地球科学进展 ›› 2007, Vol. 22 ›› Issue (8): 777 -783. doi: 10.11867/j.issn.1001-8166.2007.08.0777

综述与评述 上一篇    下一篇

气候变化对江河流量变化趋势影响研究进展
刘春蓁   
  1. 水利部水利信息中心,北京 100053
  • 收稿日期:2007-04-09 修回日期:2007-06-18 出版日期:2007-08-10
  • 通讯作者: 刘春蓁(1933-),湖北汉阳人,女,教授级高工,主要从事气候变化对水文水资源影响的研究.E-mail:liucz@mwr.gov.cn E-mail:liucz@mwr.gov.cn

The Advances in Studying Detection of Streamflow Trend Influenced by Climate Change

LIU Chun-zhen   

  1. Water Resources Information Center, MWR, Beijing 100053, China
  • Received:2007-04-09 Revised:2007-06-18 Online:2007-08-10 Published:2007-08-10

气候变化对基于自然稳定气候假定的流量变化趋势的检测和水资源评价方法提出了挑战。在流量变化趋势的检测中分离出气候变化的影响,不仅对水资源管理和水利工程设计有重要的应用价值,而且有助于了解气候变化以何种方式、在何时、何地、已经或尚未对水文循环产生影响,对改进气候模型的模拟与预测有重要的科学价值。统计方法是检验流量变化趋势显著性的有效工具。直接用气候模型模拟和预测未来径流变化的可靠性取决于模型对当代降水模拟的可信度。多个气候模型集合分析有可能在一定程度上减少模型对降水、径流模拟的不确定性。近年发展起来的多个气候模型集合分析与统计显著性检验技术结合的方法,有可能模拟并预测出气候强迫导致大尺度径流空间分布的变化。随着气候模型尤其是陆—气耦合的区域气候模型对降水模拟的改进,可以预见径流变化的检测、归因和预测的趋同化模拟已为期不远。将温室气体外强迫导致的水文气候变化作为一个因子引入到水资源评价中,对于水资源管理经济与生态评估,以及未来的发展规划将是一件十分重要的变革。

Detection of streanflow trend and water resources assessment based on the natural and stationary climatic condition have been challenged by global warming. Identifying and separating contribution of climate change in streamflow trend, facilitate not only in water management practice and water project construction, but also enable understanding where, when and by which way the impact of climate change on hydrological cycle becomes detectable or not yet.The statistical test is a powerful tool for the detection of hydrological trend. It is necessary to consider both the serial correlation of the data series and the cross-correlation between the hydrological variables at different locations for correctly determining the significance level. A complete study of the detection of streamflow trend includes description of trend characteristics and its attribution as well. For natural river basin fed by snow and glaciers melt, the streamflow trend is determined mainly by temperature variation, associated with natural climate variability and external forcing produced climate warming. For managed water systems, supplied by precipitation, streamflow trend is affected not only by climatic variables, but also by anthropogenic disturbances-direct and indirect factors. The methodology of statistical interrelation of multifactors is helpful to determining contribution of each element in streamflow trend.However, by only relying on statistical method alone, it is hard to weigh the interaction among factors as well as to identify the impact of climatic variability and forced climate change on streamflow. The reliability of simulation and projection on future streamflow with climate model directly is directly determined by the ability of the climate model to simulate precipitation of current time-horizon. The ensemble mean from a subset of climate models could reduce uncertainties in precipitation and runoff simulations. Recently developed methodology of ensemble mean of multiclimate models combined with statistical analysis has been used to show the potential in simulation and projection of spatial pattern of macro-scale streamflow trend caused by forced climate change. In the course of improving climate model and regional climate models' simulation of precipitation in particular, it is anticipated that the detection, attribution and projection of streamflow alteration tend to be simulated in an identical way in the near future.

中图分类号: 

[1]IPCC 2007: Climate change. The Physical Science Basis. Summary for Policy Makers[R]. 2007.
[2]Groisman P Y,Knight R W, Karl T R,et al. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations[J].Journal of Hydrometeorology,2004,5:64-85.
[3]Yue Chunfang, Xie Xinmin,et al. Analysis of impacts of intensive human activities on runoff generation and concentration of stem river Huangshui in Qinghai Province[J].Water Problem Forum,2003,38:35-38.[岳春芳,谢新民,等.人类大规模活动对青海省湟水干流产生的影响分析[J].水问题论坛,2003,38:35-38.]
[4]Lins H F, Slack J R. Streamflow trends in the United States[J].Geophysical Research Letters,1999,26:227-230.
[5]Cayan D R, Kammerdiener S A, Dettinger M D. Changes in the onset of spring in the western United States[J].Bulletin of the American Meteorological Society,2001, 82:399-415.
[6]Hodgkins G A,Dudley R W,Huntingo T G.Changes in the timing of high river flows in New England over the 20th Century[J].Journal of Hydrology,2003, 278(1/4):244-252.
[7]Douglas E M, Vogel R M,Kroll C N. Trends in floods and low flows in the United States: Impacts of spatial correlation[J].Journal of Hydrology,2000, 240:90-105.
[8]Zhang X B, Harrey K D, Hogg W D, et al.Trends in Canadian streamflow[J].Water Resources Research,2001, 37(4):987-998.
[9]Burn D H, Hag Elnur M A.Detection of hydrologic trends and variability[J].Journal of Hydrology,2002,255:107-122.
[10]Vogel R, Zafirakou-Koulouris M A. Frequency of record-breaking floods in the United States[J].Water Resources Research,2001, 37(6):1 723-1 731.
[11]Milly P C D, Wetherald P T. Increasing risk of great floods in a changing climate[J].Nature,2002,415(6 871):514-517.
[12]Labat D, Godderis Y, Probst J L, et al. Evidence foe global runoff increase related to climate warming[J].Advances in Water Resources,2004, 27(6):631-642.
[13]Mudelsee M, Borngen M,Tetzlaff G, et al. No upward trends in the occurrence of extreme floods in central Europe[J].Nature,2003, 425:166-169.
[14]Kundzewicz Z, Graczyk W D. Trend detection in river flow series: 1. Annual maximum flow[J].Hydrological Sciences Journal/Journal des Sciences Hydrologiques,2005, 50(5):797-810.
[15]Legates D R, Lins H F,McCabe G J. Comments on “Evidence for global runoff increase related to climate warming” by Labat et al[J].Advances in Water Resources,2005,20(12):1 310-1 315.
[16]Dai A, Trenberth K E, Qian T. A global data set of Palmer Drouth Severity Index for 1870-2002: Relationship with soil moisture and effect of surface warming[J].Journal of  Hydrometeorology,2004,5:1 117-1 130.
[17]McCabe G J,Wolock D H. A step increase in streamflow in the conterminous United States[J].Geophysical Research Letters,2002, 29:381-384.
[18]Lammers R B, Shiklomanov A I,Vörösmarty C J,et al.Assessment of contemporary Arctic river runoff based on observational discharge records[J].Journal of Geophysical Research-Atmospheres,2001,106(D4):3 321-3 334.
[19]Serreze M, Bromwich D,Clark M P,et al.Large scale hydro-climatology of the terrestrial Arctic drainage system[J].Journal of Geophysical Research-Atmospheres,2002,108.
[20]Yang D Q,Kane D L.Siberian Lena River hydrologic regime and recent change[J].Journal of Geophysical Research-Atmospheres,2002,107(D23):4 694-4 703.
[21]Cao J T, Qin Dahe, Kang Ersi, et al.River discharge changes in the Qinghai-Tibet Plateau[J].Chinese Science Bulletin,2006,51:5 594-5 600.
[22]Ren L,Wang Meirong, Li Chunhong,et al. Impact of human activity on river runoff in the northern area of China[J].Journal of Hydrology,2002,261:204-217.
[23]Xu Jiongxin. The water fluxes of the Yellow river to the sea in the past 50 years, in response to climate change and human activities[J].Environmental Management, 2005, 35(5):620-631.
[24]Gillett N P, Weaver A J. Detecting the effect of climate change on Canadian forest fires[J].Geophysical Research Letters,2004,31,L18211, doi:10.1029/2004G L020876.
[25]Root T L, Price K R. Fingerprints of global warming on wild animals and plants[J].Nature,2003,421(6 918):57-60.
[26]IPCC 2007: Climate Change.Impact, Adaptation and Vulnerability(Chapter 1)[R].Cambridge,2007.
[27]Peterson B J, Holmes R M, McClelland J W,et al.Increasing river discharge to the arctic ocean[J].Science,2002,298:2 171-2 173.
[28]Hadley Centre. Climate change, rivers and rainfall: DEFRA. Recent research on climate change science from the Hadley Centre[R].2005.
[29]Gedney N, Cox P M, Betts R A, et al.Detection of a direct carbon dioxide effect in continental river runoff records[J].Nature,2006,439(4 504):835-838.
[30]Murphy J M, Sexton D M H, Barnett D N, et al. Quantification of modeling uncertainties in a large ensemble of climate change simulation[J].Nature,2004,430:768-772.
[31]Palmer T N, Raisanen J. Quantifying the risk of extreme seasonal precipitation events in a changing climate[J].Nature,2002, 415:512-514.
[32]Manabe S, Milly P C D, Wetherald R. Simulated long term changes in river discharge and soil moisture due to global warming[J].Hydrological Science Journal,2004,49(4):625-642.
[33]Manabe S, Wetherald R, Milly P C D,et al. Century scale changes in water availability:CO2 quadrupling experiment[J].Climate Change,2004,64:59-76.
[34]Milly P C D, Dunne K A,Vecchia A V.Global pattern of trends in streamflow and water availability in a changing climate[J].Nature,2005,415(96 871):514-517.
[35]Nohara D, Kitoh A,Hosaka M,et al.Impact of climate change on river runoff[J].Journal of Hydrometeorology,2006, 7:1 076-1 089.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要