地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1262

所属专题: IODP研究

IODP研究 上一篇    下一篇

海洋环境中甲烷厌氧氧化机理及环境效应
孙治雷 1,2,何拥军 1,2,李 军 1,2,黄 威 1,2 ,李 清 1,2 ,李季伟 3,王 丰 1,2   
  1. 1.国土资源部海洋油气资源和环境地质重点实验室, 山东 青岛 266071;
    2.青岛海洋地质研究所, 山东 青岛 266071;3. 西南交通大学地球科学与环境工程学院, 四川 成都 510275
  • 收稿日期:2012-10-08 修回日期:2012-10-31 出版日期:2012-11-10
  • 基金资助:

    国家专项127工程(编号:GZH201100304);国家自然科学基金项目“黄海北部晚第四纪沉积格局及物源控制”(编号:40976036);国家高技术研究发展计划重点项目“大洋钻探站位调查关键技术研究”(编号:2008AA093001);中国科学院海洋地质与环境重点实验室开放基金项目“现代洋底热液金属硫化物微生物风化机理”(编号:MGE2012KG06)资助.

Progress and Environmental Effect in Seafloor Anaerobic Oxidation of Methane

Sun Zhilei 1,2,He Yongjun 1,2,Li Jun 1,2,Huang Wei 1,2,Li Qing 1,2,Li Jiwei 3,Wang Feng 1,2   

  1. 1. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Qingdao 266071, China;
    2. Qingdao Institute of Marine Geology, Qingdao 266071, China;
    3. Faculty of Geoscience and Environment Engineering, Southwest Jiaotong University, Chengdu 614202, China
  • Received:2012-10-08 Revised:2012-10-31 Online:2012-11-10 Published:2012-11-10

作为全球碳循环的重要环节之一,甲烷厌氧氧化作用(Anaerobic Oxidation of Methane ,AOM)不仅是微生物生态学领域最具科学魅力、充满学术争议的问题之一,也是调节地质历史时期地球环境和气候变化的重要因素之一。近年来,针对包括海洋在内的各种环境中的AOM展开了大量的研究,然而迄今为止,对该反应的运作机制仍缺乏足够了解,其中包括该作用对海洋环境和气候系统在过去、现在和未来的影响机理和程度问题,这说明对于甲烷最重要汇的了解还存在着盲区。以现代海洋地质环境中的AOM为研究对象,综述了其产生机理、反应底物、电子受体、以及涉及到其中的微生物等方面的最新研究成果,探讨了该作用对于地球环境、气候的影响意义及地质学启示,并尝试展望了需要进一步研究的几点方向,希望藉此能引起广大研究者的兴趣与重视。

As a crucial part of the global carbon cycle, microbially mediated anaerobic oxidation of methane (AOM) moderates the input of methane to the atmosphere and helps regulate Earth’s climate by consuming methane produced in various marine, terrestrial, and subsurface environments. It remains one of the most tantalizing and controversial scientific issues in both microbial ecology and environmental science since more than three decades when this process has been recognized. Recently, numerous researches have been carried out to investigate the reaction especially in the marine sediments associated with methane seeps. Unfortunately, there is still a gap to fully understand this reaction mechanism. In this paper, the recent progress in modern seafloor AOM including reaction mechanism, substrate, kinetics and energy yield, electron accepters and the involved methanotrophic archaea (ANME) and other microbes are reviewed. Furthermore, the role of AOM in environmental effects and climate changes in the past, present and future is illustrated and highlighted and the future challenges are given in the last part of this paper. We hope that this review will shed new light on an improved understanding of the AOM process in marine sediments.

中图分类号: 

[1]Widdel F, Knittel K, Galushko A. Anaerobic Hydrocarbon-Degrading Microorganisms: An Overview[M]∥Timmis K N ed. Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag Berlin Heidelberg, 2010: 1 997-2 021.

[2]Buffett B, Archer D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3/4):185-199.

[3]Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2):105-130.

[4]Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2):486-513.

[5]Torres M E, Kastner M. Data report: Clues about carbon cycling in methane-bearing sediments using stable isotopes of the dissolved inorganic carbon, IODP Expedition 311[C]∥ Riedel M, Collett T S, Malone  M J, et al. Proceedings of the Integrated Ocean Drilling Program, 311. Washington DC (Integrated Ocean Drilling Program Management International, Inc.), 2009, 311:1-8.

[6]Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2011, 284(3/4):251-261.

[7]Wu Zijun, Zhou Huaiyang, Peng Xiaotong, et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island, southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2 052-2 059.[吴自军, 周怀阳, 彭晓彤,等. 甲烷厌氧氧化作用: 来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据 [J].科学通报, 2006,51(17):2 052-2 059.]

[8]Wu Zijun, Zhou Huaiyang, Peng Xiaotong. Anaerobic oxidation of methane in sediments from Guishan Island in Pearl River estuary[J]. Progress in Natural Science, 2007, 17(7):905-912.[吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究 [J]. 自然科学进展, 2007, 17(7):905-912.]

[9]Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: Isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Acta Oceanologica Sinica, 2011, 33(4):121-128.[尹希杰, 陈坚, 郭莹莹, 等.九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报, 2011, 33(4):121-128.]

[10]Guo Yingying, Chen Jian, Yin Xijie, et al. Spatial distribution of methane in surface water and sediment of Jiulongjiang estuary and the effect environment factors of it[J]. Environmental Science, 2012, 33(2): 558-564.[郭莹莹, 陈坚, 尹希杰, 等. 九龙江河口表层水体及沉积物中甲烷的分布和环境控制因素研究[J]. 环境科学, 2012, 33(2): 558-564.]

[11]Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6 791-6 799.

[12]Alperin M, Hoehler T. The ongoing mystery of sea-floor methane[J]. Science, 2010, 329(5 989): 288-289.

[13]Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(2): 311-34.

[14]Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[C]∥ Kaplan I R ed. Natural Gases in Marine Sediments. Plenum, New York, 1974: 99-139.

[15]Barnes R O, Goldberg E D. Methane production and consumption in anaerobic marine sediments[J]. Geology,1976, 4(5):297-300.

[16]Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344.

[17]Alperin M J, Reeburgh W S. Inhibition experiments on anaerobic methane oxidation[J]. Applied and Environmental Microbiology, 1985, 50(4): 940-945.

[18]Iversen N, Jrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30(5): 944-955.

[19]Devol A H, Anderson J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.

[20]Niewhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.

[21]Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments[J]. Earth and Planetary Science Letters, 1980, 47(3): 345-352.

[22]Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment[J]. Paliaos, 1992, 7(4):361-375.

[23]Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates: Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6): 295-300.

[24]Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6 730): 802-805.

[25]Pancost R D, Sinninghe Damste J S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria[J]. Applied and Environmental Microbiology, 2000, 66(3):1 126-1 132.

[26]Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.

[27]Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5 583):1 013-1 015.

[28]Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[J]. Environmental Microbiology, 2002, 4(5): 296-305.

[29]Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7 663-7 668.

[30]Knittel K, Lsekann T, Boetius A. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology, 2005, 71(1):467-479.

[31]Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484.

[32]Martinez R J, Mills H J, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico [J]. Environmental Microbiology, 2006, 8(10):1 783-1 796.

[33]Orphan V J, House C H, Hinrichs K  U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529):484-487.

[34]Knittel K, Boetius A, Lemke A, et al. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon)[J]. Geomicrobiology Journal, 2003, 20(4):269-294.

[35]Treude T, Orphan V, Knittel K, et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea[J]. Applied and Environmental Microbiology, 2007, 73(7): 2 271-2 283.

[36]Pernthaler A, Dekas A E, Brown C T, et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19):7 052-7 057.

[37]Zehnder A J, Stumm W. Geochemistry and biogeochemistry of anaerobic habitats[C]∥Zehnder A ed. Biology of Anaerobic Microorganisms. New York: Wiley, 1988: 1-38.

[38]Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280.

[39]Stams A J, Plugge C M, de Bok F A, et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors[J]. Water Science and Technology, 2005, 52(1/2):13-20.

[40]Alperin M J, Hoehler T M. Anaerobic methane oxidation by archaea/sulfate reducing bacteria aggregates: 1. Thermodynamic and physical constraints[J]. American Journal of Science, 2009, 309(10): 869-957.

[41]Srensen K B, Finster K, Ramsing N B. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles[J]. Microbial Ecology, 2001, 42(1):1-10.

[42]Nauhaus K, Albrecht M, Elvert M, et al. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J]. Environmental Microbiology, 2007, 9(1): 187-96.

[43]Dale A W, Regnier P, Van Cappellen P. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis[J]. American Journal of Science, 2006, 306(4): 246-294.

[44]Orcutt B, Meile C. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: Process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions[J]. Biogeosciences, 2008, 5(6): 1 587-1 599.

[45]Strous M, Jetten M S. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58:99-117.

[46]Shima S, Thauer R K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea[J]. Current Opinion in Microbiology, 2005, 8(6):643-648.

[47]Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7 086):918-921.

[48]Knab N J, Dale A W, Lettmann K, et al. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 746-3 757.

[49]Joye S, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238.

[50]Orcutt  B N, Boetius A, Lugo S K , et al. Life at the edge of methane ice: Microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates[J]. Chemical Geology, 2004, 205(3/4): 239-251.

[51]Kniemeyer O, Musat F, Sievert S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901.

[52]Moran J J, Beal E J, Vrentas J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(1): 162-173.

[53]Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9): 2 287-2 298.

[54]Brysch K, Schneider C, Fuchs G, et al. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov [J]. Archives of Microbiology, 1987, 148(4): 264-274.

[55]Ettwig K F, Shima S, van de Pas-Schoonen K T, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology, 2008, 10(11): 3 164-3 173.

[56]Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation[J].Science,2009, 325(5 937): 184-187.

[57]Alperin M J, Reeburgh W S, Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemmical Cycles, 1988, 2(3):279-288.

[58]Martens C S, Albert D B, Alperin M J. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea[J]. American Journal of Science, 1999, 299(7/9): 589-610.

[59]Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20: GB2019, 14 PP, doi:10.1029/2004GB002389.

[60]Solomon E A, Kastner M, MacDonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2: 561-565.

[61]Hoehler T M, Borowski W S, Alperin M J, et al. Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge[M]∥Paull C K, Matsumumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 164. Ocean Drilling Program, College Station, Texas, 2000: 79-85.

[62]Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments; sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1/4):31-154.

[63]Reeburgh W S, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep-Sea Research,1991, 38(Suppl.2): S1 189-S1 210.

[64]Kessler J D, Reeburgh W S, Southon J, et al. Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 366-375.

[65]Gal’chenko V F, Lein A Y, Ivanov M V. Rates of microbial production and oxidation of methane in the bottom sediments and water column of the Black Sea[J]. Microbiology (Translated from Mikrobiologiya), 2004, 73(2): 271-283.

[66]Buffett B A. Clathrate Hydrates[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:477-507.

[67]Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard?[J]. Philosphical Transactions of the Royal Society A, 2010, 368(1 919): 2 369-2 393.

[68]Campbell K A, Farmer J D, Des Marais D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and paleoenvironments[J]. Geofluids, 2002, 2(2): 63-94.

[69]Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 362-407.

[70]Birgel D, Himmler T, Freiwald A, et al. A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia[J]. Geology, 2008, 36(7): 543-546.

[71]Miller S L, Smythe W D. Carbon dioxide clathrate in the Martian Ice Cap[J]. Science, 1970, 179(3 957): 531-533.

[72]Jakosky B, Henderson B, Mellon M. Chaotic obliquity and the nature of the Martian climate[J]. Journal of Geophysical Research, 1995, 100(E1): 1 579-1 584.

[73]Anbar A D, Holland H D. The photochemistry of manganese and the origin of banded iron formations[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2 595-2 603.

[74]Pavlov A A, Hurtgen M T, Kasting J F, et al. Methane-rich Proterozoic atmosphere?[J]. Geology, 2003, 31(1): 87-90.

[75]Sassen R, Joye S, Sweet S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities: Gulf of Mexico continental slope [J]. Organic Geochemistry, 1999, 30(7): 485-497.

[76]Dale A W, Van Cappellen P, Aguilera D R, et al. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations[J]. Earth and Planetary Science Letters, 2008, 265(3/4):329-344.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要