地球科学进展 ›› 2013, Vol. 28 ›› Issue (7): 737 -750. doi: 10.11867/j.issn.1001-8166.2013.07.0737

干旱气候变化与可持续发展    下一篇

西太平洋典型边缘海盆的岩浆活动
石学法,鄢全树   
  1. 国家海洋局第一海洋研究所,海洋沉积与环境地质国家海洋局重点实验室,山东青岛266061
  • 收稿日期:2013-04-18 修回日期:2013-06-16 出版日期:2013-07-10
  • 通讯作者: 石学法(1965-),山东昌邑人,研究员,主要从事海洋沉积、海底岩石和成矿作用研究. E-mail:xfshi@fio.org.cn
  • 基金资助:

    国家自然科学基金重点项目“南海新生代扩张期后岩浆活动及其构造意义”(编号:41230960);国家自然科学基金项目“西南太平洋劳海盆地幔源区性质及俯冲组分对地幔源区的影响”(编号:41276003)资助.

Magmatism of Typical Marginal Basins (or Back-Arc Basins) in the West Pacific

Shi Xuefa, Yan Quanshu   

  1. Key Laboratory of Marine Sedimentary and Environmental Geology, The First Institute of Oceanography, State Oceanic Administration, Qingdao266061, China
  • Received:2013-04-18 Revised:2013-06-16 Online:2013-07-10 Published:2013-07-10

在发育有全球最大、最复杂的弧—沟—盆体系的西太平洋地区,集中了全球75%左右的边缘海盆(弧后盆地)。根据磁异常条带年龄,这些边缘海盆可粗略分为3个扩张幕。主要根据DSDP,ODP 和IODP计划实施以来所获得的成果,结合其他海洋调查航次研究成果,系统阐述了分属3个扩张幕的西菲律宾海盆(第一扩张幕)、南海—四国海盆(第二扩张幕)和冲绳海槽(第三扩张幕)—马里亚纳海槽内的岩浆活动特点。西菲律宾海盆(扩张时代为65~35  Ma BP)从原先的赤道位置迁移至现今的位置,其内存在如似正常洋中脊玄武岩(NMORB)、洋岛玄武岩(OIB)及弧火山岩等多种岩石类型,其地球动力学背景分别与弧后扩张、地幔柱及火山弧等背景有关,其复杂的构造演化样式需要进一步研究;四国海盆(扩张时代为27~15 Ma BP)是由古伊豆—小笠原—马里亚纳弧(IBM)裂解形成的,其内除发育正常(N)—富集(E)的洋中脊玄武岩(NMORBEMORB)外,还在扩张停止的同时出现了板内火山作用,形成了中K-超K碱性玄武岩。四国海盆的扩张模式并没有从岩石学和地质年代学角度进行明确制约,板内火山作用的地球动力学背景也不甚清楚。南海(扩张时代为32~15.5  Ma BP)是由来自华南地块的一些微陆块向东南裂离后的海底扩张所形成,并在海底扩张后2~8 Ma出现板内火山作用,截止目前,并没有获取到洋壳基底样品,主要获取到了南海海山似OIB的玄武岩,未来需要从岩石学和地质年代学角度对南海海底扩张动力学和时代以及扩张期后的板内火山作用动力学背景进行进一步制约。马里亚纳海槽(扩张时代为5 Ma BP至今)为一年青的洋内弧后盆地,其北段处于裂解增进阶段,其内出露有似MORB(中南段)及介于似MORB与似岛弧岩石之间过渡类型的玄武岩(增进端);虽然在扩张时代上与马里亚纳海槽相当,但冲绳海槽(扩张时代为4 Ma BP至今)为一陆缘、初生弧后盆地,从西南往东北方向,不同区段处于不同的伸展发育阶段,西南段出露有似MORB岩石,中段岩石主要为玄武质岩石和流纹质岩石组成双峰组合,而东北段为中酸性火山岩。正在活动的马里亚纳海槽与冲绳海槽的岩浆作用研究应和其伴随的火山岛弧及其相邻的海沟处正在俯冲的洋壳板块结合起来,完整理解板块俯冲输入(subduction input)与弧及弧后输出 (volcanic output)之间的关系,这将为揭示西太平洋地区构造演化提供重要证据。即将在西太平洋地区实施的IODP 349~352航次,为我国科学家提供了研究西太平洋地区构造演化的契机。

There developed about 75 percent of marginal basins (or back-arc basins) in the west Pacific in which there have built the biggest and most complex trench-arcback-arc system has been built. Based on ages inferred from magnetic anomaly stripes, these marginal basins can be divided into three spreading epochs. This paper, based on drilling results of the Deepsea Drilling Program (DSDP), the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP), combined with other survey results, systematically describes the characteristics of the West Philippine Basin (WPB) (No. 1 spreading epoch), the South China Sea (SCS) and the Shikoku Basin (SKB) (No.2 spreading epoch), and the Okinawa Trough and Mariana Trough (No.3 spreading epoch). Rock types in WPB include NMORB (related to the back-arc spreading process similar to those in mid-ocean ridges), OIB (related to mantle plume) and arc volcanics (related to subduction process), reflecting that WPB has experienced complex tectonic evolution. In SKB, in addition to the occurrence of NMORB-EMORB which may be related to the back-arc spreading process, medium-K and super-K alkali basalts have been obtained from the Kinan seamount chain, and the latter may be produced by intraplate volcanism. In SCS, no oceanic basement rock, but alkali basalts from seamounts have been reported, and the dynamic origin for Cenozoic spreading of the SCS are still in debate. In Mariana trough, from south to north, rock types are transitional, ranging from MORB-like to IAB-like. The Okinawa Trough is a nascent basin, and rock types include MORB-like rock from southwestern segment, basaltic rocks and acidic rocks from the middle segment, and intermediate and acidic rocks from the northeastern segment. This paper also suggests  that it should perform integrated studies of volcanism in the Mariana arc-trough system and the Ryukyu arcOkinawa trough, which will be very helpful to understand the relaitionship between subducting input and arc and back-arc volcanic output and provide some important clues to the tectonic evolution of the West Pacific. We should make full use of upcoming IODP legs 349 to 352 to improve our research skills in deep sea study area.

中图分类号: 

[1]Karig D E. Origin and development of Marginal basins in the Western Pacific[J]. Journal of Geophysical Research,1971, 76(11): 2 542-2 561.

[2]Karig D E. Evolution of arc systems in the western Pacific[J]. Annual Review of Earth and Planetary Sciences,1974, 2: 51-75.

[3]Taylor B, Bevis M, Bloomer S, et al. A Proposal for a RIDGE Integrated Studies Site in the Lau Back-arc Basin[R/OL]. [2012-10-1].http:∥www.ridge2000.org.

[4]InterRidge Office, Ocean Research Institute,University of Tokyo. A Science and Structure Plan for Ridge Research (2004-2013)[R/OL].[2012-10-1].http:∥www.intridge.org/.

[5]Honza E. Spreading mode of backarc basins in the western Pacific[J]. Tectonophysics,1995, 251:139-152.

[6]Hilde T W C, Uyeda S, Kroenke L. Evolution of the western Pacific and its margin[J]. Tectonophysics, 1977, 38:145-165.

[7]Watts A B, Weissel J K, Larson R L. Sea-floor spreading in marginal basins of the western Pacific[J]. Tectonophysics, 1977, 37(1/3): 167-181.

[8]Weissel J K. Magnetic Lineations in Marginal Basins of the Western Pacific[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1981, 300(1 454): 223-245.

[9]Taylor B, Karner G D. On the evolution of marginal basins[J]. Reviews of Geophysics and Space Physics,1983, 21: 1 727-1 741.

[10]Stern R J. Subduction zones[J]. Reviews of Geophysics,2002, 40, doi:10.1029/2001RG000108.

[11]Herzig P M, Hannington M D. Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Reviews, 1995, 10: 95-115.

[12]Qin Yunshan, Yin Hong. Western Pacific: The strategic priority in China deep-sea research[J]. Advances in Earth Science, 2011, 26(3): 245-248. [秦蕴珊, 尹宏.西太平洋——我国深海科学研究的优选战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.]

[13]Ren Jianye, Li Sitian. Spreading and dynamic setting of mariginal basins of the western Pacific[J]. Earth Science Frontiers, 2000, 7(3):203-213.[任建业,李思田. 西太平洋边缘海盆地的扩张过程和动力学背景[J].地学前缘,2000, 7(3):203-213.]

[14]Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor Bend records major change in Pacific Plate motion[J]. Science,2006, 313: 1 281-1 284.

[15]Miyashiro A. Hot regions and the origin of marginal basins in the western Pacific[J]. Tectonophysics,1986, 122: 195-216.

[16]Maruyama S. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. Island Arc,1997, 6: 91-120.

[17]Carlson R L, Melia P J. Subduction hinge migration[J]. Tectonophysics, 1984, 102: 399-411.

[18]Uyeda S, Ben Avraham Z. Origin and development of the Philippine Sea[J]. Nature,1972, 240:176-178.

[19]Seno T, Maruyama S. Paleogeographic reconstruction and motion history of the Philippine Sea[J]. Tectonophysics, 1984, 102: 53-84.

[20]Deschamps A, Lallemand S. The West Philippine Basin: An Eocene to Early Oligocene back-arc basin opened between two opposed subduction zones[J]. Journal of Geophysical Research, 2002, 107: 2 322-2 346.

[21]Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Compter-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20: 353-431.

[22]Hilde T W C, Lee C S. Origin and evolution of the West Philippine Basin: A new interpretation[J]. Tectonophysics, 1984, 102: 85-104.

[23]Haraguchi S, Ishii T, Kimura J I, et al. The early Miocene (~25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening[J]. Contributions to Mineralogy and Petrology, 2012, 163:483-504.

[24]Okino K, Shimakawa Y, Nagaoka J.Evolution of the Shikoku Basin[J]. Journal of Geomagnetism and Geoelectricity, 1994, 46: 463-479.

[25]Watts A B, Weissel J K. Tectonic history of the Shikoku marginal basin[J].Earth and Planetary Science Letters,1975,25: 239-250.

[26]Okino K, Kasuga S, Ohara Y. A New scenario of the Parece Vela Basin genesis[J]. Marine Geophysical Research, 1998, 20: 21-40.

[27]Bibee L D, Shor J, Lu R S. Inter-arc spreading in the Mariana Trough[J]. Marine Geology,1980, 35: 183-197.

[28]Hawkins J W, Melchior J T. Petrology of Mariana Trough and Lau Basin basalts[J]. Journal of Geophysical Research, 1985, 90 (B13): 11 431-11 468.

[29]Briais A, Patriat P, Tapponier P.  Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia[J].Journal of Geophysical Research,1993, 98(B4): 6 299-6 328.

[30]Yao Bochu. Tectonic evolution of the South China Sea in Cenozoic[J]. Marine Geology and Quaternary Geology, 1996, 16(2):1-13.[姚伯初.南海海盆新生代的构造演化史[J].海洋地质与第四纪地质, 1996, 16(2):1-13.]

[31]Lee C S, Shor G G, Bibee L D, et al. Okinawa Trough: Origin of a back-arc basin[J]. Marine Geology, 1980, 35: 219-241.

[32]Li Weiran, Yang Zuosheng, Wang Yongji, et al. The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance[J]. Acta Petrologica Sinica,1997, 13(4): 1 703-1 712.[李巍然, 杨作升, 王永吉, 等. 冲绳海槽火山岩岩石化学特征及其地质意义[J].岩石学报, 1997, 13(4): 1 703-1 712.]

[33]Liang Ruicai, Wu Jinlong, Liu Baohua, et al. Linear magnetic anomalies and tectonic development for the middle Okinawa Trough[J]. Acta Oceanologica Sinica, 2001, 23(2): 69-78. [梁瑞才, 吴金龙, 刘保华, 等. 冲绳海槽中段线性磁条带异常及其构造发育[J]. 海洋学报, 2001, 23(2): 69-78.]

[34]Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J].Lithos, 2000, 54:117-137.

[35]Savov I, Hickey-Vargas R, D’Antonio M, et al. Petrology and Geochemistry of West Philippine Basin Basalts and Early Palau-Kyushu Arc Volcanic Clasts from ODP Leg 195, Site 1201D: Implications for the Early History of the Izu-Bonin-Mariana Arc[J]. Journal of Petrology, 2006, 47: 277-299. 

[36]Hickey-Vargas R. Isotope characteristics of submarine lavas from the Philippine Sea: Implications for the origin of arc and basin magmas of the Philippine tectonic plate[J]. Earth and Planetary Science Letters, 1991, 107: 290-304.

[37]Hickey-Vargas R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes[J]. Journal of Geophysical Research,1998, 103: 20 963-20 979. 

[38]Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications[J]. Island Arc, 2005, 14: 653-665.

[39]Hickey-Vargas R, Bizimis M, Deschamps A.Onset of the Indian Ocean isotopic signature in the Philippine Sea Plate: Hf and Pb isotope evidence from Early Cretaceous terranes[J]. Earth and Planetary Science Letters, 2008, 268:255-267.

[40]Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an Island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea[J]. Geochemistry Geophysics Geosystems, 2011, 12,doi:10.1029/2010GC003440. 

[41]Haraguchi S, Ishii T, Kimura J I, et al. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust[J]. Contributions to Mineralogy and Petrology, 2003, 145: 151-168.

[42]Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306:229-240.

[43]Yan Q, Shi X. Geological comparative studies of Japan Arc System and Kyushu-Palau Arc[J]. Acta Oceanologica Sinica, 2011, 30(4):107-121.

[44]Klein G D, Kobayashi K, Chamley H, et al. Off-ridge volcanism and seafloor spreading in the Shikoku Basin[J]. Nature, 1978, 273:746-748.

[45]Dick H J B, Marsh N G, Bullen T D. Deep Sea Drilling Project leg 58 abyssal basalts from the Shikoku basin: Their petrology and major-element geochemistry[C]∥Initial Reports of the Deep Sea Drilling Project 58. Washington DC: US Government Printing Office,1980:843-872.

[46]Marsh N G, Saunders A D, Tarney J. Geochemistry of basalts from the Shikoku and Daito basins, Deep Sea Drilling Project leg 58[C]∥Initial Reports of the Deep Sea Drilling Project 58. Washington DC:US Government Printing Office, 1980: 805-842.

[47]Ishizuka O, Yuasa M, Taylor R N, et al. Two contrasting magmatic types coexist after the cessation of back-arc spreading[J]. Chemical Geology, 2009, 266: 274-296.

[48]Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory[C]∥Inside the Subduction Factory. Geophysical Monograph, 2003, 138: 175-222.

[49]Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry Geophysics Geosystems, 2005, 6, Q07006, doi:10.1029/2004GC000895.

[50]Straub S. The evolution of the Izu Bonin-Mariana volcanic arcs (NW Pacific) in terms of major element chemistry[J]. Geochemistry Geophysics Geosystems, 2003, 4(2):1 018, doi:10.1029/2002GC000357.

[51]Hussong D M, Uyeda S. Tectonic Processes and the History of the Mariana Arc: A Synthesis of the Results of DSDP Leg 60[R]. Initial Report of the Deep Sea Drilling Project 60, 1982: 909-929.

[52]Wu Shiying, Liu Yanguang, Li Zelin, et al. Studies on the petrochemical and mineralogical features in the Mariana trough hydrothermal area[J]. Journal of Oceanography of Huanghai and Bohai Seas, 2001, 19(4): 22-29.[吴世迎, 刘焱光, 李泽林, 等. 马里亚纳海槽热液区岩石矿物学和岩石化学特征研究[J]. 黄渤海海洋, 2001, 19(4): 22-29. ]

[53]Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough Basalts (MTB): Trace element and Sr-Nd isotopic evidence for mixing between MORB-like and arc-like melts[J].Earth and Planetary Science Letters, 1987, 82: 241-254. 

[54]Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Marina Trough basalts: Evidence for heterogeneity and a recycled component in backarc basin mantle[J]. Earth and Planetary Science Letters,1990, 100: 251-264. 

[55]Stern R J, Lin P N, Morris J D, et al. Enriched backarc basin basalts from the northern Mariana Trough: Implications for the magmatic evolution of backarc basins[J]. Earth and Planetary Science Letters, 1990, 100: 210-225. 

[56]Yan Q, Castillo P, Shi X. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components[J].International Geology Review, 2012, 54:1 456-1 474.

[57]Wang P, Prell W L, Blum P, et al. Proceedings of Ocean Drilling Program[R]. College Station, TX: Ocean Drilling Program, 2000.

[58]Yan Quanshu, Shi Xuefa, Wang Kunshan, et al. Major element, trace element, Sr-Nd-Pb isotopic studies of Cenozoic alkali basalts from the South China Sea[J]. Science in China (Series D), 2008, 51(4): 550-566.

[59]Yan Q S, Shi X F, Yang Y M, et al. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea[J]. Acta Oceanologica Sinica, 2008, 27(6): 115-123.

[60]Yan Quanshu, Shi Xuefa. Hainan mantle plume and the formation and evolution of the South China Sea[J]. Geological Journal of China Universities, 2007,13(2): 311-322.[鄢全树, 石学法. 海南地幔柱与南海形成演化[J]. 高校地质学报, 2007, 13(2): 311-322.]

[61]Shi Xuefa, Yan Quanshu. Geochemistry of Cenozoic magmatism in the South China Sea and its tectonic implications[J].Marine Geology and Quaternary Geology, 2011, 31(2): 59-72.[石学法, 鄢全树. 南海新生代岩浆活动的地球化学特征及其构造意义[J]. 海洋地质与第四纪地质, 2011, 31(2): 59-72.]

[62]Wang Xianjue, Wu Mingqing, Liang Dehua, et al. Some geochemical characteristics of basalts from the South China Sea[J]. Geochemica, 1984, 4: 332-340.[王贤觉, 吴明清, 梁德华, 等. 南海玄武岩的某些地球化学特征[J]. 地球化学, 1984, 4: 332-340.]

[63]Tu K, Flower M F J, Carlson R W, et al. Magmatism in the South China Basin, 1. Isotopic and trace element evidence for an endogenous Dupal mantle component[J]. Chemical Geology, 1992, 97: 47-63.

[64]Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes: New results from finite frequency tomography[J].Geochemistry Geophysics Geosystems, 2006, 7, Q11007, doi:10.1029/2006GC001248.

[65]Zhao D. Seismic images under 60 hotspots: Search for mantle plumes[J]. Gondwana Research, 2007, 12: 335-355.

[66]Lee C S, Shor G G, Bibee L D, et al. Okinawa Trough: Origin of a back-arc basin[J].Marine Geology, 1980, 35:219-241.

[67]Letouzey J, Kimura M. Okinawa trough genesis: Structure and evolution of a back arc basin developed in a continent[J].Marine and Petroleum Geology, 1985, 2: 111-130.

[68]Jin Xianglong, Yu Puzhi. Tectonic features and evolution of Okinawa trough[J]. Science in China (Series B), 1987, 2(2): 196-203.[金翔龙, 喻普之.冲绳海槽的构造特征与演化[J]. 中国科学:B辑, 1987, 2(2): 196-203.]

[69]Qin Yunshan, Zhai Shikui, Mao Xueying. Trace element features and its geological significances of pumices from the Okinawa Trough[J]. Oceanologica et Limnologica Sinica, 1987, 18(4): 313-319.[秦蕴珊, 翟世奎, 毛雪瑛. 冲绳海槽浮岩微量元素的特征及其地质意义[J]. 海洋与湖沼, 1987, 18(4): 313-319.]

[70]Ishizuka H, Kawanobe Y, Sakai H. Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough,an active back-arc basin[J]. Geochemical Journal, 1990, 24: 75-92.

[71]Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough[J].Geochemical Journal,1991, 25(2): 121-136.

[72]Chen Lirong, Zhai Shikui, Shen Shunxi. Isotopic characteristics and ages of pumices from the Okinawa Trough[J]. Science in China (Series B), 1993, 23(3): 324-329.[陈丽蓉,翟世奎,申顺喜.冲绳海槽浮岩的同位素特征及年代测定[J]. 中国科学:B辑, 1993, 23(3): 324-329.]

[73]Zhai Shikui, Gan Xiaoqun. Study of basalt from the hydrothermal field of the Okinawa trough[J]. Oceanologica et Limnologica Sinica, 1995, 26(2): 115-123.[翟世奎,干晓群.冲绳海槽海底热液活动区玄武岩的矿物学和岩石化学特征及地质意义[J].海洋与湖沼, 1995, 26: 115-123.]

[74]Meng Xianwei, Du Dewen, Wu Jinlong, et al. Sr-Nd isotopic geochemistry and its geological significances of volcanic rock series from the middle part of Okinawa Trough[J]. Science in China (Series D) , 1999, 29(4): 367-371.[孟宪伟, 杜德文, 吴金龙, 等. 冲绳海槽中段火山岩系Sr 和Nd 同位素地球化学特征及其地质意义[J]. 中国科学:D辑, 1999, 29(4): 367-371.]

[75]Shinjo R. Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Trough Ryukyu arc system[J]. Journal of Volcanology and Geothermal Research, 1998, 80: 39-53.

[76]Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young intracontinental back arc basin[J]. Journal of Geophysical Research, 1999, 104(B5): 10 591-10 608.

[77]Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos,2000, 54:117-137.

[78]Huang Peng, Li Anchun, Hu Ningjing, et al. Sr-Nd isotopic characteristics and U-series ages of volcanics from the Okinawa Trough[J].Science in China (Series D), 2006, 36 (4): 351-358.[黄朋,李安春, 胡宁静, 等.冲绳海槽火山岩Sr-Nd同位素特征及U系年龄[J]. 中国科学:D辑, 2006, 36 (4): 351-358.]

[79]Expedition 331 Scientists. Deep Hot Biosphere[R/OL].[2013-01-28]http:∥dx.doi.org/10.2204/iodp.pr.331.2010.

[80]Yan Quanshu, Shi Xuefa. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa trough) behind Ryukyu arc: A review[J]. Acta Oceanologica Sinica, 2013, in press.

[81]Li Chunfeng, Wang Pinxian, Franke D, et al. Opening of the South China Sea and its implications for Southeast Asian tectonics since the late Mesozoic[J]. Advances in Earth Science, 2009, 24(12): 1 339-1 351.[李春峰, 汪品先, Franke D, 等. 南海张裂过程及其对晚中生代以来东南亚构造的启示——IODP建议书735-Full介绍[J]. 地球科学进展, 2009, 24(12): 1 339-1 351.]

[82]Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325-394.

[83]Pearce J. An element of recycling[J]. Nature, 1992, 360: 629-630.

[84]Plank T, Langmuir C. Tracing trace elements from sediment input to volcanic output at Subduction Zones[J]. Nature, 1993, 362:739-742.

[85]Castillo P R, Lonsdale P F, Moran C L, et al. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga-Kermadec Trench: Implications for the generation of arc lavas[J]. Lithos, 2009, 112: 87-102.

[86]Elliot T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc[J].Journal of Geophysical Research,1997, 102(B7): 14 991-15 019.

[87]Class C, Miller D M, Goldstein S L, et al. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc[J].Geochem Geophys Geosyst,2000, 1(6):1 004,doi:10.1029/1999GC000010.

[88]Tamura Y, Ishizuka O, Gill J B, et al. The Rear Arc: The Missing Half of the Subduction Factory[R/OL].[2013-1-28].http:∥iodp.tamu.edu/scienceops/expeditions/.

[89]Arculus R, Ishizuka O, Clift P, et al. Continental Crust Formation at Intra-Oceanic Arc: Arc Foundations, Inception, and Early Evolution[R/OL].[2013-1-28].http:∥iodp.tamu.edu/scienceops/expeditions/.

[90]Pearce J A, Stern R J, Reagan M K, et al. Testing Subduction initiation and Ophiolite Models by Drilling the Bonin Forearc[R/OL].[2013-1-28].http:∥iodp.tamu.edu/scienceops/expeditions/.

[91]Straub S M, Goldstein S L, Class C, et al. Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin[J]. Nature Geosciences, 2009, 2: 286-289.

[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[3] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[4] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[5] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO 2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[6] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[7] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[8] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[9] 张宏芳,潘留杰,侯建忠,李明娟. 陕西暖季雷暴的主模态及其可能的影响机制[J]. 地球科学进展, 2013, 28(9): 1025-1035.
[10] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[11] 王凡,胡敦欣,穆穆,王启,何金海,朱江,刘志宇. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6): 595-602.
[12] 秦蕴珊,尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.
[13] 杜岩,方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131-1142.
[14] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[15] 翦知湣,金海燕. 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008, 23(3): 221-227.
阅读次数
全文


摘要