地球科学进展 ›› 2019, Vol. 34 ›› Issue (2): 124 -139. doi: 10.11867/j.issn.1001-8166.2019.02.0124

上一篇    下一篇

大气硝酸盐中氮氧稳定同位素研究进展
秦瑞( ),史贵涛 *( ),陈振楼   
  1. 1. 华东师范大学地理科学学院,地理信息科学教育部重点实验室,上海 200241
  • 收稿日期:2018-08-23 修回日期:2018-12-20 出版日期:2019-02-10
  • 通讯作者: 史贵涛 E-mail:843128305@qq.com;gtshi@geo.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金项目“东南极冰盖中山站至昆仑站断面雪层中NO 3 - 的沉积后机制研究:δ15N、δ18O和Δ17O证据”(编号:41576190)资助.

Review of the Study on the Stable Isotopes of Nitrogen and Oxygen in Atmospheric Nitrate

Rui Qin( ),Guitao Shi *( ),Zhenlou Chen   

  1. 1. Key Laboratory of Geographic Information Science Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
  • Received:2018-08-23 Revised:2018-12-20 Online:2019-02-10 Published:2019-03-26
  • Contact: Guitao Shi E-mail:843128305@qq.com;gtshi@geo.ecnu.edu.cn
  • About author:Qin Rui(1991-), female, Lankao City, Henan Province, Master student. Research areas include stable isotope in environment. E-mail:843128305@qq.com|Shi Guitao (1982-), male, Zaozhuang City, Shandong Province, Professor. Research areas include polar environment. E-mail: gtshi@geo.ecnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Investigating mechanisms of post-depositional processing of nitrate in the snowpack on the traverse from coastal Zhongshan station to inland Kunlun station, East Antarctica: Evidence of δ15N, δ18O and Δ17O”(No. 41576190);Project supported by the National Natural Science Foundation of China “Investigating mechanisms of post-depositional processing of nitrate in the snowpack on the traverse from coastal Zhongshan station to inland Kunlun station, East Antarctica: Evidence of δ15N, δ18O and Δ17O” (No. 41576190).

受人类活动和工农业快速发展的影响,大气硝酸盐(NO 3 - )污染越来越严重且已成为世界范围内的环境问题之一。探究大气NO 3 - 的稳定同位素组成(δ15N,δ18O和Δ17O),可以为深入理解大气氮循环、有效控制大气NO 3 - 污染提供有力依据。综述了目前大气NO 3 - 不同来源NOx的δ15N值、NO 3 - 的δ15N季节变化特征及主要影响因素,总结了大气中不同氧化剂的δ18O值和Δ17O值,归纳了全球范围内部分大气NO 3 - 中δ18O值和Δ17O值的时空分布特征及可能影响因素,回顾了NO 3 - 同位素分析测试技术的主要进展,在前期工作基础上提出未来大气NO 3 - 稳定同位素研究应更多关注NO 3 - 的氧化生成机制(不同类型氧化剂同位素组成时空差异)、不同NOx来源的δ15N组成、借助化学模型开展大气NO 3 - 循环过程等方面的研究。

Due to the emissions from intensive human activities and rapid development of industry and agriculture, atmospheric nitrate (NO 3 - ) contamination is becoming more serious and now is a worldwide environmental problem. The isotopic compositions of NO 3 - 15N, δ18O and Δ17O) can deliver more information than the concentration alone, i.e., the nitrogen and oxygen isotopes can suggest the sources of NO 3 - and oxidation capability of the atmosphere, providing a powerful tool for investigating atmospheric nitrogen cycling and atmospheric NO 3 - pollution control. The δ15N of different sourced NO 3 - in the atmosphere, as well as the seasonal variation of δ15N (NO 3 - ) and the associated mechanisms were reviewed. In addition, the oxygen isotopes of various oxidants and NO 3 - 18O and Δ17O) in the atmosphere were summarized, and the global distribution patterns of the oxygen isotopes of NO 3 - were discussed. Lastly, the available analysis techniques of isotopic compositions of NO 3 - were reviewed. Based on the research progress of NO 3 - isotopes in the atmosphere, it was suggested that further investigations should focus on measuring the isotopic compositions of oxidants and NOx from different sources, characterizing the production mechanisms of NO 3 - , as well as investigating chemical recycling between NOx and NO 3 - with the aid of atmospheric chemical models.

中图分类号: 

表1 不同来源 NOxδ15N
Table 1 The δ 15N values of NOx from different sources
表2 不同氧化剂的 δ18O值和 Δ17O
Table 2 The δ 18O and Δ 17O values of different oxidants
氧化剂种类 δ18O/ Δ17O/ 研究方法与原理 研究区域或方式 参考文献
O3 24.9 利用NO 2 - 涂层,O3+NO 2 - →O2+ NO 3 - DomeC [ 67 ]
95.2 34.3 数据插值模拟 实验室模拟 [ 14 ]
115.0 23.0, 26.0 利用NO 2 - 涂层,O3+NO 2 - →O2+ NO 3 - 50°S~50°N [ 68 , 69 ]
75.0~85.0 32.0~37.0 利用NO 2 - 涂层,O3+NO 2 - →O2+ NO 3 - 美国加利福尼亚 [ 70 ]
38.0 光化学平衡模型模拟 中纬度对流层 [ 66 ]
109.0 26.0 低温试验法,T=-218 ,O3+Xe→O2+O 美国对流层 [ 71 ]
117.0 25.0 低温试验法,T=-218 ,O3+Xe→O2+O 德国海德堡市 [ 72 ]
90.0 32.0 放电O3→O2+O,质谱仪分析 实验室实验 [ 73 ]
O2 23.2 -0.4 盒子模型预测 实验室模型预测 [ 74 ]
23.4 -0.5

基于GC色谱柱提取纯化空气中O2后,

MAT253分析

全球尺度 [ 74 ]
23.9 -0.5 CoF3+H2O→O2,多接口质谱分析 实验室校正实验 [ 75 ]
23.9 -0.5 CoF3+H2O→O2,多接口质谱分析 实验室实验 [ 76 ]
23.5 -0.3 O2+BrF5→O2+其他,MAT251分析 实验室实验 [ 77 ]
23.8 CO2 ? H2O (H2+O2),质谱仪分析 [ 78 ]
23.5 O2→CO2 ? H2O,质谱仪分析 [ 79 ]
OH -40.0~-60.2 (凝聚相) 0.0 模拟假设δ18O (OH)=δ18O (H2O) 南极高原 [ 50 ]
-69.1~-81.3 (气相) 0.0 模拟假设δ18O (OH)=δ18O (H2O)(v) 南极高原 [ 50 ]
<-50.0 0.0 模拟假设δ18O (OH)=δ18O (H2O) 北极对流层 [ 80 ]
RO2 0.0 美国普罗维登斯 [ 45 ]
0.0 北半球地方 [ 81 ]
BrO 30.0~42.0 Br+O3→BrO+O2,理论计算 北极加拿大阿勒特 [ 16 ]
44.0 边界层大气,蒙特卡洛算法 北极阿勒特北部海岸 [ 82 ]
图1 大气中δ18O-NO 3 - 纬度梯度分布情况[ 13 , 16 , 31 , 32 , 33 , 34 , 50 , 58 , 85 , 86 , 88 , 95 , 96 , 97 , 98 , 99 ]
Fig.1 The distributions of δ18O-NO 3 - of the atmosphere in different latitudes [ 13 , 16 , 31 , 32 , 33 , 34 , 50 , 58 , 85 , 86 , 88 , 95 , 96 , 97 , 98 , 99 ]
图2 大气中Δ17O-NO 3 - 纬度梯度分布情况[ 13 , 16 , 31 , 32 , 33 , 34 , 50 , 58 , 60 , 67 , 85 , 88 , 94 , 95 , 97 , 98 , 106 , 108 ]
Fig.2 The distributions of Δ17O-NO 3 - of the atmosphere in different latitudes [ 13 , 16 , 31 , 32 , 33 , 34 , 50 , 58 , 60 , 67 , 85 , 88 , 94 , 95 , 97 , 98 , 106 , 108 ]
1 Savard M M , Cole A , Vet R , et al . The Δ17O and δ18O values of simultaneously collected atmospheric nitrates from anthropogenic sources—Implications for polluted air masses[J]. Atmospheric Chemistry and Physics, 2018, 18: 10 373-10 389.
2 Lu Fang . Atmospheric nitrogen oxides impact on the ecological environment[J]. Journal of Qinghai Normal University(Natural Science Edition), 2006, (3): 87-89.
卢芳 . 大气中氮氧化物对生态环境的影响[J]. 青海师范大学学报:自然科学版, 2006, (3): 87-89.
3 Deng Junjun , Wang Tijian , Li Shu , et al . Study on atmospheric nitrogen oxidant and deposition flux in suburban of Nanjing [J]. Scientia Meteorologica Snica, 2009, 29(1):25-30.
邓君俊, 王体健, 李树, 等 . 南京郊区大气氮化物浓度和氮沉降通量的研究[J]. 气象科学, 2009, 29(1):25-30.
4 Yin Dezhong , Xiao Yingkai . Progress in isotopic measurement of N and O in nitrate and their geological signficance[J]. Journal of Salt Lake Research, 1999, 7(1):61-66.
尹德忠, 肖应凯 . 硝酸盐中氮和氧同位素比值的测定及其地质意义[J]. 盐湖研究, 1999, 7(1):61-66.
5 Guo Linzhen , Xue Dongmei , Wang Zhongliang . Research progress of stable isotopes of nitrogen and oxygen in nitrate of surface water[J]. Journal of Anhui Agricultural Science, 2016, 44(10): 57-59,91.
郭林臻, 薛冬梅, 王中良 . 地表水硝酸盐的氮·氧稳定同位素研究进展[J].安徽农业科学, 2016, 44(10): 57-59,91.
6 Urey H C . The thermodynamic properties of isotopic substances [J]. Journal of the Chemical Society, 1947, 85: 562-581.
7 Matsuhisa Y , Goldsmith J R , Clayton R N . Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar[J]. Geochimica et Cosmochimica Acta, 1978, 42(2):173-182.
8 Meijer H A J , Li W J . The use of electrolysis for accurate δ17O and δ18O isotope measurements in water [J]. Isotopes in Environmental & Health Studies, 1998, 34(4):349-369.
9 Luz B , Barkan E . The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry [J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1 099-1 110.
10 Thiemens M H , Rd H J . The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications[J]. Science, 1983, 219(4 588):1 073-1 075.
11 Thiemens M H , Savarino J , Farquhar J , et al . ChemInform abstract: Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications[J]. Accounts of Chemical Research, 2001, 34(8):645-652.
12 Thiemens M H . Mass-independent isotope effects in planetary atmospheres and the early solar system[J]. Science, 1999, 283(5 400):341-345.
13 Michalski G , Scott Z , Kabiling M , et al . First measurements and modeling of Δ17O in atmospheric nitrate [J]. Geophysical Research Letters, 2003, 30(16): ASC 14-1.
14 Michalski G , Bhattacharya S K , Girsch G . NOx cycle and tropospheric ozone isotope anomaly: An experimental investigation[J]. Atmospheric Chemistry & Physics, 2014, 14(10):9 443-9 483.
15 Morino Y , Kondo Y , Takegawa N , et al . Partitioning of HNO3, and particulate nitrate over Tokyo: Effect of vertical mixing[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D15215): 1-19.
16 Morin S , Savarino J , Bekki S , et al . Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry & Physics, 2007, 7(5):1 451-1 469.
17 Platt U , H?nninger G . The role of halogen species in the troposphere[J]. Chemosphere, 2003, 52(2):325-338.
18 Yue Fujun , Li Siliang , Liu Congqiang , et al . Measurment of waters nitrate dual isotopes based on denitrifier method [J]. Chinese of Journal Ecology, 2012, 31(8):2 152-2 157.
岳甫均,李思亮,刘丛强,等 .利用反硝化细菌法测试水体硝酸盐氮氧同位素[J].生态学杂志,2012, 31(8):2 152-2 157.
19 Felix J D , Elliott E M . Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures[J]. Atmospheric Environment, 2014, 92:359-366.
20 Redling K , Elliott E , Bain D , et al . Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NOx, using stable isotopes and plant biomonitors [J]. Biogeochemistry, 2013, 116(1/3):261-274.
21 Ammann M , Siegwolf R , Pichlmayer F , et al . Estimating the uptake of traffic-derived NO2, from 15N abundance in Norway spruce needles [J]. Oecologia, 1999, 118(2):124-131.
22 Miller D J , Wojtal P K , Clark S C , et al . Vehicle NOx emission plume isotopic signatures: Spatial variability across the eastern United States[J]. Journal of Geophysical Research Atmospheres, 2017, 122(8): 4 698-4 717.
23 Heaton T H E . 15N/14N ratios of NOx from vehicle engines and coal-fired power stations [J]. Tellus, 1990, 42(3):304-307.
24 Felix J D , Elliott E M . The agricultural history of human-nitrogen interactions as recorded in ice core δ15N-NO 3 - [J]. Geophysical Research Letters, 2013, 40(8):1 642-1 646.
25 Li D , Wang X . Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application[J]. Atmospheric Environment, 2008, 42(19):4 747-4 754.
26 Yu Z , Elliott E M . A novel method for nitrogen isotopic analysis of soil-emitted Nitric Oxide (NO)[J]. Environmental Science & Technology, 2017, 51(11):6 268-6 278.
27 Fibiger D L , Hastings M G . First measurements of the nitrogen isotopic composition of NOx from biomass burning [J]. Environmental & Science Technology, 2016, 50(21):11 569-11 574.
28 Hastings M G . Evaluating source, chemistry and climate change based upon the isotopic composition of nitrate in ice cores[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2010, 9(1): 012002.
29 Wassenaar L I . Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO 3 - [J]. Applied Geochemistry, 1994, 10(4):391-405.
30 Hoering T . The isotope composition of the ammonia and nitrate ion in rain [J]. Geochimica et Cosmochimica Acta, 1958, 12(1):97-102.
31 Savarino J , Kaiser J , Morin S , et al . Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica[J]. Atmospheric Chemistry & Physics, 2006, 7(8):1 925-1 945.
32 Morin S , Savarino J , Frey M M , et al . Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D05303): 1-19.
33 Frey M M , Savarino J , Morin S , et al . Photolysis imprint in the nitrate stable isotope signal in snow and atmosphere of East Antarctica and implications for reactive nitrogen cycling[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(3):8 681-8 696.
34 Savarino J , Morin S , Erbland J , et al . Isotopic composition of atmospheric nitrate in a tropical marine boundary layer [J]. Proceeding of the National Academy of Science, 2013, 110(44):17 668-17 673.
35 Traversi R , Becagli S , Brogioni M , et al . Multi-year record of atmospheric and snow surface nitrate in the central Antarctic plateau[J]. Chemosphere, 2017, 172:341-354.
36 Reis S , Pinder R W , Zhang M , et al . Reactive nitrogen in atmospheric emission inventories[J]. Atmospheric Chemistry & Physics Discussions, 2009, 9(3):7 657-7 677.
37 Logan J A . Nitrogen oxides in the troposphere: Global and regional budgets[J]. Journal of Geophysical Research Oceans, 1983, 88(C15):10 785-10 807.
38 Moore H . Isotopic measurement of atmospheric nitrogen compounds[J]. Tellus Series B—Chemical & Physical Meteorology, 1974, 26(1/2):169-174.
39 Moore H . The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere[J]. Atmospheric Environment, 1977, 11(12):12 39-1 243.
40 Freyer H D . Seasonal trends of NH 4 + and NO 3 - nitrogen isotope composition in rain collected at Jülich, Germany [J]. Tellus Series B—Chemical & Physical Meteorology, 1978, 30(1):83-92.
41 Freyer H D . Seasonal variation of 15N/14N ratios in atmospheric nitrate species[J]. Tellus Series B—Chemical & Physical Meteorology, 1991, 43(1):30-44.
42 Heaton T H E . 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa [J]. Atmospheric Environment, 1987, 21(4):843-852.
43 Kawashima H , Kurahashi T . Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo, Japan: Implications for nitrogen sources[J]. Atmospheric Environment, 2011, 45(35):6 309-6 316.
44 Xiao Hongwei , Xiao Huayun , Long Aimin , et al . Tracing the sources and chemical processes of nitrates in atmospheric aerosols in the south China sea using nitrogen and oxygen isotopes [J]. Journal of Jilin University (Earth Science Edition), 2015, 45(Suppl.1): 1 512.
肖红伟, 肖化云, 龙爱民,等 .氮氧同位素示踪南海大气气溶胶硝酸盐的来源和化学过程[J].吉林大学学报:地球科学版, 2015, 45(增刊1): 1 512.
45 Dahal B , Hastings M G . Technical considerations for the use of passive samplers to quantify the isotopic composition of NOx and NO2, using the denitrifier method[J]. Atmospheric Environment, 2016, 143:60-66.
46 Li Qinkai , Li Xiaodong , Yang Zhou , et al . Nitrogen and oxygen isotopic tracer of nitrate sources in airborne particulate PM (2.5) in Guiyang City[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2017, 36(Suppl.):1.
李亲凯,李晓东,杨周,等 . 贵阳市大气颗粒物PM (2.5)中硝酸盐来源的氮氧同位素示踪研究[J]. 矿物岩石地球化学通报, 2017, 36(增刊):1.
47 Yeatman S G , Spokes L J , Dennis P F , et al . Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites [J]. Atmospheric Environment, 2001, 35(7):1 307-1 320.
48 Wagenbach D , Legrand M , Fischer H , et al . Atmospheric near-surface nitrate at coastal Antarctic sites[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D9):11 007-11 020.
49 Pitts M C , Thomason L W , Poole L R , et al . Characterization of Polar Stratospheric Clouds with spaceborne lidar: CALIPSO and the 2006 Antarctic season[J]. Atmospheric Chemistry & Physics, 2007, 7(19):5 207-5 228.
50 Shi G , Buffen A M , Ma H , et al . Distinguishing summertime atmospheric production of nitrate across the East Antarctic Ice Sheet[J]. Geochimica et Cosmochimica Acta, 2018, 231:1-14.
51 Mulvaney R , Wagenbach D , Wolff E W . Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica[J]. Journal of Geophysical Research Atmospheres, 1998, 103(D9):11 021-11 031.
52 Wolff E W , Jones A E , Bauguitte S J B , et al . The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements[J]. Atmospheric Chemistry & Physics, 2008, 8(18):5 627-5 634.
53 Grilli R , Legrand M , Kukui A , et al . First investigations of IO, BrO, and NO2 summer atmospheric levels at a coastal East Antarctic site using mode-locked cavity enhanced absorption spectroscopy[J]. Geophysical Research Letters, 2013, 40(4):791-796.
54 Shi G , Buffen A M , Hastings M G , et al . Investigation of post-depositional processing of nitrate in East Antarctic snow: Isotopic constraints on photolytic loss, re-oxidation, and source inputs[J]. Atmospheric Chemistry & Physics, 2015, 15(16):9 435-9 453.
55 Freyer H D , Kobel K , Delmas R J , et al . First results of 15N/14N ratios in nitrate from alpine and polar ice cores[J]. Tellus Series B—Chemical & Physical Meteorology, 1996, 48(1):93-105.
56 Lee H M , Henze D K , Alexander B , et al . Investigatting the sensitivity of surface-level nitrate seasonality in Antarctica to primary sources using a global model [J]. Atmospheric Environment, 2014, 89(2):757-767.
57 Thomas B , Floch G L , Hans-Werner J , et al . Isotopic view on nitrate loss in Antarctic surface snow[J]. Geophysical Research Letters, 2005, 32(32):313-320.
58 Erbland J , Vicars W C , Savarino J , et al . Air-snow transfer of nitrate on the East Antarctic Plateau—Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium[J]. Atmospheric Chemistry & Physics, 2013, 13(13):6 403-6 419.
59 Berhanu T A , Savarino J , Erbland J , et al . Isotopic effects of nitrate photochemistry in snow: A field study at Dome C, Antarctica [J]. Atmospheric Chemistry & Physics, 2015, 14(23):33 045-33 088.
60 Morin S , Savarino J , Frey M M , et al . Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate [J]. Science, 2008, 322(5 902):730-732.
61 Jarvis J C , Hastings M G , Steig E J , et al . Isotopic ratios in gas-phase HNO3 and snow nitrate at Summit, Greenland [J]. Journal of Geophysical Research Atmospheres, 2009, 114(D17301): 1-14.
62 Fibiger D L , Hastings M G , Dibb J E , et al . The preservation of atmospheric nitrate in snow at Summit, Greenland [J]. Geophysical Research Letters, 2013, 40(13):3 484-3 489.
63 Hastings M G , Steig E J , Sigman D M . Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D20306): 1-11.
64 Fibiger D L , Dibb J E , Chen D , et al . Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9):5 010-5 030.
65 Thiemens M H . History and applications of mass-independent isotope effects [J]. Annual Review of Earth & Planetary Sciences, 2006, 34(1):217-262.
66 Lyons J R . Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere [J]. Geophysical Research Letters, 2001, 28(17):3 231-3 234.
67 Savarino J , Vicars W C , Legrand M , et al . Oxygen isotope mass balance of atmospheric nitrate at Dome, East Antarctica, during the OPALE campaign[J]. Atmospheric Chemistry & Physics, 2016, 15(17): 2 659-2 673.
68 Vicars W C , Bhattacharya S K , Erbland J , et al . Measurement of the 17O-excess (Δ17O) of tropospheric ozone using a nitrite-coated filter [J]. Rapid Commun Mass Spectrom, 2012, 26(10):1 219-1 231.
69 Vicars W C , Savarino J . Quantitative constraints on the 17O-excess (Δ17O) signature of surface ozone: Ambient measurements from 50°N to 50°S using the nitrite-coated filter technique [J]. Geochimica et Cosmochimica Acta, 2014, (135):270-287.
70 Michalski G , Bhattacharya S K . The role of symmetry in the mass independent isotope effect in ozone [J]. Biochemical Society Transactions, 2009, 106(14):5 493-5 496.
71 Johnston J C , Thiemens M H . The isotopic composition of tropospheric ozone in three environments [J]. Journal of Geophysical Research Atmospheres, 1997, 102(D21):25 395-25 404.
72 Krankowsky D , Bartecki F , Klees G G , et al . Measurement of heavy isotope enrichment in tropospheric ozone [J]. Geophysical Research Letters, 1995, 22(13):1 713-1 716.
73 Morton J , Barnes J , Schueler B , et al . Laboratory studies of heavy ozone[J]. Journal of Geophysical Research Atmospheres, 1990, 95(D1):901-907.
74 Young E D , Yeung L Y , Kohl I E . On the Δ17O budget of atmospheric O2 [J]. Geochimica et Cosmochimica Acta, 2014, 135:102-125.
75 Barkan E , Luz B . The relationships among the three stable isotopes of oxygen in air, seawater and marine photosynthesis [J]. Rapid Communications in Mass Spectrometry, 2011, 25(16):2 367.
76 Barkan E , Luz B . High precision measurements of 17O/16O and 18O/16O ratios in H2O [J]. Rapid Communications in Mass Spectrometry, 2005, 19(24):3 737-3 742.
77 Thiemens M H , Jackson T , Zipf E C , et al . Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere [J]. Science, 1995, 270(5 238):969-972.
78 Horibe Y , Shigehara K , Takakuwa Y . Isotope separation factor of carbon dioxide-water system and isotopic composition of atmospheric oxygen [J]. Journal of Geophysical Research, 1973, 78(15):2 625-2 629.
79 Kroopnick P , Craig H . Atmospheric oxygen: Isotopic composition and solubility fractionation[J]. Science, 1972, 175(4 017):54-55.
80 Michalski G , Bhattacharya S K . Handbook of Environmental Isotope Geochemistry [M]. Berlin Heidelberg: Springer-Verlag, 2012.
81 R?ckmann T , Kaiser J , Crowley J N , et al . The origin of the anomalous or “mass-independent” oxygen isotope fractionation in tropospheric N2O [J]. Geophysical Research Letters, 2001, 28(3):503-506.
82 Morin S , Cadoni M . Pronounced signature of arctic surface ozone depletion events after polar sunrise on Δ17O in atmospheric nitrate [J]. Atmospheric Chemistry & Physics, 2006, 6(4):6 255-6 297.
83 Dubey M K , Mohrschladt R , Donahue N M , et al . Isotope specific kinetics of hydroxyl radical (OH) with water (H2O):? Testing models of reactivity and atmospheric fractionation [J]. Journal of Physical Chemistry A, 1997, 101(8):1 494-1 500.
84 Finlaysonpitts B , James Pitts J . Chemistry of the Upper and Lower Atmosphere [M]. California: Academic Press, 2000.
85 Michalski G , B?hlke J K , Thiemens M . Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions [J]. Geochimica et Cosmochimica Acta, 2004, 68(20):4 023-4 038.
86 Fang Y T , Koba K , Wang X M , et al . Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China [J]. Atmospheric Chemistry & Physics Discussions, 2010, 10(9):1 313-1 325.
87 Platt U , Janssen C . Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere [J]. Faraday Discussions, 1995, 100(10):175-198.
88 Hastings M G , Sigman D M , Lipschultz F . Isotopic evidence for source changes of nitrate in rain at Bermuda [J]. Journal of Geophysical Research Atmospheres, 2003, 108(D24).DOI:10.1029/2003JD003789.
doi: 10.1029/2003JD003789.    
89 Heaton T H E , Wynn P , Tye A M . Low 15N/14N ratios for nitrate in snow in the High Arctic (79°N)[J]. Atmospheric Environment, 2004, 38(33):5 611-5 621.
90 Baker A R , Weston K , Kelly S D , et al . Dry and wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary productivity and nitrogen fixation[J]. Deep-Sea Research Part I:Oceanographic Resaerch Papers, 2007, 54(10):1 704-1 720.
91 Jarvis J C , Steig E J , Hastings M G , et al . Influence of local photochemistry on isotopes of nitrate in Greenland snow[J]. Geophysical Research Letters, 2008, 35(21):1-15.
92 Durka W , Schulze E D , Gebauer G , et al . Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements[J]. Nature, 1994, 372(6 508):765-767.
93 Kendall C . Chapter 16-Tracing nitrogen sources and cycling in catchments [M]// Isotope Tracers in Catchment Hydrology. The Netherlands:Elsevieer,1998: 519-576.
94 Campbell D H , Kendall C , Chang C C Y , et al . Pathways for nitrate release from an alpine watershed: Determination using δ15N and δ18O[J]. Water Resources Research, 2002, 38(5):1-10.
95 Michalski G , Bockheim J G , Kendall C , et al . Isotopic composition of Antarctic Dry Valley nitrate: Implications for NOy sources and cycling in Antarctica[J]. Geophysical Research Letters, 2005, 321(13):313-320.
96 Williard K W J , DeWalle D R , Edwards P J , et al . 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds[J]. Journal of Hydrology, 2001, 252(1):174-188.
97 Patris N , Cliff S S , Quinn P K , et al . Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: Determination of different formation pathways as a function of particle size[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D23301):1-17.
98 Guha T , Lin C T , Bhattacharya S K , et al . Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in Central Taiwan[J]. Atmospheric Environment, 2017, 154:53-69.
99 Smirnoff A , Savard M M , Vet R , et al . Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition[J]. Rapid Communications in Mass Spectrometry, 2012, 26(23):2 791-2 804.
100 Burns D A , Kendall C . Analysis of δ15N and δ18O to differentiate NO 3 - sources in runoff at two watersheds in the Catskill Mountains of New York [J]. Water Resources Research, 2002, 38(5):1-9.
101 Heidic H , Donalds R , Andrea L . Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA [J]. Biogeochemistry, 2007, 84(1):51-66.
102 Elliott E M , Kendall C , Boyer E W , et al . Dual nitrate isotopes in dry deposition: Utility for partitioning NOx source contributions to landscape nitrogen deposition[J]. Journal of Geophysical Research Biogeosciences, 2015, 114(G4):425-453.
103 Alexander B , Hastings M G , Allman D J , et al . Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate[J]. Atmospheric Chemistry & Physics, 2009, 9(14):5 043-5 056.
104 Michalski G , Savarino J , B?hlke J K , et al . Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17Ο nitrate reference material[J]. Analytical Chemistry, 2002, 74(19):4 989-4 993.
105 Kaiser J , Hastings M G , Houlton B Z , et al . Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O[J]. Analytical Chemistry, 2007, 79(2):599-607.
106 McCabe J R , Thiemens M H , Savarino J . A record of ozone variability in South Pole Antarctic snow: Role of nitrate oxygen isotopes[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D123303): 1-10.
107 Kunasek S A , Alexander B , Steig E J , et al . Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D24302): 1-15.
108 Ishino S , Hattori S , Savarino J , et al . Seasonal variations of triple oxygen isotopic compositions of atmospheric sulfate, nitrate, and ozone at Dumont d'Urville, coastal Antarctica[J]. Atmospheric Chemistry & Physics, 2017, 17(5):1-25.
109 Uemura R , Barkan E , Abe O , et al . Triple isotope composition of oxygen in atmospheric water vapor[J]. Geophysical Research Letters, 2010, 37(4):307-328.
110 Rockmann T , Cam B , Saueressig G , et al . Mass-independent oxygen isotope fractionation in atmospheric CO as a result of the reaction CO + OH [J]. Science, 1998, 281(5 376):544-546.
111 Bloss W J , Lee J D , Heard D E , et al . Observations of OH and HO2 radicals in coastal Antarctica[J]. Atmospheric Chemistry & Physics Discussions, 2007, 7(1):4 171-4 185.
112 Simpson W R , Glasow R V , Riedel K , et al . Halogens and their role in polar boundary-layer ozone depletion [J]. Atmospheric Chemistry & Physics, 2007, 7(2):4 375-4 418.
113 Sprinson D B , Rittenberg D . The rate of utilization of ammonia for protein synthesis[J]. Journal of Biological Chemistry, 1949, 180(2):707-714.
114 Mariotti A . Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements[J]. Nature, 1983, 303(5 919):685-687.
115 Pakwel A , Ryhage R , Wickman F E . Natural variations in the relative abundances of the nitrogen isotopes[J]. Geochimica et Cosmochimica Acta, 1957, 11(3):165-170.
116 Bremner J M , Keeney D R . Steam distillation methods for determination of ammonium, nitrate and nitrite[J]. Analytica Chimica Acta, 1965, 32:485-495.
117 Günther H , Floss H G , Simon H . Ein vereinfachtes Verfahren zur 15N-Bestimmung[J]. Fresenius Zeitschrift Für Analytische Chemie, 1966, 218(6):401-408.
118 Bordat P , Freyer H D , Kobel K , et al . HPLC preparation of nitrate from ice cores for mass spectrometric 15N/14N measurements [J]. Fresenius Journal of Analytical Chemistry, 1992, 344(6):279-282.
119 Amberger A , Schmidt H L . Natürliche isotopengehalte von nitrat als indikatoren für dessen Herkunft [J]. Geochimica et Cosmochimica Acta, 1987, 51(10):2 699-2 705.
120 Kornexl B , Medina R , Schmidt H L . A sensitive method for the fast and simultaneous determination of δ15N values and δ18O values in nitrate [J]. Isotopenpraxis Isotopes in Environmental & Health Studies, 1994, 30(2):215-218.
121 Révész K , B?hlke J K , Yoshinari T . Determination of δ18O and δ15N in Nitrate [J]. Analytical Chemistry, 1997, 69(21):4 375-4 380.
122 Kornexl B E , Gehre M , H?fling R , et al . On-line δ18O measurement of organic and inorganic substances [J]. Rapid Communications in Mass Spectrometry, 1999, 13(16):1 685-1 693.
123 Chang C C , Langston J , Riggs M , et al . A method for nitrate collection for δ15N and δ18O analysis from waters [J]. Canadian Journal of Fisheries & Aquatic Sciences, 1999, 56(10):1 856-1 864.
124 Silva S R , Kendall C , Wilkison D H , et al . A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios[J]. Journal of Hydrology, 2000, 228(1):22-36.
125 Li Yuzhong , Wang Limin , Xu Chunying , et al . Research on Treatment of Groundwater Nitrate Pollution[M]. Beijing: China Agriculture Science and Technique Press, 2014: 113-121.
李玉中, 王利民, 徐春英, 等 . 地下水硝酸盐污染治理研究[M]. 北京:中国农业科学技术出版社, 2014: 113-121.
126 Sigman D M , Casciotti K L , Andreani M , et al . A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater[J]. Analytical Chemistry, 2001, 73(17):4 145-4 153.
127 Casciotti K L , Sigman D M , Hastings M G , et al . Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method[J]. Analytical Chemistry, 2002, 74(19):4 905-4 912.
128 Buffen A M , Hastings M G , Thompson L G , et al . Investigatting the preservation of nitrate isotopic composition in a tropical ice core from the Quelccaya Ice Cap, Peru[J]. Journal of Geophysical Research Atmospheres, 2014, 119(5):2 674-2 697.
129 Granger J , Sigman D M , Prokopenko M G , et al . A method for nitrite removal in nitrate N and O isotope analyses[J]. Limnology & Oceanography Methods, 2006, 4(4):205-212.
130 Granger J , Sigman D M . Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method [J]. Rapid Commun Mass Spectrom, 2009, 23(23):3 753-3 762.
131 B?hlke J K , Smith R L , Hannon J E . Isotopic analysis of N and O in nitrite and nitrate by sequential selective bacterial reduction to N2O [J]. Analytical Chemistry, 2007, 79(15):5 888-5 895.
132 Mcilvin M R , Altabet M A . Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater [J]. Analytical Chemistry, 2005, 77(17):5 589-5 595.
133 Wang Xi , Cao Yacheng , Han Yong , et al . Determination of nitrogen and oxygen isotope ratio of nitrate in water with a chemical conversion method[J]. Acta Pedoologica Sincia, 2015, 52(3):558-566.
王曦,曹亚澄,韩勇,等 .化学转化法测定水体中硝酸盐的氮氧同位素比值[J].土壤学报, 2015,52(3):558-566.
134 Xu Zhaomeng , Liu Sumei . Advance in studies on intracellular nitrate storage and denitrification of benthic foraminifera [J]. Advances in Earth Science, 2017,32(9) : 949-958.
徐昭萌, 刘素美 . 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017,32(9) : 949-958.
135 Li Yue , Wang Rujian , Li Wenbao . Review on research on Paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 2016, 31(3):310-319.
李悦,王汝建,李文宝 .利用有孔虫氧同位素重建古海平面变化的研究进展[J].地球科学进展, 2016, 31(3):310-319.
[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[3] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[4] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[5] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[6] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[7] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[8] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[9] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
[10] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[11] 于晟, 李积明, 杨若文, 汪君霞. 2018年度大气科学领域项目评审与研究成果分析 *[J]. 地球科学进展, 2018, 33(12): 1314-1319.
[12] 刘西川, 高太长, 贺彬晟, 刘磊, 印敏, 宋堃. 智能手机参与大气探测的研究进展与展望 *[J]. 地球科学进展, 2018, 33(12): 1223-1236.
[13] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[14] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[15] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
阅读次数
全文


摘要