[1]Widdel F, Knittel K, Galushko A. Anaerobic Hydrocarbon-Degrading Microorganisms: An Overview[M]∥Timmis K N ed. Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag Berlin Heidelberg, 2010: 1 997-2 021.
[2]Buffett B, Archer D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3/4):185-199.
[3]Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2):105-130.
[4]Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2):486-513.
[5]Torres M E, Kastner M. Data report: Clues about carbon cycling in methane-bearing sediments using stable isotopes of the dissolved inorganic carbon, IODP Expedition 311[C]∥ Riedel M, Collett T S, Malone M J, et al. Proceedings of the Integrated Ocean Drilling Program, 311. Washington DC (Integrated Ocean Drilling Program Management International, Inc.), 2009, 311:1-8.
[6]Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2011, 284(3/4):251-261.
[7]Wu Zijun, Zhou Huaiyang, Peng Xiaotong, et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island, southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2 052-2 059.[吴自军, 周怀阳, 彭晓彤,等. 甲烷厌氧氧化作用: 来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据 [J].科学通报, 2006,51(17):2 052-2 059.]
[8]Wu Zijun, Zhou Huaiyang, Peng Xiaotong. Anaerobic oxidation of methane in sediments from Guishan Island in Pearl River estuary[J]. Progress in Natural Science, 2007, 17(7):905-912.[吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究 [J]. 自然科学进展, 2007, 17(7):905-912.]
[9]Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: Isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Acta Oceanologica Sinica, 2011, 33(4):121-128.[尹希杰, 陈坚, 郭莹莹, 等.九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报, 2011, 33(4):121-128.]
[10]Guo Yingying, Chen Jian, Yin Xijie, et al. Spatial distribution of methane in surface water and sediment of Jiulongjiang estuary and the effect environment factors of it[J]. Environmental Science, 2012, 33(2): 558-564.[郭莹莹, 陈坚, 尹希杰, 等. 九龙江河口表层水体及沉积物中甲烷的分布和环境控制因素研究[J]. 环境科学, 2012, 33(2): 558-564.]
[11]Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6 791-6 799.
[12]Alperin M, Hoehler T. The ongoing mystery of sea-floor methane[J]. Science, 2010, 329(5 989): 288-289.
[13]Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(2): 311-34.
[14]Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[C]∥ Kaplan I R ed. Natural Gases in Marine Sediments. Plenum, New York, 1974: 99-139.
[15]Barnes R O, Goldberg E D. Methane production and consumption in anaerobic marine sediments[J]. Geology,1976, 4(5):297-300.
[16]Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344.
[17]Alperin M J, Reeburgh W S. Inhibition experiments on anaerobic methane oxidation[J]. Applied and Environmental Microbiology, 1985, 50(4): 940-945.
[18]Iversen N, Jrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30(5): 944-955.
[19]Devol A H, Anderson J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.
[20]Niewhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.
[21]Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments[J]. Earth and Planetary Science Letters, 1980, 47(3): 345-352.
[22]Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment[J]. Paliaos, 1992, 7(4):361-375.
[23]Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates: Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6): 295-300.
[24]Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6 730): 802-805.
[25]Pancost R D, Sinninghe Damste J S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria[J]. Applied and Environmental Microbiology, 2000, 66(3):1 126-1 132.
[26]Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.
[27]Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5 583):1 013-1 015.
[28]Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[J]. Environmental Microbiology, 2002, 4(5): 296-305.
[29]Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7 663-7 668.
[30]Knittel K, Lsekann T, Boetius A. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology, 2005, 71(1):467-479.
[31]Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484.
[32]Martinez R J, Mills H J, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico [J]. Environmental Microbiology, 2006, 8(10):1 783-1 796.
[33]Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529):484-487.
[34]Knittel K, Boetius A, Lemke A, et al. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon)[J]. Geomicrobiology Journal, 2003, 20(4):269-294.
[35]Treude T, Orphan V, Knittel K, et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea[J]. Applied and Environmental Microbiology, 2007, 73(7): 2 271-2 283.
[36]Pernthaler A, Dekas A E, Brown C T, et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19):7 052-7 057.
[37]Zehnder A J, Stumm W. Geochemistry and biogeochemistry of anaerobic habitats[C]∥Zehnder A ed. Biology of Anaerobic Microorganisms. New York: Wiley, 1988: 1-38.
[38]Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280.
[39]Stams A J, Plugge C M, de Bok F A, et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors[J]. Water Science and Technology, 2005, 52(1/2):13-20.
[40]Alperin M J, Hoehler T M. Anaerobic methane oxidation by archaea/sulfate reducing bacteria aggregates: 1. Thermodynamic and physical constraints[J]. American Journal of Science, 2009, 309(10): 869-957.
[41]Srensen K B, Finster K, Ramsing N B. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles[J]. Microbial Ecology, 2001, 42(1):1-10.
[42]Nauhaus K, Albrecht M, Elvert M, et al. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J]. Environmental Microbiology, 2007, 9(1): 187-96.
[43]Dale A W, Regnier P, Van Cappellen P. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis[J]. American Journal of Science, 2006, 306(4): 246-294.
[44]Orcutt B, Meile C. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: Process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions[J]. Biogeosciences, 2008, 5(6): 1 587-1 599.
[45]Strous M, Jetten M S. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58:99-117.
[46]Shima S, Thauer R K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea[J]. Current Opinion in Microbiology, 2005, 8(6):643-648.
[47]Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7 086):918-921.
[48]Knab N J, Dale A W, Lettmann K, et al. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 746-3 757.
[49]Joye S, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238.
[50]Orcutt B N, Boetius A, Lugo S K , et al. Life at the edge of methane ice: Microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates[J]. Chemical Geology, 2004, 205(3/4): 239-251.
[51]Kniemeyer O, Musat F, Sievert S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901.
[52]Moran J J, Beal E J, Vrentas J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(1): 162-173.
[53]Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9): 2 287-2 298.
[54]Brysch K, Schneider C, Fuchs G, et al. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov [J]. Archives of Microbiology, 1987, 148(4): 264-274.
[55]Ettwig K F, Shima S, van de Pas-Schoonen K T, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology, 2008, 10(11): 3 164-3 173.
[56]Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation[J].Science,2009, 325(5 937): 184-187.
[57]Alperin M J, Reeburgh W S, Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemmical Cycles, 1988, 2(3):279-288.
[58]Martens C S, Albert D B, Alperin M J. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea[J]. American Journal of Science, 1999, 299(7/9): 589-610.
[59]Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20: GB2019, 14 PP, doi:10.1029/2004GB002389.
[60]Solomon E A, Kastner M, MacDonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2: 561-565.
[61]Hoehler T M, Borowski W S, Alperin M J, et al. Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge[M]∥Paull C K, Matsumumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 164. Ocean Drilling Program, College Station, Texas, 2000: 79-85.
[62]Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments; sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1/4):31-154.
[63]Reeburgh W S, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep-Sea Research,1991, 38(Suppl.2): S1 189-S1 210.
[64]Kessler J D, Reeburgh W S, Southon J, et al. Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 366-375.
[65]Gal’chenko V F, Lein A Y, Ivanov M V. Rates of microbial production and oxidation of methane in the bottom sediments and water column of the Black Sea[J]. Microbiology (Translated from Mikrobiologiya), 2004, 73(2): 271-283.
[66]Buffett B A. Clathrate Hydrates[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:477-507.
[67]Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard?[J]. Philosphical Transactions of the Royal Society A, 2010, 368(1 919): 2 369-2 393.
[68]Campbell K A, Farmer J D, Des Marais D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and paleoenvironments[J]. Geofluids, 2002, 2(2): 63-94.
[69]Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 362-407.
[70]Birgel D, Himmler T, Freiwald A, et al. A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia[J]. Geology, 2008, 36(7): 543-546.
[71]Miller S L, Smythe W D. Carbon dioxide clathrate in the Martian Ice Cap[J]. Science, 1970, 179(3 957): 531-533.
[72]Jakosky B, Henderson B, Mellon M. Chaotic obliquity and the nature of the Martian climate[J]. Journal of Geophysical Research, 1995, 100(E1): 1 579-1 584.
[73]Anbar A D, Holland H D. The photochemistry of manganese and the origin of banded iron formations[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2 595-2 603.
[74]Pavlov A A, Hurtgen M T, Kasting J F, et al. Methane-rich Proterozoic atmosphere?[J]. Geology, 2003, 31(1): 87-90.
[75]Sassen R, Joye S, Sweet S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities: Gulf of Mexico continental slope [J]. Organic Geochemistry, 1999, 30(7): 485-497.
[76]Dale A W, Van Cappellen P, Aguilera D R, et al. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations[J]. Earth and Planetary Science Letters, 2008, 265(3/4):329-344. |