Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (2): 115-123    DOI: 10.11867/j.issn.1001-8166.2019.02.0115
    
陆地水循环过程的综合集成与模拟
汤秋鸿1,2,刘星才1,李哲1,运晓博1,2,张学君1,于强1,李俊1,张永勇1,崔惠娟3,孙思奥4,张弛1,唐寅1,冷国勇5
1. 中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101
2. 中国科学院大学,北京100049
3. 中国科学院地理科学与资源研究所陆地表层格局与模拟重点实验室,北京 100101
4. 中国科学院地理科学与资源研究所区域可持续发展分析与模拟重点实验室,北京 100101
5. Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
Integrated Water Systems Model for Terrestrial Water Cycle Simulation
Qiuhong Tang1,2,Xingcai Liu1,Zhe Li1,Xiaobo Yun1,2,Xuejun Zhang1,Qiang Yu1,Jun Li1,Yongyong Zhang1,Huijuan Cui3,Siao Sun4,Chi Zhang1,Yin Tang1,Guoyong Leng5
1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2. University of Chinese Academy of Sciences,Beijing 100049, China
3. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
4. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
5. Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK
 全文: PDF(1249 KB)   HTML
摘要:

在气候变化与人类活动的影响下,陆地水循环过程发生了明显改变,并导致了一系列资源环境问题。深入认识陆地水循环过程的变化机理,发展陆地水循环过程综合集成模拟技术,预估未来陆地水循环的变化趋势,是当前水循环研究面临的重要任务。主要关注人类活动影响下的大尺度(大河流域或大陆尺度)陆地表层系统水循环模拟,梳理了近年来陆地水循环过程综合集成与模拟相关的研究进展,指出当前大尺度陆地表层系统水循环模拟模型的主要问题是对自然过程与人类活动过程间相互作用描述不足,以及人类活动参数化方案的不完善。因此,完善人类活动参数化方案,构建陆地水循环过程的综合集成模型,是模拟研究的重要发展方向之一。同时,考虑多要素过程的综合集成模型有助于解释气候变化与人类用水活动影响水循环变化的关键机制,为探索变化环境下陆地水循环变化成因及其效应提供理论与实践基础,其结果将为区域水资源配置及应对全球变化的战略决策提供科学依据。

关键词: 陆地水循环气候变化人类活动综合集成模型    
Abstract:

The terrestrial water cycle is influenced by a wide range of climatic variables and human disturbances. In the era of the Anthropocene, when humans drive the changes in atmospheric and hydrological processes in river basins, there is an urgent need to include human impacts in the study of the terrestrial water cycle. This paper focused on the large-scale hydrological modeling which takes account of human impacts, reviewed the research progress of the natural and human-induced changes in the terrestrial water cycle and the development of comprehensive terrestrial hydrological models in recent years, and proposed that an integrated water system model with human-related processes such as crop water demand model, engineering regulation and social water demand, be the key to large-scale water cycle simulations under changing environment. Based on the existing large-scale land surface hydrological model, there is a need to put forward the integration of the human-related processes. A comprehensive integrated water system model that considers multi-processes can help us to understand the key mechanisms of how climate change and human activity influence the regional water cycle. It also provides a theoretical and practical basis for investigating the causes and effects of changes in terrestrial water cycle under a changing environment, and thus offers scientific support for climate change adaptation in the water sector.

Key words: Terrestrial water cycle    Climate change    Human activities    Integrated water systems model.
收稿日期: 2018-09-25 出版日期: 2019-03-26
ZTFLH:  P339  
基金资助: 国家自然科学基金重点项目“陆地水循环过程的综合集成与模拟”(编号:41730645);国家杰出青年科学基金项目“陆地水循环变化与全球变化的关系”(编号: 41425002)资助.
作者简介: 汤秋鸿(1981-),男,湖南岳阳人,研究员,主要从事水文学研究.E-mail:tangqh@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
汤秋鸿
刘星才
李哲
运晓博
张学君
于强
李俊
张永勇
崔惠娟
孙思奥
张弛
唐寅
冷国勇

引用本文:

汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.

Qiuhong Tang,Xingcai Liu,Zhe Li,Xiaobo Yun,Xuejun Zhang,Qiang Yu,Jun Li,Yongyong Zhang,Huijuan Cui,Siao Sun,Chi Zhang,Yin Tang,Guoyong Leng. Integrated Water Systems Model for Terrestrial Water Cycle Simulation. Advances in Earth Science, 2019, 34(2): 115-123.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.02.0115        http://www.adearth.ac.cn/CN/Y2019/V34/I2/115

图1  陆地水循环过程的综合集成模型示意图 (据参考文献[57]修改)
1 Ding Yongjian , Zhou Chenghu , Shao Ming'an , et al . Studies of Earth surface processes: Progress and prospect [J]. Advances in Earth Science, 2013, 28(4):407-419.
1 丁永建, 周成虎, 邵明安,等 .地表过程研究进展与趋势[J].地球科学进展,2013, 28(4):407-419.
2 Oki T , Kanae S . Global hydrological cycles and world water resources [J]. Science, 2006, 313(5 790):1 068-1 072.
3 Montanari A , Bahr J , Bl?schl G , et al . Fifty years of water resources research: Legacy and perspectives for the science of hydrology [J]. Water Resources Research, 2015, 51(9): 6 797-6 803.
4 Liu J , Yang H , Gosling S N , et al . Water scarcity assessments in the past, present, and future [J]. Earth's Future, 2017, 5(6): 545-559.
5 Ministry of Water Resources . China Water Resources Bulletin 2015 [N]. China Water Resources News, 2017-06-26.
5 水利部 . 2015年中国水资源公报 [N]. 中国水利报,2017-06-26.
6 National Natural Science Foundation of China, Chinese Academy of Sciences . Disciplinary Development Strategy for China: Hydro Science and Engineering [M]. Beijing: Science Press, 2016.
6 国家自然科学基金委员会,中国科学院 .中国学科发展战略:水利科学与工程 [M].北京:科学出版社,2016.
7 Xia Jun , Liu Chunzhen , Ren Guoyu . Opportunities and challenges in the impact of climate change on water resources in China [J]. Advances in Earth Science, 2011,26 (1):1-12.
7 夏军, 刘春蓁, 任国玉 .气候变化对我国水资源影响研究面临的机遇与挑战 [J].地球科学进展, 2011,26(1):1-12.
8 Bruinsma J . World Agriculture: Towards 2015/2030: An FAO Perspective [M]. London:Earthscan Publication Ltd., 2003.
9 Wang Hao , Jia Yangwen , Yang Guiyu , et al . Comprehensive simulation of binary water cycle and its associated processes in Haihe River Basin [J]. Chinese Science Bulletin, 2013,58 (12): 1 064-1 077.
9 王浩, 贾仰文, 杨贵羽, 等 .海河流域二元水循环及其伴生过程综合模拟 [J].科学通报, 2013, 58(12):1 064-1 077.
10 Qin H , Cao G , Kristensen M , et al . Integrated hydrological modeling of the North China Plain and implications for sustainable water management [J]. Hydrology and Earth System Sciences, 2013, 17:3 759-3 778.
11 Tang Qiuhong , Huang Zhongwei , Liu Xingcai , et al . Impacts of human water use on the large-scale terrestrial water cycle [J]. Advances in Earth Science, 2015, 30(10): 1 091-1 099.
11 汤秋鸿,黄忠伟,刘星才,等 .人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10):1 091-1 099.
12 D?ll P , Siebert S . Global modeling of irrigation water requirements [J]. Water Resources Research, 2002, 38(4): 1 037.
13 Zhang Y , Xia J , Liang T , et al . Impact of water projects on river flow regimes and water quality in Huai River Basin [J]. Water Resources Management, 2010, 24(5): 889-908.
14 Ministry of Water Resources . 2015 Statistical Bulletin on China Water Activities[J].Water Conservancy Development Research, 2016, (3): 2-8.
14 水利部 . 2015年全国水利发展统计公报[J].水利发展研究, 2016, (3):2-8.
15 Yang X , Lu X . Drastic change in China's lakes and reservoirs over the past decades[J]. Scientific Report, 2014, 4: 6 041.
16 Nilsson C , Reidy C A , Dynesius M , et al . Fragmentation and flow regulation of the world’s large river systems [J]. Science, 2005, 308(5 720): 405-408.
17 Zhang Y , Xia J , Shao Q , et al . Experimental and simulation studies on the impact of sluice regulation on water quantity and quality processes[J]. Journal of Hydrologic Engineering, 2011, 17(4): 467-477.
18 Destouni G , Jaramillo F , Prieto C . Hydroclimatic shifts driven by human water use for food and energy production [J]. Nature Climate Change, 2013, 3(3): 213-217.
19 Hu Heping , Tang Qiuhong , Lei Zhidong , et al . Runoff-evaporation hydrological model for arid plain oasis, 1: The model structure [J]. Advance in Water Science, 2004, 15(2): 140-145.
19 胡和平,汤秋鸿,雷志栋,等 .干旱区平原绿洲散耗型水文模型——I模型结构[J].水科学进展, 2004, 15(2): 140-145.
20 Tang Qiuhong , Tian Fuqiang , Hu Heping . Runoff-evaporation hydrological model for arid plain oasis, 2: Applications of the model [J]. Advances in Water Science, 2004 ,15(2): 146-150.
20 汤秋鸿, 田富强,胡和平 .干旱区平原绿洲散耗型水文模型——Ⅱ模型应用[J]. 水科学进展, 2004, 15(2):146-150.
21 Tang Q , Leng G , Zhang X , et al . How the hydrologic adjustment may affect assessing climate change impacts on water? [C] //Impacts World 2013 Conference Proceedings. Potsdam: Potsdam Institute for Climate Impact Research, 2013.
22 Wang Hao , Wang Jianhua , Qin Dayong , et al . Theory and methodology of water resources assessment based on dualistic water cycle [J]. Journal of Hydraulic Engineering, 2006 ,37(12): 1 496-1 502.
22 王浩, 王建华,秦大庸,等 .基于二元水循环模式的水资源评价理论方法[J].水利学报, 2006,37(12):1 496-1 502.
23 Wang Hao , Yan Denghua , Jia Yangwen , et al . Subject system of modern hydrology and water resources and research frontiers and hot issues [J]. Advances in Water Science, 2010, 21 (4): 479-489.
23 王浩,严登华,贾仰文,等 .现代水文水资源学科体系及研究前沿和热点问题[J].水科学进展, 2010, 21(4):479-489.
24 Tang Q , Oki T , Kanae S , et al . Hydrological cycles change in the Yellow River Basin during the last half of the Twentieth century [J]. Journal of Climate, 2008, 21(8): 1 790-1 806.
25 Tang Q , Ge Q . Atlas of Environmental Risks Facing China Under Climate Change [M]. Singapore:Springer, 2018. DOI: 10.1007/978-981-10-4199-0.
doi: 10.1007/978-981-10-4199-0.
26 Zhang X , Tang Q , Zhang X , et al . Runoff sensitivity to global mean temperature change in the CMIP5 Models [J]. Geophysical Research Letters, 2015, 41(15):5 492-5 498.
27 Tang Q , Lettenmaier D P . 21st century runoff sensitivities of major global river basins[J]. Geophysical Research Letters, 2012, 39(6). DOI:10.1029/2011GL050834.
doi: 10.1029/2011GL050834.
28 Zhang X , Tang Q , Liu X , et al . Nonlinearity of runoff response to global mean temperature change over major global river basins[J]. Geophysical Research Letters, 2018, 45(12). DOI:10.1029/2018GL078646.
doi: 10.1029/2018GL078646.
29 Schewe J , Heinke J , Gerten D , et al . Multimodel assessment of water scarcity under climate change [J]. PNAS, 2014, 111(9): 3 245-3 250.
30 Betts R A , Boucher O , Collins M , et al . Projected increase in continental runoff due to plant responses to increasing carbon dioxide [J]. Nature, 2007, 448(7 157): 1 037.
31 Cao L , Bala G , Caldeira K , et al . Importance of carbon dioxide physiological forcing to future climate change [J]. PNAS, 2010, 107(21): 9 513-9 518.
32 Falloon P D , Dankers R , Betts R A , et al . Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model [J]. Biogeosciences, 2012, 9(11): 4 739-4 756.
33 Konzmann M , Gerten D , Heinke J . Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model [J]. Hydrological Sciences Journal, 2013, 58(1): 88-105.
34 Bosmans J H C , van Beek L P H , Sutanudjaja E H , et al . Hydrological impacts of global land cover change and human water use [J]. Hydrology and Earth System Sciences, 2017, 21(11): 5 603-5 626.
35 Sterling S M , Ducharne A , Polcher J . The impact of global land-cover change on the terrestrial water cycle [J]. Nature Climate Change, 2012, 3(4):385-390.
36 Cuo L , Zhang Y , Gao Y , et al . The impacts of climate change and land cover/use transition on the hydrology in the Upper Yellow River basin, China [J]. Journal of Hydrology, 2013, 502: 37-52.
37 Gordon L J , Steffen W , J?nsson B F , et al . Human modification of global water vapor flows from the land surface [J]. PNAS, 2005, 102(21):7 612-7 617.
38 Piao S , Friedlingstein P , Ciais P , et al . Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends [J]. PNAS, 2007, 104(39): 15 242-15 247.
39 Schmitz C , Biewald A , Lotze-Campen H , et al . Trading more food: Implications for land use, greenhouse gas emissions, and the food system[J]. Global Environmental Change, 2012, 22(1): 189-209.
40 Milly P C , Dunne K A , Vecchia A V . Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005, 438(7 066): 347-350.
41 Wang S , Zhang Z . Effects of climate change on water resources in China [J]. Climate Research, 2011, 47(1/2): 77-82.
42 Stocker T , Qin D , Plattner G , et al . IPCC, 2013: Summary for Policymakers in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, New York, USA: Cambridge University Press,2013.
43 Entekhabi D , Asrar G R , Betts A K , et al . An agenda for land surface hydrology research and a call for the second international hydrological decade [J]. Bulletin of the American Meteorological Society, 1999, 80(10): 2 043-2 056.
44 Fekete B M , V?r?smarty C J , Grabs W . High-resolution fields of global runoff combining observed river discharge and simulated water balances [J]. Global Biogeochemical Cycles, 2002, 16(3): 15.1-15.10.
45 Dirmeyer P A , Gao X , Zhao M , et al . GSWP-2: Multimodel analysis and implications for our perception of the land surface [J]. Bulletin of the American Meteorological Society, 2006, 87(10): 1 381-1 398.
46 Sheffield J , Goteti G , Wood E F . Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling [J]. Journal of Climate, 2006, 19(13): 3 088-3 111.
47 Qian T , Dai A , Trenberth K E , et al . Simulation of global land surface conditions from 1948 to 2004. part I: forcing data and evaluations[J]. Journal of Hydrometeorology, 2006, 7(5): 953-975.
48 Weedon G P , Gomes S , Viterbo P , et al . Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century[J]. Journal of Hydrometeorology, 2011, 12(5): 823-848.
49 Xie Z , Yuan F , Duan Q , et al . Regional parameter estimation of the VIC land surface model: Methodology and application to river basins in China [J]. Journal of Hydrometeorology, 2007, 8(3): 447-468.
50 Shi C X , Xie Z H , Qian H , et al . China land soil moisture EnKF data assimilation based on satellite remote sensing data [J]. Science China Earth Sciences, 2011, 54(9):1 430-1 440.
51 Shen Y , Zhao P , Pan Y , et al . A high spatiotemporal gauge-satellite merged precipitation analysis over China [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 3 063-3 075.
52 Chen Y , Yang K , He J , et al . Improving land surface temperature modeling for dry land of China[J]. Journal of Geophysical Research, 2011, 116. DOI: 10.1029/2011JD015921.
doi: 10.1029/2011JD015921.
53 Zhang X , Tang Q , Pan M , et al . A long-term land surface hydrologic fluxes and states dataset for China[J]. Journal of Hydrometeorology, 2014, 15(5): 2 067-2 084.
54 Wu Shaohong , Zhao Yan , Tang Qiuhong , et al . Land surface pattern study under the framework of Future Earth [J]. Progress in Geography, 2015, 34 (1): 10-17.
54 吴绍洪, 赵艳,汤秋鸿,等 .面向“未来地球”计划的陆地表层格局研究 [J].地理科学进展, 2015, 34(1):10-17.
55 Warszawski L , Frieler K , Huber V , et al . The Intersectoral Impact Model Intercomparison Project (ISI-MIP):Project framework [J]. PNAS, 2014, 111(9): 3 228-3 232.
56 Tang Q , Oki T , Kanae S . A Distributed Biosphere Hydrological Model (DBHM) for large river basin [J]. Annual Journal of Hydraulic Engineering, 2006, 50: 37-42.
57 Tang Q , Oki T . Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts [M]. Hoboken, New Jersey: John Wiley & Sons, 2016.
58 Wang G Q , Zhang J Y , Jin J L , et al . Assessing water resources in China using PRECIS projections and a VIC model [J]. Hydrology and Earth System Sciences, 2012, 16(1): 231-240.
59 Yang D , Li C , Hu H , et al . Analysis of water resources variability in the Yellow River of China during the last half century using historical data [J]. Water Resources Research, 2004, 40(6).DOI: 10.1029/2003WR002763.
doi: 10.1029/2003WR002763.
60 Dan L , Ji J , Xie Z , et al . Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment [J]. Journal of Geophysical Research, 2012, 117.DOI: 10.1029/2011JD017131.
doi: 10.1029/2011JD017131.
61 Yin Y , Tang Q , Liu X , et al . Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River Basin [J]. Hydrology and Earth System Sciences, 2017, 21: 791-804.
62 Liu Changming , Wang Zhonggen , Zheng Hongxing , et al . Development and application of HIMS system and its customization model [J]. Science in China (Series E), 2008, 38 (3): 350-360.
62 刘昌明,王中根,郑红星,等 .HIMS系统及其定制模型的开发与应用[J].中国科学:E辑, 2008, 38(3): 350-360.
63 Zhang Jianyun , Wang Guoqing , He Ruimin , et al . Variation trends of runoffs in the Middle Yellow River basin and its response to climate change [J]. Advances in Water Science, 2009, 20 (2): 153-158.
63 张建云,王国庆,贺瑞敏,等 .黄河中游水文变化趋势及其对气候变化的响应[J].水科学进展, 2009, 20(2):153-158.
64 Haddeland I , Heinke J , Biemans H , et al . Global water resources affected by human interventions and climate change [J]. PNAS, 2014, 111(9): 3 251-3 256.
65 Troch P A , Martinez G F , Pauwels V R N , et al . Climate and vegetation water use efficiency at catchment scales [J]. Hydrological Processes, 2009, 23(16): 2 409-2 414.
66 Friend A D , Lucht W , Rademacher T T , et al . Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 [J]. PNAS, 2014, 111(9): 3 280-3 285.
67 Yin Y , Tang Q , Liu X . A multi-model analysis of change in potential yield of major crops in China under climate change [J]. Earth System Dynamics, 2015, 6(1): 45-59.
68 Yin Y , Tang Q , Wang L , et al . Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China [J]. Scientific Reports, 2016, 6: 20905.
69 Wada Y , Bierkens M F P , de Roo A , et al . Human-water interface in hydrological modelling: Current status and future directions[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4 169-4 193.
70 Shen Y , Oki T , Utsumi N , et al . Projection of future world water resources under SRES scenarios: Water withdrawal [J]. Hydrological Sciences Journal, 2008, 53(1): 11-33.
71 Tang Q , Rosenberg E A , Lettenmaier D P . Use of satellite data to assess the impacts of irrigation withdrawals on Upper Klamath Lake, Oregon [J]. Hydrology and Earth System Sciences, 2009, 13(5): 617-627.
72 Jia Yangwen , Wang Hao , Ni Guangheng , et al . Principles and Practice of Distributed Basin Hydrological Model [M]. Beijing: China Water Power Press,2005.
72 贾仰文,王浩,倪广恒,等 .分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
73 Levis S , Bonan G B , Kluzek E , et al . Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal influences on land-atmosphere fluxes [J]. Journal of Climate, 2012, 25(14): 4 839-4 859.
74 Leng G , Huang M , Tang Q , et al . Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: Sensitivity to input data and model parameters [J]. Journal of Geophysical Research, 2013, 118(17): 9 789-9 803.
75 Leng G , Huang M , Tang Q , et al . Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States [J]. Journal of Hydrometeorology, 2014, 15(3): 957-972.
76 Wada Y , Wisser D , Eisner S , et al . Multimodel projections and uncertainties of irrigation water demand under climate change [J]. Geophysical Research Letters, 2013, 40(17): 4 626-4 632.
77 Tang Y , Tang Q , Tian F , et al . Responses of natural runoff to recent climatic variations in the Yellow River Basin, China [J]. Hydrology and Earth System Sciences, 2013, 17(11): 4 471-4 480.
78 Liu X , Zhang X J , Tang Q , et al . Effects of surface wind speed decline on modeled hydrological conditions in China [J]. Hydrology and Earth System Sciences, 2014, 18(8): 2 803-2 813.
79 Lobell D , Bala G , Mirin A , et al . Regional differences in the influence of irrigation on climate[J]. Journal of Climate, 2009, 22: 2 248-2 255.
80 Tang Q , Oki T , Kanae S , et al . The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation [J]. Journal of Hydrometeorology, 2007, 22(8): 499-512.
81 Hanasaki N , Kanae S , Oki T , et al . An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing [J]. Hydrology and Earth System Sciences, 2008, 12(4): 1 007-1 025.
82 Pokhrel Y , Hanasaki N , Koirala S , et al . Incorporating anthropogenic water regulation modules into a land surface model [J]. Journal of Hydrometeorology, 2012, 13(1): 255-269.
83 Davie J C S , Falloon P D , Kahana R , et al . Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP [J]. Earth System Dynamics, 2013, 4(2): 359-374.
84 Liu X , Tang Q , Cui H , et al . Multimodel uncertainty changes in simulated river flows induced by human impact parameterizations [J]. Environmental Research Letters, 2017, 12(2):025009.
85 Zhang C , Tang Q , Chen D . Recent changes in the moisture source of precipitation over the Tibetan Plateau [J]. Journal of Climate, 2017, 30(5): 1 807-1 819.
86 Zhang C , Tang Q , Chen D , et al . Tracing changes in atmospheric moisture supply to the drying Southwest China [J]. Atmospheric Chemistry and Physics, 2017, 17(17):10 383-10 393.
87 Liu X , Tang Q , Voisin N , et al . Projected impacts of climate change on hydropower potential in China [J]. Hydrology and Earth System Sciences, 2016, 20(8): 3 343-3 359.
88 D'Odorico P , Daris K F , Rosa L , et al . The global food-energy-water nexus [J]. Reviews of Geophysics, 2018, 56. DOI:10.1029/2017RG000591.
doi: 10.1029/2017RG000591.
89 Wang L , Koike T , Yang K , et al . Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99) [J]. Journal of Geophysical Research, 2009, 114(D8).DOI:10.1029/2008JD010800.
doi: 10.1029/2008JD010800.
90 Veldkamp T I E , Zhao F , Ward P J , et al . Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: A multi-model validation study [J]. Environmental Research Letters, 2018, 13(5): 055008.
91 Nazemi A , Wheater H S . On inclusion of water resource management in Earth system models—Part 1: Problem definition and representation of water demand [J]. Hydrology and Earth System Sciences, 2015, 19(1): 33-61.
92 Coerver H M , Rutten M M , van de Giesen N C . Deduction of reservoir operating rules for application in global hydrological models[J]. Hydrology and Earth System Sciences, 2018, 22(1): 831-851.
93 Hanasaki N , Fujimori S , Yamamoto T , et al . A global water scarcity assessment under Shared Socio-economic Pathways-Part 1: Water use [J]. Hydrology and Earth System Sciences, 2013, 17(7): 2 375-2 391.
94 Wada Y , Fl?rke M , Hanasaki N , et al . Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches [J]. Geoscientific Model Development, 2016, 9(1): 175-222.
95 Nazemi A , Wheater H S . On inclusion of water resource management in Earth system models—Part 2: Representation of water supply and allocation and opportunities for improved modeling[J]. Hydrology and Earth System Sciences, 2015, 19(1): 63-90.
96 Voisin N , Liu L , Hejazi M , et al . One-way coupling of an integrated assessment model and a water resources model: Evaluation and implications of future changes over the US Midwest [J]. Hydrology and Earth System Sciences, 2013, 17(11): 4 555-4 575.
97 Giorgi F , Gao X J . Regional Earth system modeling: Review and future directions [J]. Atmospheric and Oceanic Science Letters, 2018, 11(2): 189-197.
98 Pal J S , Giorgi F , Bi X , et al . Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET[J]. Bulletin of the American Meteorological Society, 2007, 88(9): 1 395-1 410.
99 Tang Qiuhong , Zhang Xuejun , Qi Youcun , et al . Remote sensing of the terrestrial water cycle: Progress and perspectives[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 872-1 884.
99 汤秋鸿,张学君,戚友存,等 .遥感陆地水循环的进展与展望[J].武汉大学学报:信息科学版, 2018, 43(12): 1 872-1 884.
[1] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[2] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[3] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
[4] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[5] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[6] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[7] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析*[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[8] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[9] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战*[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[10] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[11] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[12] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[13] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[14] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[15] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.