地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.11.1252

研究论文 上一篇    下一篇

土壤温湿状况对黄河源区水循环过程的影响
彭 雯 1,2, 高艳红 1, 王婉昭 1   
  1. 1.中国科学院寒区旱区环境与工程研究所陆面过程与气候变化重点实验室,甘肃 兰州 730000;
    2.湖北省气象局公众气象服务中心,湖北 武汉 430074
  • 收稿日期:2012-06-11 修回日期:2012-08-24 出版日期:2012-11-10
  • 基金资助:

    中国科学院知识创新工程重要方向项目“黄河源区陆面过程对水资源变化的影响研究”(编号:KZCX2-YW-328);国家重点基础研究发展计划项目“青藏高原沙漠化对全球变化的响应”(编号:2013CB956004);中国科学院百人计划项目“全球变化背景下青藏高原周边典型流域气候变化研究”资助.

Impact of Different Initial Soil Conditions on the Water Cycle of Yellow River Source Region

Peng Wen 1,2, Gao Yanhong 1, Wang Wanzhao 1   

  1. 1.Key Laboratory of Land Surface Process and Climate Change , Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China;
    2.Public Weather Service Center of the Hubei Provincial Meteorological Bureau,Wuhan 430074,China
  • Received:2012-06-11 Revised:2012-08-24 Online:2012-11-10 Published:2012-11-10

众多研究表明黄河源区受气候变化影响,土壤活动层逐渐下降。土壤温、湿度是陆面过程及地球系统中的重要物理量,它们通过影响地表能量和物质交换而影响大气环流和降水等。利用WRF(Weather Research and Forecasting)模式,选取2个典型年分别设计了2个控制试验和2个敏感性试验来探讨土壤初始状况变化对区域水循环的影响,通过再循环降水率定量描述不同气候背景下陆面对黄河源区水循环的影响,并尝试从环流角度进一步分析土壤初始状况改变对源区水循环影响的物理机制。结果表明:陆面对水循环的影响受大尺度环流背景场影响较大,较弱的环流背景下再循环降水率较强环流背景大5%左右。土壤初始状况对水循环要素有一定程度的影响。土壤初始温度升高/降低,水汽通量增多/减少,后期降水增大/减小。不同环流背景下,土壤记忆时间不同,在弱的环流背景下,土壤记忆时间要长,初始状况扰动可持续1~2个月。

Many studies show that affected by climate change,the soil active layer of the Yellow River source region gradually decreased. Soil temperature and moisture are important physical elements in land surface process and earth system. They have influence on the atmospheric circulation and precipitation through affecting surface energy and mass exchanges. In this paper, two control experiments were conducted for two typical warm/cold climate seasons using the Weather Research and Forecasting model (WRF). Meanwhile, two sensitive simulations were designed to discuss the impact different initial soil conditions on the regional water cycle. The precipitation recycling ratio is considered as an index to explore the impact of land surface process impact on water cycle. We further explore the possible physical mechanism of the impact from the circulation. The following results are obtained. Large-scale circulation has large control on the land effect on the water cycle. The precipitation recycling ratio is about 5% larger in a weaker circulation than in a stronger one. Initial soil conditions have a certain extent impact on the water cycle elements. Warmer/cooler initial soil temperatures make water vapor flux, and post-precipitation increase/decrease. Soil has different memory under different atmospheric circulation. It is longer in a weaker circulation than stronger one. Soil initial condition perturbations can sustain from one month to two months.

中图分类号: 

[1]Cheng Huiyan,Wang Genxu,Wang Yibo,et al. Variations of soil temperature and water moisture of seasonal frozen soil with different vegetation coverages in the source region of the Yellow River,China[J]. Journal of Lanzhou University(Natural Sciences), 2008,44(2): 15-21.[程慧艳, 王根绪, 王一博, 等.黄河源区不同植被类型覆盖下季节冻土冻融过程中的土壤温湿空间变化[J]. 兰州大学学报:自然科学版, 2008, 44(2): 15-21.]

[2]Fan Ping, Wang Dexiang, Qi Ruying. Analysis on climatic feature and its change in source region of the Yellow River[J]. Journal of Qinghai University (Natural Sciences),2004, 22(1):19-24.[樊萍, 王得祥, 祁如英.黄河源区气候特征及其变化分析[J].青海大学学报:自然科学版,2004, 22(1): 19-24.]

[3]Gao Yanhong,Cheng Guodong,Shang Lunyu,et al. Application of atmospheric model coupled with frozen soil parameterization to simulation spring soil condition in the Qilian mountains[J]. Journal of Glaciology and Geocryology,2007,29(1): 82-90.[高艳红, 程国栋, 尚伦宇, 等. 耦合冻土方案的大气模式对祁连山区春季土壤状况的模拟[J].冰川冻土, 2007,29(1): 82-90.]

[4]Huang Ronghui, Wei Zhigang, Li Suosuo, et al. The interdecadal variations of climate and hydrology in the upper reach and source area of the Yellow River and their impact on water resources in North China[J]. Climatic and Environmental Research, 2006,11(3): 245-258.[黄荣辉, 韦志刚, 李锁锁, 等.黄河上游和源区气候、水文的年代际变化及其对华北水资源的影响[J]. 气候与环境研究, 2006,11(3): 245-258.]

[5]Shukla J, Mintz Y. Influence of land-surface evapotranspiration on the earth's climate[J]. Science, 1982, 215(4 539): 1 498.

[6]Yang Shengtian, Liu Changming.The method of calculating soil water in Yellow River Basin by remote sensing and the analysis of hydrologic cycle[J].Science in China(Series E), 2004,34(Suppl.):1-12.[杨胜天, 刘昌明.黄河流域土壤水分遥感计算及水循环过程分析[J].中国科学:E辑, 2004,34(增刊): 1-12.]

[7]Numaguti Atusi. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model[J]. Geophysical Research, 1999,(104): 1 957-1 972.

[8]You Xingtian,Xiong Tingnan,Yasunari T,et al. The impact of the ground wetness anomalies in spring on the climate of following months[J]. Chinese Journal of Atmospheric Sciences,2000,24(5): 660-668.[游性恬, 熊廷南, Yasunari T, 等. 春季亚洲地面湿度异常对月、季气候影响的模拟研究[J]. 大气科学, 2000,24(5): 660-668.]

[9]Ma Zhuguo,Wei Helin,Fu Congbin. Relationship between regional soil moisture variation and climatic variability over east China[J]. Acta Meteorologica Sinica,2000,58(3): 278-287.[马柱国, 魏和林, 符淙斌. 中国东部区域土壤湿度的变化及其与气候变率的关系[J]. 气象学报, 2000,58(3): 278-287.]

[10]Sun Chenghu,Li Weijing,Zhang Zuqiang,et al. Distribution and variation of soil humidity anomaly in HuaiHe river basin and its relationship with climatic anomaly[J]. Journal of Applied Meteorological Science, 2005,16(2): 129-138.[孙丞虎, 李维京, 张祖强, 等. 淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究[J]. 应用气象学报, 2005,16(2): 129-138.]

[11]Tang Maocang,Li Jie,Zhou Changchun. Review of climate prediction in 2007 based on di-qi map and precipitation prediction during Beijin Olympics[J]. Arid Meteorology, 2008,26(3): 72-75.[汤懋苍, 李洁, 周长春. 2007年地气图方法预测总结和北京奥运期间降水预测[J]. 干旱气象, 2008,26(3): 72-75.]

[12]Tang Maocang,Yin Jianhua,Cai Jieping. A statistical relationship between the field of soil temperature in winter and of the precipitation in spring and flood season[J]. Plateau Meteorology, 1986,5(1): 40-52.[汤懋苍, 尹建华, 蔡洁萍. 冬季地温分布与春、夏降水相关的统计分析[J]. 高原气象, 1986,5(1): 40-52.]

[13]Tang Maocang,Zhang Jian,Wang Jingxiang. A primary method for predicting rainfall amount of flood season by winter soil temperature[J].Plateau Meteorology, 1987,6(2): 150-160.[汤懋苍, 张建, 王敬香.用冬季地温预报汛期降水距平的初步方法[J]. 高原气象, 1987,6(2):150-160.]

[14]Wang Wanqiu. Numerical experiments of the soil temperature and moisture anomalies effects on the short term climate[J]. Chinese Journal of Atmospheric Sciences, 1991,15(5): 115-123.[王万秋. 土壤温湿异常对短期气候影响的数值模拟试验[J]. 大气科学, 1991,15(5): 115-123.]

[15]Gao Yanhong,Cheng Guodong. Several points on mass and energy interaction between land surface and atmosphere in the Heihe River Basin[J]. Advances in Earth Science,2008,23(7):779-784.[高艳红, 程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J]. 地球科学进展,2008,23(7):779-784.]

[16]Kang Hongwen,Gu Xiangqian,Fu Xiang,et al. Precipitation recycling over the northern China[J]. Quarterly Journal of Applied Meteorology, 2005,16(2): 139-147.[康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005,16(2): 139-147.]

[17]Yang Meixue,Yao Tandong,He Yuanqing,et al. The water cycles between land surface and atmosphere in northern part of Tibetan Plateau[J]. Scientia Geographica Sinica, 2002,22(1): 29-33.[杨梅学,姚檀栋,何元庆,等.藏北高原地气之间的水分循环[J]. 地理科学, 2002,22(1): 29-33.]

[18]Miao Chunyan,Zheng Xiuqing,Chen Junfeng. Soil temperature characteristics under different groundwater level during seasonal freezing-thawing period[J]. Chinese Agricultural Science Bulletin,2008,124(1):496-502.[苗春燕, 郑秀清, 陈军锋.季节性冻融期不同地下水位埋深下土壤温度变化特征[J].中国农学通报, 2008,124(1):496-502.]

[19]Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Monthly Weather Review, 2001, 129(4): 569-585.

[20]Chen F, Mitchell K, Schaake J, et al. Modeling of land surface evaporation by four schemes and comparison with FIFE observations[J]. Journal of Geophysical Research,1996,101(D3):7 251-7 268.

[21]Gao Y, Xue Y, Peng W, et al. Assessment of dynamic downscaling of China regional summer climate using regional climate model[J]. Advances in Atmospheric Sciences, 2011,doi: 10.1007/s00376-010-0039-7.

[22]Ding Yongjian,Ye Baisheng,Liu Shiyin,et al. Large-scale of permafrost hydrological monitoring over Tibetan Plateau[J]. Science Bulletin,2000,45(2): 208-214.[丁永建, 叶佰生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000,45(2): 208-214.]

[23]Brubaker K L, Dara E, Eagleson P. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1 077-1 089.

[24]Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694.

[25]Werth S, Guntner A. Calibration analysis for water storage variability of the global hydrological model WGHM[J]. Hydrology and Earth System Sciences, 2010, 14(1): 59-78.

[26]Zhang Na,Yu Guirui. Simulation and analysis of water balance for vegetation ecosystems on landscape scale[J]. Climatic and Environmental Research,2006,11(3): 425-440.[张娜, 于贵瑞. 景观植被生态系统水平衡模拟与分析[J].气候与环境研究,2006,11(3): 425-440.]

[27]Ma Yaoming, Yao Tandong, Wang Jiemin, et al. Experimental study of energy and water cycle in Tibetan Plateau—The progress introduction on the study of GAME/Tibet and CAMP/Tibet[J].Plateau Meteorology, 2006,25(2): 344-351.[马耀明, 姚檀栋, 王介民, 等.青藏高原能量和水循环试验研究——GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006,25(2): 344-351.]

[28]Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. The relationship between water vapor transport features of Tibetan Plateau-monsoon “large triangle”affecting region and drought-flood abnormality of China[J]. Acta Meteorologica Sinica, 2002, 60(3):257-266.[徐祥德,陶诗言,王继志,等.青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J]. 气象学报,2002, 60(3):257-266.]

[29]Huang Ronghui, Chen Jilong, Zhou Liantong, et al. Studies on the relationship between the severe climatic disasters in China and the East Asia climate system[J].Chinese Journal of Atmospheric Sciences, 2003,27(4):770-787.[黄荣辉, 陈际龙, 周连童,等.关于中国重大气候灾害与东亚气候系统之间关系的研究[J]. 大气科学,2003,27(4): 770-787.]

[30]Dirmeyer P, Brubaker K. Contrasting evaporative moisture sources during the drought of 1988 and the flood of 1993[J]. Journal of Geophysical Research,1999,104:19.

[31]Su F, Lettenmaier D P. Estimation of the surface water budget of the La Plata Basin[J]. Journal  Hydrometeor, 2009,10: 981-998.

[1] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[2] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[3] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[4] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[5] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[6] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[7] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[8] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[9] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[10] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[11] 李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.
[12] 文军,蓝永超,苏中波,田辉,史小康,张宇,王欣,刘蓉,张堂堂,康悦,吕少宁,张静辉. 黄河源区陆面过程观测和模拟研究进展[J]. 地球科学进展, 2011, 26(6): 575-586.
[13] 马耀明,姚檀栋,胡泽勇,王介民. 青藏高原能量与水循环国际合作研究的进展与展望[J]. 地球科学进展, 2009, 24(11): 1280-1284.
[14] 高艳红,程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J]. 地球科学进展, 2008, 23(7): 779-784.
[15] 段争虎. 土壤水研究在流域生态—水文过程中的作用、现状与方向[J]. 地球科学进展, 2008, 23(7): 682-684.
阅读次数
全文


摘要