地球科学进展 ›› 2007, Vol. 22 ›› Issue (8): 769 -776. doi: 10.11867/j.issn.1001-8166.2007.08.0769

综述与评述    下一篇

现代海底热液活动调查研究技术进展
翟世奎,李怀明,于增慧,于新生   
  1. 中国海洋大学海洋地球科学学院,山东 青岛 266003
  • 收稿日期:2007-03-19 修回日期:2007-07-05 出版日期:2007-08-10
  • 通讯作者: 翟世奎(1958-),男,山东聊城人,教授,主要从事地球化学研究.E-mail:zhaishk@public.qd.sd.cn E-mail:zhaishk@public.qd.sd.cn
  • 基金资助:

    国家重点基础研究发展计划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078503);国家自然科学基金项目“冲绳海槽中部沉积物元素地球化学研究”(编号:40306009)资助.

Advances in the Investigation Technology of Modern Seafloor Hydrothermal Activities

ZHAI Shi-kui, LI Huai-ming, YU Zeng-hui, YU Xin-sheng   

  1. Department of Marine Geoscience, Ocean University of China, Qingdao 266003,China
  • Received:2007-03-19 Revised:2007-07-05 Online:2007-08-10 Published:2007-08-10

现代海底热液活动涉及到高温高压环境,异常的热液环境使得传统的深海调查研究方法已远不能满足热液活动研究的需要。直视采样技术、深潜器技术、定点监测技术、保真采样技术及模拟实验技术等成为近年来国内外致力发展的热液活动调查研究技术。在分析了近年来国内外海底热液活动调查研究技术发展的基础上,指出了目前已有技术开发中存在的不足,并且提出了我国在现代海底热液活动技术发展的迫切性和应优先发展的技术。

Seafloor hydrothermal activities are involved with extreme conditions. Therefore traditional deep-sea investigation methods can not be satisfied with the investigation demand. Recent technologies, such as visual-sampling technology, submersible technology, in-situ monitoring technology and sampling with fidelity technology and experimental simulation technology, have been developed and widely used. Based on the advances in the investigation technologies associated with modern seafloor hydrothermal activities, the development of the investigation technologies in this field should be paid much attention to by our country.

中图分类号: 

[1]Bender M, Broecker W, Gornitz V, et al. Geochemistry of three cores from the East Pacific Rise[J].Earth and Planet Science Letter,1971,12:425-433.
[2]Bostrom K, Peterson M N. Precipitates from Hydrothermal Exhalations on the East Pacific Rise[J].Economic Geology,1969,61:1 258.
[3]Robigou V, Ballard R D, Davis C, et al. JASON Project IV: Combined operations of JASON ROV, TURTLE submersible and satellite link to land[J]. EOS,Transactions of the American Geophysical Union,1993,74:573.
[4]Jon C. All at Sea[J].Nature,2002, 415: 572-574.
[5]Beranzoli L, Santis A D, Etiope G, et al. GEOSTAR: A Geophysical and oceanographic station for abyssal research[J].Physics of the Earth and Planetary Interiors,1998,108:175-183.
[6]Bailey D M, Jamieson A J, Bagla P M,et al. Measurement of in situ oxygen consumption of deep sea fish using an autonomous lander vehicle[J].Deep-Sea Research I, 2002,49:1 519-1 529.
[7]Fred K D, David W H, James J, et al. HUGO: The Hawaii undersea geo-observatory[J].IEEE Journal of Oceanic Engineering,2002, 27(2):218-227. 
[8]Seyfried W E, Janecky D R,Berndt T M. Rocking autoclaves for hydrothermal experiments Ⅱ The flexible cell system[C]//Experimental Hydrothermal Techniques.New York: Wiley-Interscience,1987:216-240.
[9]Bignall G.A newly developed flow-reactor, with pH measurement system, for laboratory simulation of water-rock interaction processes[Z].Proceedings World Geothermal Congress, Kyushu-Toholu,Japan, May 28-June 10,2000.
[10]Ding K,Seyfried W E Jr. Direct pH measurement of NaCl-bearing fluid with in-situ sensor at 400℃ and 40 MPa: Experimental results and theoretical predictions[J].Science,1996,272:1 634-1 636.
[11]Hoffman M M, Darab J G, Heald S M, et al. New experimental developments for in situ XAFS studies of chemical reactions under hydrothermal conditions[J].Chemical Geology,2000,167: 89-103.

[1] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
阅读次数
全文


摘要