the location-controlling tectonics of IOCG deposits during evolutions of the Andean-type active continental margin. The Andean continental margin might have changed from extensional realm into strike-slip transpression realm after inversion by the end of the Late Cretaceous time. At the same time, Acatama fault system (AFZ) were onset paralleling to the main arc zone. Therefore, all of them, the front-arc and back-basin, and main arc zone, were undergone their deformation by AFZ activity as well as syntectonic magmatic intrusions. Magmatic intrusion of the Jurassic-Cretaceous main arc zone was aborted, and the Late Cretaceous magmatic intrusions were east-directed migration. Simultaneously, superimposing system of IOCG deposits might form in the deformations of the main arc and back-arc basin by different superimposing degrees of tectonic deformation and magmatic intrusion during their inversion processes. Moreover, porphyry Cu-Au and epithermal Au-Ag systems, as pairs of the metallogenic zones at the east part of the IOCG system, were formed in the calc-alkaline magmatic zone. It suggested that the relationships among the Fe-rich basic to ultrabasic rocks, IOCG deposits and porphyry Cu-Au deposits related to dynamics for tectonic deformation of the back-arc basin should be focused on the study in the future.

中图分类号: 

图1 智利铁氧化物铜金矿床成矿分带,据文献[1]修编
Fig. 1 Mineralization zone of IOCG deposits in Chile, Modified after [1]
表1 智利典型IOCG矿床特征表
Table 1 Characteristics of typical IOCG deposits in Chile
矿床名称 曼托斯布兰科斯铜银矿床 曼托贝尔德金铜矿床 坎德拉利亚铜铁金矿床 月亮山铜铁矿床 曼陀型铜银矿床
赋矿地层 中上侏罗统拉内格拉组火山岩 侏罗系La Negra组和下白垩统Bandurrias组 上侏罗统Punta Del Cobre组 下白垩统Ksi组火山岩 下白垩统
Lo Prado组
岩石系列 双峰式安山岩-流纹岩组合,流纹岩质角砾岩 安山质熔岩和安山质火山角砾岩类,蒸发岩和Na-Cl交代相发育 下部变质安山岩→变质凝灰岩→上部变质安山岩→变质沉积岩 铁质安山岩—高铁安山岩+闪石辉石玢岩 钙碱性基性火山岩和英安岩
侵入岩系列 闪长岩和花岗闪长岩岩株缓倾斜岩床;基性岩脉群 矿区西部为花岗闪长岩—二长岩,东部为闪长岩—二长闪长岩—花岗闪长岩—英云闪长岩。 矿区西部二长闪长岩—石英二长岩岩基形成时代为(123±4)~(109.9 ± 1.7) Ma 早白垩世闪长岩—花岗闪长岩—二长斑岩系列(135 ~100Ma) +铁质辉长岩 矿区外围发育白垩纪闪长岩—花岗闪长岩—花岗岩系列
构造系统 AFZ断裂系统中NE向和NW向陡立断层+SN向正断层,控制了岩浆热液角砾岩系统 同岩浆侵入期角岩化带+区域变质+AFZ构造系统。AFZ断裂系统中脆—韧性断裂带为储矿构造系统 同岩浆侵入期AFZ韧性剪切带的形成时代为119~111 Ma,同成矿期脆—韧性剪切带的转换时代为111.0~110.7 Ma 同岩浆侵入期的AFZ脆韧性剪切带+闪长岩—二长斑岩岩基的侵入构造系统+辉绿辉长岩侵入构造 AFZ脆韧性剪切带向南延伸部位,次级顺层和切层断裂组
储矿构造样式 流纹斑岩穹顶相与流纹质岩浆热液角砾岩相带(体)+闪长—花岗闪长质岩浆热液角砾岩相带 似层状热液角砾岩体、近直立热液角砾岩体、赤铁矿胶结的热液角砾岩筒及AFZ断裂系统的次级平行分枝断裂组 同岩浆侵入期脆韧性剪切带+侵入构造+背斜构造+切层断裂组+受背斜构造控制的夕卡岩化带 岩浆热液角砾岩系统+脆韧性剪切带+二长斑岩侵入构造带+岩浆热液电气石角砾岩筒+断裂组 脆韧性剪切带中弧形构造扩容带,发育大型和小型S-L透镜体。顺层+切层构造耦合为储矿构造
资源储量与平均品位 矿石量5亿吨,Cu 1.0%,铜金属量500万吨;Ag 17g/t,银金属量1513t。Cu-Ag型 氧化矿1.8亿t,铜90万t ,Cu0.5%;硫化矿4.0亿t,Cu 0.52%,铜280万t。
Fe-Cu-Au型
矿石量4.7亿吨,Cu 0.95%,铜450万吨;Ag 3.1g/t,银1457 t;Au 0.22g/t,金103 t。共生铁。Fe-Cu-Au型 铁矿石量3亿吨,TFe 30.87 %,Cu 0.35 %,Au 0.11 g/t;Fe-Cu-Au-Co型 矿石量2.0亿吨,Cu1.35%,铜金属储量270万吨,Ag 6.0g/t。Cu-Ag型
储矿构造岩相学类型 流纹斑岩穹顶相+流纹质岩浆热液角砾岩相带+后期闪长—花岗闪长质岩浆热液角砾岩相带+钾硅酸盐蚀变相+钾化-青磐岩化蚀变岩 MVB热液角砾岩相带+糜棱岩相带+钾硅酸盐化蚀变相+钾化-绿泥石化蚀变带+弥漫状碱性流体交代充填相(碳酸盐蚀变相)+多期热流体叠加岩相(不等时不等位地球化学岩相) 夕卡岩化相(钠柱石-方柱石—石榴石夕卡岩+磁铁矿±角闪石和钾长石蚀变岩)+黄铜矿-黄铁矿化热液角砾岩相带+钾硅酸盐化蚀变相+钠钙硅酸盐蚀变相 岩浆热液角砾岩相(筒)+电石气热液角砾岩相+赤铁矿热液角砾岩+钾钠硅酸盐相+阳起石蚀变岩相+透辉石透闪石蚀变岩相 面状弥漫型蚀变,钠钾硅酸盐化、钙硅酸盐(阳起石)化、绿泥石-硅化热液角砾化、赤铁矿—铁白云石—菱铁矿蚀变相
成矿时代/Ma 156 ~ 155;
141 ~ 142
126.4 ~ 117 116 ~ 110 120,65 101~106
文献号 [8,9,21,22] [3,4,13,14,15,24,25] [1-5,23-29] 本文 [31]
表2 智利典型IOCG矿床特征表
Table 2 Characteristics of typical IOCG deposits in Chile
图2 智利铁氧化物铜金(IOCG)矿床组合类型与叠加成矿序列
Fig.2 Superimposing mineralization series of IOCG and associations of IOCG deposits in Chile
图 3 安第斯型活动陆缘中生代构造单元与IOCG成矿演化模式
Fig.3 Pattern of metallogenic evolutions and the Mesozoic tectonic units on the Andean active continental margin
[1] Sillitoe R H. Iron oxide-copper-gold deposits: An andean view[J]. Mineralium Deposita, 2003, 38: 787-812.
[2] Williams P J, Barton M D, Johnson D A, et al. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin[J]. Economic Geology, 2005, 100: 371-405.
[3] Marschik R,Fontboté L.The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile[J]. Economic Geology, 2001,96: 1 799-1 826.
[4] Marschik R, Söllner F. Early Cretaceous U-Pb zircon ages for the Copiapó plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama region, Chile[J]. Mineralium Deposita, 2006, 41: 785-801.
[5] Carlos A, Grocott J, Martin W, et al. Structural setting of the Candelaria Fe oxide Cu-Au Deposit, Chilean Andes (27°30′S)[J]. Economic Geology, 2006, 101: 819-841.
[6] Benavides J, Kyser T K, Clark A H. The mantoverde iron oxide-Copper-Gold district,III Región, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 2007, 102(3): 415-440.
[7] Vila T, Lindsay N, Zamora R. Geology of the Mantoverde copper deposit, northern Chile: A specularite-rich hydrothermal-tectonic breccia related to the Atacama fault zone[J]. Society of Economic Geologists Special Publication, 1996, 5:157-170.
[8] Ramírez L E, Palacios C, Townley B, et al. The Mantos Blancos copper deposit: An upper Jurassic breccia-style hydrothermal system in the coastal range of northern Chile[J]. Mineral Deposita, 2006, 41: 246-258.
[9] Luis E R, Miguel A P, Carlos P, et al. Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: Insight from Sr-Nd isotope, geochemical data and silicate melt inclusions[J]. Resource Geology, 2008, 58(2): 124-142.
[10] Chen H Y, Cooke D R, Baker M J. Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana Supercontinent breakup[J]. Economic Geology, 2013,108: 37-44.
[11] Chen H Y, Clark A H, Kyser T K, et al. Evolution of the giant marcona-mina justa iron oxide-copper-gold district, south-central Peru[J]. Economic Geology, 2010, 105: 155-185.
[12] Fang Weixuan,Liu Yulong,Zhang Shoulin,et al.Three types of continental geodynamics and metallogenic models for IOCG ( Iron Oxide Copper Gold deposits) from the global view[J].Journal of Northwest University (Natural Science Edition),2009,39(3): 404-413.
方维萱,柳玉龙,张守林,等.全球铁氧化物铜金型 (IOCG) 矿床的3 类大陆动力学背景与成矿模式[J]. 西北大学学报: 自然科学版,2009, 39(3): 404-413.
[13] Shi Junfa,Zhou Ping,Tang Jinrong,et al.Thoughts on developing strategy of key technologies used for deep metallic ore-prospecting[J].Geological Bulletin of China,2009,28(2/3): 198-207.
施俊法,周平,唐金荣,等. 关于金属矿床深部找矿关键技术发展战略的思考[J].地质通报,2009,28(2/3): 198-207.
[14] Liu Liangming, Cai Ailiang.Deep ore-prospecting: Challenges and solutions in terms of geological theory,exploration technology and investment decision-making[J].Geological Bulletin of China,2009,28(7): 923-932.
刘亮明,蔡爱良. 深部找矿: 地质理论、勘查技术、投资决策的难题及对策[J].地质通报,2009,28(7): 923-932.
[15] Fang Weixuan. R & D on new mapping technology of geochemical lithofacies in prediction and exploration for Iron-Oxide Copper Gold deposits (IOCG)[J]. Advances in Earth Science,2012, 27(10): 1 178-1 184.
方维萱. 论铁氧化物铜金型(IOCG) 矿床地球化学岩相学填图新技术研发[J]. 地球科学进展,2012,27(10): 1 178-1 184.
[16] Li Zeqin,Hu Ruizhong,Wang Jiangzhen,et al. Lala Fe-Oxide-Cu-Au-U-REE ore deposit,Sichuan China—An example of superimposed mineralization[J].Bulletin of Mineralogy,Petrology and Geochemistry,2002,21(4): 258-260.
李泽琴,胡瑞忠,王奖臻,等. 中国首例铁氧化物铜金铀—稀土型矿床的厘定及其成矿演化[J]. 矿物岩石地球化学通报,2002,21(4):258-260.
[17] Zhou Jinsheng, Li Zeqin, Wang Jiangzhen, et al. Calcareous metasomatism in Lala IOCG deposit in Huili, Sichuan[J]. Advances in Earth Science, 2012,27(Suppl.):321-324.
周金胜,李泽琴,王奖臻,等. 四川会理拉拉铁氧化物—铜—金矿床的钙质交代作用[J]. 地球科学进展,2012,27(增刊):321-324.
[18] Wang Jiangzhen, Li Zeqin, Huang Congjun. The main geological events of the Kangdian proterozoic eon and response from from to the LaLa IOCG deposit[J]. Advances in Earth Science, 2012,27(10): 1 074-1 079.
王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿效应[J]. 地球科学进展,2012,27(10): 1 074-1 079.
[19] Nie Fengjun,Jiang Sihong,Lu Yanming. Geological features,ore-forming processes and prospecting model of iron oxide-copper gold deposits[J].Geology in China,2008,35(6): 1 074-1 087.
聂凤军,江思宏,路彦明. 氧化铁型铜—金( IOCG) 矿床的地质特征、成因机理与找矿模型[J]. 中国地质,2008,35(6):1 074-1 087.
[20] Fang Weixuan.On types of geochemical lithofacies and their applications in basin analysis[J].Geoscience,2012,26(5): 1-12.
方维萱.论地球化学岩相学类型及在沉积盆地分析中应用[J].现代地质,2012,26(5): 1-12.
[21] Oliveros V, Tristá-Aguilera D. Time relationships between volcanism plutonism alteration mineralization in Cu stratabound ore deposits from the Michilla mining district, northern Chile: A 40Ar/39Ar geochronological approach[J]. Mineralium Deposita, 2008, 43: 61-78.
[22] Oliveros V. Les Formations Magmatiques Jurassiques et Mineralisation du Nord Chili, Origine, Mise en Place, Alteration, Metamorphisme: Etude Geochronologique et Geochemie[D]. France:Universite de Nice-Sophia Antipolis, 2005.
[23] Chiaradia M, Banks D, Cliff R, et al. Origin of fluids in iron oxide-copper-gold deposits: Constraints from δ37Cl, 87Sr/86Sri and Cl/Br[J]. Mineralium Deposita, 2006, 41: 565-573.
[24] Marschika R, Fontignieb D, Chiaradiab M, et al. Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′S), Chile[J]. Journal of South American Earth Sciences, 2003, 16: 381-398.
[25] Marschik R,Chiaradia M,Fontboté L. Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district,Chile[J]. Mineralium Deposita, 2003, 38: 900-912.
[26] Mathur R. Age of mineralization of the Candelaria Fe Oxide Cu-Au deposit and the origin of the Chilean Iron Belt, based on Re-Os Isotopes[J]. Economic Geology, 2002, 97(1): 59-71.
[27] Maksaev V, Munizaga F, Valencia V.LA-ICP-MS zircon U-Pb geochronology to constrain the age of post-Neocomian continental deposits of the Cerrillos Formation, Atacama region, northern Chile: Tectonic and metallogenic implications[J]. Andean Geology, 2009, 36(2): 264-287.
[28] Arévalo C. Mapa Geológico de la Hoja Copiapó, Región de Atacama: Documentos de Trabajo 8, Scale 1:100,000[R]. Santiago, Chile: SERNAGEOMIN Press, 1995.
[29] Mathur R, Marschik R, Ruiz J, et al. Age of mineralization of the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean Iron Belt, based on Re-Os isotopes[J]. Economic Geology, 2002, 97: 59-71.
[30] Kojima S, Aguilera D T, Hayashi K. Genetic Aspects of the Manto-type copper deposits based on geochemical studies of North Chilean deposits[J]. Resource Geology, 2008, 59(1): 87-98.
[31] Boric R,Holmgren C,Wilson N S F,et al. The geology of the El soldado manto type Cu (Ag) deposit, Central Chile[M]∥Porter T M, ed. Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 2002, 2: 163-184.
[32] Pichowiak S. Early Jurassic to Early Cretaceous magmatism in the Coastal Cordillera and the Central Depression of north Chile[M]∥Reutter K J, Scheuber E, Wigger P J, eds. Tectonics of the Southern Central Andes. New York: Springer, 1994:203-217.
[33] Ardill J, Flint S, Chong G, et al. Sequence stratigraphy of the Mesozoic Domeyko Basin, northern Chile[J]. Journal of the Geological Society, 1998, 155:71-88.
[34] Lopez G. The El Espino Iron-oxide Copper Gold District, Costal Cordillera of North-Central Chile[D]. Colorado ,USA: The Colorado School of Mines, 2014.
[35] Ruiz C, Aguirre L,Corvalan J,et al. Geologíay Yacimientos Metalíferos de Chile[R]. Santiago:Instituto de Investigaciones Geológicas, 1965:305.
[36] Hopper D,Correa A. The Panulcillo and Teresa de Colmo copper deposits: Two contrasting examples of Fe-ox-Cu-Au mineralisation from the Coastal Cordillera of Chile[M]∥Porter T M, ed. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective.Adelaide: PGC Publishing, 2000: 177-189.
[37] Alexander K R. Geology of the Cerro Negro Norte Fe-Oxide (Cu-Au) District, Coastal Cordillera, Northern Chile[D].Oregon of U.S.A. :Oregon State University, 2001.
[38] Zentilli M. Geological Evolution and Metallogenic Relationships in the Andes of Northern Chile between 26°and 29°[D]. Ontario,UK: Queens University ,1974.
[39] José A N, Fernando H, Jan O N. Subvolcanic contact metasomatism at El Laco Volcanic Complex, Central Andes[J]. Andean Geology, 2010: 37(1): 110-120.
[40] Oyarzun R, Oyarzún J, Ménard J J, et al. The Cretaceous iron belt of northern Chile: Role of oceanic plates, a superplume event, and a major shear zone[J]. Mineralium Deposita, 2003, 38: 640-646, doi:10.1007/s00126-003-0359-y.
[41] Víctor M, Tomás A A,Francisco M, et al. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile[J]. Andean Geology, 2010, 37(1): 144-176.
[42] Pollard P J. An intrusion-related origin for Cu-Au mineralization in Iron Oxide-Copper-Gold (IOCG) provinces[J]. Mineralium Deposita, 2006, 41: 179-187.
[43] Tornos F, Velasco F, Barra F, et al. The Tropezon Cu-Mo-(Au) deposit, Northern Chile: The missing link between IOCG and porphyry copper system?[J]. Mineralium Deposita, 2010, doi:10.1007/s00126-010-0277-8.
[1] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[2] 王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J]. 地球科学进展, 2012, 27(10): 1074-1079.
阅读次数
全文


摘要