地球科学进展 ›› 2010, Vol. 25 ›› Issue (7): 766 -774. doi: 10.11867/j.issn.1001-8166.2010.07.0766

所属专题: IODP研究

IODP研究 上一篇    下一篇

苏禄海深海沉积物古菌群落结构多样性研究
王剑飞 1,萨仁高娃 2,李铁刚 2,申之义 1,于心科 2*   
  1. 1.内蒙古农业大学动物科学与医学学院,内蒙古 呼和浩特 010018;
    2.中国科学院海洋研究所海洋地质与环境重点实验室,山东 青岛 266071
  • 收稿日期:2010-04-30 修回日期:2010-06-21 出版日期:2010-07-10
  • 通讯作者: 于心科(1963-), 男, 山东莱西人, 研究员, 主要从事有机地球化学方面研究 E-mail:geomicrobiology@126.com
  • 基金资助:

    中国科学院知识创新工程重要方向项目“西太平洋典型热液/冷泉系统与微生物生命过程”(编号:KZCX2-YW-211-03);国家高技术研究发展计划(863计划)重点课题“大洋钻探站位调查关键技术研究”(编号:2008AA093001)资助.

Diversity of Achaea Communities in Deep Sea Sediments from the Sulu Sea

Wang Jianfei 1, Saren Gaowa 2, Li Tiegang 2, Shen Zhiyi 1, Yu Xinke 2   

  1. 1.College of Animal Science and Medicine; Inner Mongolia Agricultural University, Hohhot 010018, China;
    2.Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071, China
  • Received:2010-04-30 Revised:2010-06-21 Online:2010-07-10 Published:2010-07-10
  • Contact: YU Xinke E-mail:geomicrobiology@126.com

为了研究热带西太平洋深海沉积物中古菌群落结构的多样性,应用16S rDNA文库技术,对IMAGES ⅪⅤ 航次采集的岩芯MD3 059进行基因文库的构建和分析,选取得到543个克隆,处理获得137个OTUs (Operational Taxonomic Units)。基于16S rRNA序列的同源性比较,绘制系统进化树,进行统计学分析。研究结果显示,热带西太平洋苏禄海沉积物中有丰富多样的古菌群落,在不足5 m的沉积物中垂直分布着11种古菌类群。古菌序列归属于泉古菌(Crenarchaeota)和广古菌(Euryarchaeota),其中,前者主要由Miscellaneous Crenarchaeotic Group(MCG)构成(占总古菌克隆序列的50%以上),而后者主要由Marine Benthic Group D(MBG-D)、South Africa Gold Mine Euryarchaeotic Group(SAGMEG)和Marine Benthic Group B (MBG-B)等种属构成(占总古菌克隆序列的30%以上)。研究结果对于理解热带西太平洋深海沉积物中微生物多样性和未来开发利用微生物资源具有重要意义。

To study the archaeal diversity of deep-sea sediments in the tropical Western Pacific, we investigated the archaeal community structure in six sediments subsamples along the MD3059 sediment core collected during the IMAGES ⅪⅤ cruise with 16S rDNA analysis. A total of 543 archaeal 16S rDNA clones were examined and a total of 137 OTUs were obtained. Phylogenetic results showed that the archaeal diversity in the collected samples was very diverse, and the obtained OTUs were grouped into Crenarchaeota and Euryarchaeota, with the former dominated by Miscellaneous Crenarchaeotic Group (MCG, 54% of total archaeal clones) and the latter dominated by Marine Benthic Group D (MBG-D), South African Gold Mine Euryarchaeotic Group (SAGMEG) and Marine Benthic Group B (MBG-B). These data have important implications for our understanding of archaeal community in deep-sea sediments of the tropical Western Pacific.

中图分类号: 

[1] Xu Meixiang, Wang Fengping, Xiao Xiang. Analysis of archaeal 16S rDNA from deep-sea sediments samples[J].Progress in Natural Science,2003,13(06):598-603.[徐美香, 王风平, 肖湘. 深海沉积物样品中古菌的16S rDNA分析[J]. 自然科学进展, 2003,13(06):598-603.]
[2] Woese C R, Kandler O, Wheelis M L. Toward anatural system of organisms: Proposal for the domainsarchaea, bacteria and eucarya[J].Proceedings of the Natlional  Academy of Sciences USA,1990 , 87 :4 57624 579.
[3] Li Shuguang, Pi Yundan, Zhang Chuanlun. The study of archaea: A review and perspectives[J].Journal of university of science and technology of China,2007,37(08):830-838.[李曙光,皮昀丹,Zhang Chuan-lun. 古菌研究及其展望[J]. 中国科学技术大学学报, 2007,37(08):830-838.]
[4] Inagaki F, Takai K, Komatsu T, et al. Archaeology of Archaea: Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment[J].Extrem ophiles, 2001, 5(6): 385-392.
[5] Delong E F. Archaea in coastal marine environments. Proc[J].Proceedings of the National Sciences  USA,1992, 89(12): 5 685-5 689.
[6] De Medici D, Croci L, Delibato E,et al. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry\[J].Applied and Environmental Microbiology,2003, 69: 3 456-3461.[7] Schloss P D,Handelsman J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J].Applied and Environmental Microbiology,2005, 71: 1 501-1 506.
[8] Altschul S,Madden T L,Schaffer A A,et al.GappedBLAST and PSI-BLAST: A new generation of protein database search programs[J].Nucleic Acids Research,1997,25:3 389-3 402.
[9] Mullins T D, Britschgi T B, Krest R L, et al. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities[J].Limnology and Oceanograghy,1995, 40: 148-158.
[10] Hill T C A, Walsh K A, Harris J A, et al.Using ecological diversity measures with bacterial communities[J].FEMS Microbiology Ecology,2003,43:1-11.
[11] Takai K, Horikoshi K. Diversity of archaea in deep-sea hydrothermal vent environments[J].Genetics,1999, 152: 1 285-1 297.[12] Chandler D P, Brockman F J, Bailey T J, et al.Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol[J].Microbial Ecology,1998,36:37-50.
[13] Vetriani C, Jannasch H W, MacGregor B J, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J].Applied and Environmental Microbiology,1999, 65(10): 4 375-4 384.
[14] Takai K, Moser D P, Deflaun M, et al. Archaeal diversity in waters from deep south African gold mines[J].Applied and Environmental Microbiology,2001, 67(12): 5 750-5 760.
[15] Inagaki F, Suzuki M, Takai K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk[J].Applied and Environmental Microbiology,2003, 69: 7 224-7 235.
[16] Sørensen K B, Teske A.Stratified communities of active archaea in deep marine subsurface sediments[J].Applied and Environmental Microbiology,2006,72(7):4 596-4 603.
[17] Schrenk M O, Kelley D S, Delaney J R, et al. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney[J].Applied and Environmental Microbiology,2003,69:3 580-3 592.
[18] Delong E F, Wu K Y, Prezelin B B,et al. High abundance of Archaea in Antarctic marine picoplankton[J].Nature,1994,371: 695-697.
[19] Fuhrman J A, Ouverney C C. Marine microbial diversity studied via 16S RNA sequences: Cloning results from coastal waters and counting of native archaea with fluorescent single cell probes[J].Aquatic Ecology,1998, 32: 3-15.
[20] Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J].Nature, 2001,409:507-510.
[21] Coolen M J L, Cypionka H, Sass A M, et al. Ongoing modification of Mediterranean sapropels mediated by prokaryotes[J].Science,2002, 296: 2 407-2 410.
[22] Reed D W, Fujita Y, Delwiche M E, et al. Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin[J].Applied and Environmental Microbiology,2002, 68 (8): 3 759-3 770.

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[3] 王 军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[4] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[5] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[6] 赵峰, 徐奎栋. 深海真核微生物多样性研究进展[J]. 地球科学进展, 2014, 29(5): 551-558.
[7] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[8] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[9] 王凡,胡敦欣,穆穆,王启,何金海,朱江,刘志宇. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6): 595-602.
[10] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[11] 王兆印,巩同梁,施文婧. 雅鲁藏布植被类型及与侵蚀类型的关系[J]. 地球科学进展, 2011, 26(11): 1208-1216.
[12] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[13] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.
[14] 姚鹏,于志刚. 海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展[J]. 地球科学进展, 2010, 25(5): 474-483.
[15] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
阅读次数
全文


摘要