地球科学进展 ›› 2018, Vol. 33 ›› Issue (12): 1223 -1236. doi: 10.11867/j.issn.1001-8166.2018.12.1223.

综述与评述 上一篇    下一篇

智能手机参与大气探测的研究进展与展望 *
刘西川( ), 高太长 *( ), 贺彬晟, 刘磊, 印敏, 宋堃   
  1. 国防科技大学气象海洋学院,江苏 南京 211101
  • 收稿日期:2018-08-21 出版日期:2018-12-10
  • 通讯作者: 高太长 E-mail:liuxc85@gmail.com;2009gaotc@gmail.com
  • 基金资助:
    *国家自然科学基金青年科学基金项目“基于双频双极化微波链路的降水类型识别与反演”(编号:41505135);国家自然科学基金面上项目“基于微波链路的区域降水反演”(编号:41475020)资助.

Advances and Trends in Atmospheric Measurement by Smartphones *

Xichuan Liu( ), Taichang Gao *( ), Binsheng He, Lei Liu, Min Yin, Kun Song   

  1. College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China
  • Received:2018-08-21 Online:2018-12-10 Published:2019-01-18
  • Contact: Taichang Gao E-mail:liuxc85@gmail.com;2009gaotc@gmail.com
  • About author:

    First author:Liu Xichuan(1985-), male, Qinghe County, Hebei Province, Lecturer. Research areas include atmospheric physics and atmospheric measurement technology. E-mail: liuxc85@gmail.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Identification and inversion techniques of precipitation types based on the dual-frequencies and dual-polarizations microwave links" (No.41505135) and "Inversion of regional precipitation by microwave links" (No.41475020).

随着智能手机及嵌入式传感器的发展和普及,出现了公众利用智能手机探测大气环境参数的非专业探测手段,无需额外专用仪器,具有硬件成本低、时空分辨率高、时空覆盖广等优点,成为专业大气探测的有效补充。在气象业务、科研和公众服务等领域具有广阔的应用前景。目前我国在非专业大气探测方面的研究较少,为了充分发挥这一非专业探测手段的效能,在分析现有智能手机及嵌入式传感器技术现状的基础上,重点介绍了智能手机应用于降水、气温、气压、气溶胶和辐射等参数测量的技术现状,提出应该从加强机理研究、挖掘可用信源、数据质量控制、大数据处理技术以及与业务、科研、服务的匹配衔接等方面开展研究,推动智能手机参与大气探测的研究与应用。

With the development and popularization of smartphones and embedded sensors, a non-professional atmospheric measurement method by using smartphones carried by the public has been proposed recently. Without extra dedicated instrument, this method has many advantages, such as low hardware cost, high spatio-temporal resolution, and wide coverage, and it can supplement the professional atmospheric measurement methods, which has broad applications in the meteorological operation, scientific research, public service, and other fields. At present, the research on the non-professional atmospheric measurement in China is limited. In order to make full use of this method, this paper briefly outlined the states of existing smartphones and embedded sensors, highlighted the measurement of precipitation, air temperature, pressure, aerosols, and radiation by smartphones. To promote the development of smartphones for atmospheric measurement, future research should focus on mechanism study, available sources exploration, data quality control, big data processing, joining and matching with operation, research and service, etc.

中图分类号: 

图1 公众、互联网、智能终端及传感器联合的公众参与大气探测新方式 [ 1 ]
Fig.1 A new atmospheric measurement method by public, internet, intelligent terminal and sensor [ 1 ]
表1 公众参与大气探测的分类、方法和典型案例 [ 1 ]
Table 1 Classification, methods, and typical cases of public participation in atmospheric measurement [ 1 ]
图2 CoCoRaHS应用的雨量计和冰雹板
Fig.2 Rain gauge and hail pad utilized by CoCoRaHS
图3 mPING APP界面
Fig.3 Interface of mPING APP
图4 香港CWOS计划
Fig.4 CWOS project of Hongkong
图5 荷兰的微波链路网络及反演结果
Fig.5 Microwave links network and inversed rainrate distribution in Netherland
图6 Zamora开展的手机信号测量实验
Fig.6 Cellphone signal measurement by Zamora
图7 智能手机电池的热量传输模型
Fig.7 Heat transfer model of smartphone battery
图8 利用智能手机电池温度反演的日平均气温(上)和小时平均气温(下)(巴西圣保罗地区)
Fig.8 Average daily air temperature (above) and hourly air temperature (below) inversed by battery temperature of smartphone in S?o Paulo, Brazil
图9 微型气溶胶采样过滤器与采样样本
Fig.9 Micro aerosol sampling filter and samples
图10 iSPEX及其反演的气溶胶光学厚度
Fig.10 iSPEX and inversed aerosol optical thickness
图11 Igoe等利用智能手机装配滤光片与实验场景
Fig.11 Smartphone assembled with filters and experimental scene by Igoe
图12 太阳图像及其反演的气溶胶光学厚度
Fig.12 Solar images and inversed aerosol optical thickness
[1] Muller C L, Chapman L, Johnston S, et al. Crowdsourcing for climate and atmospheric sciences: Current status and future potential[J]. International Journal of Climatology, 2015, 35(11): 3185-3203.
doi: 10.1002/joc.4210     URL    
[2] Fang Xiaoyi, Wang Xiaoyun, Du Wupeng, et al.The application of climate information in urban planning in China: Retrospect and future prospect[J]. Advances in Earth Science, 2015, 30(4): 445-455.
[房小怡, 王晓云, 杜吴鹏, 等. 我国城市规划中气候信息应用回顾与展望[J]. 地球科学进展, 2015, 30(4): 445-455.]
doi: 10.1167/j.issn.1001-8166.2015.04.0445     URL    
[3] Fang Yingbo, Zhan Wenfeng, Huang Fan, et al. Hourly variation of surface urban heat island over the Yangtze river delta urban agglomeration[J]. Advances in Earth Science, 2017, 32(2): 187-198.
[方迎波, 占文凤, 黄帆, 等. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.]
doi: 10.11867/j.issn.1001-8166.2017.02.0187     URL    
[4] Wang Jian, Che Tao, Li Zhen, et al. Investigation on snow characteristics and their distribution in China[J]. Advances in Earth Science, 2018, 33(1): 12-15.
[王建, 车涛, 李震, 等. 中国积雪特性及分布调查[J]. 地球科学进展, 2018, 33(1): 12-15.
[5] Field C B, Barros V, Stodker T F, et al.Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2012.
[6] Muller C L, Chapman L, Grimmond C S B, et al. Sensors and the city: A review of urban meteorological networks[J]. International Journal of Climatology, 2013, 33(7): 1 585-1 600.
doi: 10.1002/joc.3678     URL    
[7] Cifelli R, Doesken N, Kennedy P ,et al. The community collaborative rain, hail, and snow network: Informal education for scientists and citizens[J]. Bulletin of the American Meteorological Society, 2005,(86): 1 069-1 077.
doi: 10.1175/BAMS-86-8-1069     URL    
[8] Elmore K L, Flamig Z L, Lakshmanan V, et al. MPING: Crowd-sourcing weather reports for research[J]. Bulletin of the American Meteorological Society, 2014, 95: 1 335-1 342.
doi: 10.1175/BAMS-D-13-00014.1     URL    
[9] Wiggins A, Crowston K.From Conservation to Crowdsourcing: A Typology of Citizen Science[C]. Hawaii, USA: 44th Hawaii International Conference on System Sciences, 2011.
[10] Campbell A T, Eisenman S B, Lane N D, et al. People-Centric Urban Sensing[C]. Boston, USA: Second Annual International Wireless Internet Conference, 2006.
[11] GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCC[R]. Smitzerland: World Meteorological Organization,2010.
[12] Sosko S, Dalyot S.Crowdsourcing user-generated mobile sensor weather data for densifying static geosensor networks[J]. International Journal of Geo-Information, 2017, 63(6): 61.
doi: 10.3390/ijgi6030061     URL    
[13] Allbach B, Henninger S, Griebel O.Urban sensing APP—A mobile tool for urban sensing and climate monitoring in smart cities[C]∥ 19th International Conference on Urban Planning, Regional Development and Information Society. Vienna, Austria,2014.
[14] Ministry of Industry and Information Technology of the People's Republic of China. Economic Operation of Communication Industry in September 2018[Z]. 2018.
[中华人民共和国工业和信息化部. 2018年9月份通信业经济运行情况[Z]. 2018.]
[15] Niforatos E, Vourvopoulos A, Langheinrich M.Understanding the potential of human-machine crowdsourcing for weather data[J]. Journal of Human Computer Studies, 2016, 102(6): 54-68.
doi: 10.1016/j.ijhcs.2016.10.002     URL    
[16] CoCoRaHS. Where did the CoCoRaHS Network originate?[EB/OL]. [2018-06-15]. .
URL    
[17] Reges H W, Doesken N, Turner J, et al. CoCoRaHS the evolution and accomplishments of a volunteer rain gauge network[J]. Bullitin of American Meteorological Society, 2016, 97(10): 1 831-1 846.
doi: 10.1175/bams-d-14-00213.1     URL    
[18] NOAA NSSL.Get the mPING APP[EB/OL]. [2018-06-15]..
URL    
[19] Pehoski J R.A Crowdsourced Hail Dataset: Potential, Biases, and Inaccuracies[D]. Milwaukee: University of Wisconsin-Milwaukee, 2013.
[20] Picca J C, Schultz D M, Colle B A, et al. The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband[J]. Bulletin of the American Meteorological Society, 2014, 95(9): 1 825-1 834.
doi: 10.1175/BAMS-D-13-00258.1     URL    
[21] Elmore K L, Grams H M, Apps D, et al. Verifying forecast precipitation type with mPING[J]. Weather and Forecasting, 2015, 30(6): 656-667.
doi: 10.1175/WAF-D-14-00068.1     URL    
[22] Reeves H D.The uncertainty of precipitation-type observations and its effect on the validation of forecast precipitation type[J]. Weather and Forecasting, 2016, 31(11): 1 961-1 971.
doi: 10.1175/WAF-D-16-0068.1     URL    
[23] Niforatos E, Vourvopoulos A, Langheinrich M, et al. Atmos: A hybrid crowdsourcing approach to weather estimation[C]∥Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, USA, 2014.
[24] Niforatos E, Vourvopoulos A, Langheinrich M."Weather With You": Evaluating report reliability in weather crowdsourcing[C]∥Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia,Linz. Austria, 2015.
[25] He Junjie, Chen Yinghua, Tan Guangxiong, et al. Community weather observation program in hongkong[C]∥The 30th Annual Meeting of the Chinese Meteorological Society. Nanjing, 2013.
[何俊杰, 陈营华, 谭广雄, 等. 香港社区天气观测计划[C]∥第30届中国气象学会年会. 南京, 2013.]
[26] Hong Kong Observatory.Community Weather Observing Scheme[EB/OL]. [2018-05-06]..
URL    
[27] Yang Shifang, Xiao Fang, Jiang Hairu, et al. Development and trend of weather information dissemination service in China[J]. Advances in Meteorological Science and Technology, 2017, 7(3): 41-47.
[杨诗芳, 肖芳, 姜海如, 等. 新中国气象信息传播服务发展及未来趋势分析[J]. 气象科技进展, 2017, 7(3): 41-47.]
doi: 10.3969/j.issn.2095-1973.2017.03.006     URL    
[28] Li Na, Lu Weiping, Qin Peng.Application and development on Twitter in public meteorological service[J]. Journal of Meteorological Research and Application, 2012, 33(2): 107-109.
[李娜, 卢伟萍, 秦鹏. 微博在公共气象服务中的应用及发展[J]. 气象研究与应用, 2012, 33(2): 107-109.]
doi: 10.3969/j.issn.1673-8411.2012.02.030     URL    
[29] Deng Xiaoliang, Liao Huijuan, Guo Yongting.Application and development of WeChat in meteorological service[J]. Guangdong Meteorology, 2015, 37(6): 61-63.
[邓小良, 廖慧娟, 郭永婷, 等. 微信在气象服务中的应用及发展[J]. 广东气象, 2015, 37(6): 61-63.]
doi: 10.3969/j.issn.1007-6190.2015.06.015     URL    
[30] Qian Kun.Design and Implementation of Participative Weather Information Perception System Based on Android[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
[钱堃. 基于Android参与式气象信息感知系统设计与实现[D]. 南京: 南京信息工程大学, 2016.]
[31] Gong Jiangli, Peng Yinghui, Jiang Hairu, et al. Overview of the development of mobile weather APP service in China[J]. Advances in Meteorological Science and Technology, 2018, 8(1): 38-40.
[龚江丽, 彭莹辉, 姜海如, 等国内手机天气app服务发展状况概述[J]. 气象科技进展, 2018, 8(1): 38-40.]
URL    
[32] Chen Zhijie, Zhao Boting.Development of meteorological service system on the mobile client[J]. Advances in Meteorological Science and Technology, 2017, 7(1): 179-185.
[陈治杰, 赵伯听. 基于客户端移动信息化气象服务平台[J]. 气象科技进展, 2017, 7(1): 179-185.]
doi: 10.3969/j.issn.2095-1973.2017.01.028     URL    
[33] Lin Hui. China Will Actively Cultivate New Growth Points of Meteorological Development[N]. ,Xinhua Net, 2015-01-22.
[林晖. 我国将积极培育气象发展新增长点[N]. 新华网, 2015-01-22.]
[34] Liu Xichuan, Liu Lei, Gao Taichang, et al. Effect of different precipitation on millimeter wave propagation characteristics[J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 379-384.
[刘西川, 刘磊, 高太长, 等. 不同类型降水对毫米波传播特性的影响研究[J]. 红外与毫米波学报, 2013, 32(4): 379-384.]
doi: 10.3724/SP.J.1010.2013.00379     URL    
[35] Liu Xichuan, Gao Taichang, Qin Jian, et al. Effects analysis of rainfall on microwave transmission characteristics[J]. Acta Physica Sinica, 2010, 59(3): 2 156-2 162.
[刘西川, 高太长, 秦健, 等. 降雨对微波传输特性的影响分析[J]. 物理学报, 2010, 59(3): 2 156-2 162.]
doi: 10.7498/aps.59.2156     URL    
[36] Zhang Chengyi, Chen Deliang, Dong Wenjie.Weather monitoring by the signals of mobile communication networks[J]. Acta Ecologica Sinica, 2006, 26(9): 3 156-3 157.
[张称意, 陈德亮, 董文杰. 用手机网络信号监测天气状况[J]. 生态学报, 2006, 26(9): 3 156-3 157.]
doi: 10.3321/j.issn:1000-0933.2006.09.047     URL    
[37] Li Hongbo, Meng Qinghui.Wireless access methods in the relay link between base stations of mobile communication network[J]. Designing Techniques of Posts and Telecommunications, 2004,(9): 15-19.
[李洪波, 孟庆辉. 移动通信基站中继接入中的几种无线接入方式[J]. 邮电设计技术, 2004,(9): 15-19.]
doi: 10.3969/j.issn.1007-3043.2004.09.004     URL    
[38] Gao Taichang.Precipitation measurement by microwave links and key techniques analysis[J]. Meteorological and Hydrological Equipment, 2013, 24(3): 1-6.
[高太长. 微波链路测量降水新方法及关键技术分析[J]. 气象水文装备, 2013, 24(3): 1-6.]
URL    
[39] Yin Min, Gao Taichang, Liu Xichuan, et al. Research on microwave link measurement of precipitation[J]. Meteorological Monthly, 2015, 41(12): 1 545-1 553.
[印敏, 高太长, 刘西川, 等. 微波链路测量降水研究综述[J]. 气象, 2015, 41(12): 1 545-1 553.]
doi: 10.7519/j.issn.1000-0526.2015.12.013     URL    
[40] Atlas D, Ulbrich C W.Path-and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm Band[J]. Journal of Applied Meteorology, 1977, 16(12): 1 322-1 331.
doi: 10.1175/1520-0450(1977)0162.0.CO;2     URL    
[41] Gao Taichang.A new atnlospheric observation method by earth electromagnetic network[J]. Meteorological and Hydrological Equipment, 2014, 25(5): 1-4.
[高太长. 地球电磁密织网大气探测新方法[J]. 气象水文装备, 2014, 25(5): 1-4.]
URL    
[42] Leijnse H.Hydrometeorological Application of Microwave Links: Measurement of Evaporation and Precipitation[D]. Wageningen: Wageningen University, 2007.
[43] Leijnse H, Uijlenhoet R, Stricker J N M. Hydrometeorological application of a microwave link: 1. Evaporation[J]. Water Resources Research, 2007, 43(4): W04416.
doi: 10.1029/2006WR004988     URL    
[44] Leijnse H, Uijlenhoet R, Stricker J N M. Hydrometeorological application of a microwave link: 2. Precipitation[J]. Water Resources Research, 2007, 43(4): W04417.
doi: 10.1029/2006WR004989     URL    
[45] Leijnse H, Uijlenhoet R, Stricker J.Rainfall measurement using radio links from cellular communication networks[J]. Water Resources Research, 2007, 43(3): W03201. DOI:10.1029/2006WR004989.
doi: 10.1029/2006WR005631     URL    
[46] Messer H, Zinevich A, Alpert P.Environmental monitoring by wireless communication networks[J]. Science, 2006, 312(5 774): 713.
doi: 10.1126/science.1120034     URL     pmid: 16675693
[47] Zinevich A, Alpert P, Messer H.Estimation of rainfall fields using commercial microwave communication networks of variable density[J]. Advances in Water Resources, 2008, 31(11): 1 470-1 480.
doi: 10.1016/j.advwatres.2008.03.003     URL    
[48] Zinevich A, Messer H, Alpert P.Frontal rainfall observation by a commercial microwave communication network[J]. Journal of Applied Meteorology and Climatology, 2009, 48(7): 1 317-1 334.
doi: 10.1175/2008JAMC2014.1     URL    
[49] Goldshtein O, Messer H Z A. Rain rate estimation using measurements from commercial telecommunications links[J]. IEEE Transactions on Signal Process, 2009, 57(4): 1 616-1 625.
doi: 10.1109/TSP.2009.2012554     URL    
[50] Overeem A, Leijnse H, Uijlenhoet R.Measuring urban rainfall using microwave links from commercial cellular communication networks[J]. Water Resources Research, 2011, 47(12): W12505. DOI:10.1029/2010WR010350.
doi: 10.1029/2010WR010350     URL    
[51] Overeem A, Leijnse H, Uijlenhoet R.Country-wide rainfall maps from cellular communication networks[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2 741-2 745.
doi: 10.1073/pnas.1217961110     URL     pmid: 23382210
[52] Overeem A, Leijnse H, Uijlenhoet R.Two and a half years of country-wide rainfall maps using radio links from commercial cellular telecommunication networks[J]. Water Resources Research, 2016, 52(10): 8 039-8 065.
doi: 10.1002/2016WR019412     URL    
[53] Ostrometzky J, Cherkassky D, Messer H.Accumulated mixed precipitation estimation using measurements from multiple microwave links[J]. Advances in Meteorology, 2015. DOI:10.1155/2015/707646.
[54] Smiatek G, Keis F, Chwala C, et al. Potential of commercial microwave link network derived rainfall for river runoff simulations[J]. Environmental Research Letters, 2017, 12(3): 034026.
doi: 10.1088/1748-9326/aa5f46     URL    
[55] Doumounia A, Gosset M, Cazenave F, et al. Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed[J]. Geophysical Research Letters, 2014, 41(16): 6 016-6 022.
doi: 10.1002/2014GL060724     URL    
[56] Gosset M, Kunstmann H, Zougmore F, ,et al. Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks[J]. Bulletin of the American Meteorological Society.2016,97(3): ES49-ES51.
doi: 10.1175/BAMS-D-15-00164.1     URL    
[57] Tollefson J.Rain forecasts go mobile—Analysis of wireless communications data could give accurate weather at street level[J]. Nature, 2017, 544: 146-147.
doi: 10.1038/nature.2017.21799     URL     pmid: 28406217
[58] Jia Le.New trend in weather forecasting—Using mobile phone signals to predict rainfall[J]. Science, 2017, 69(3): 8.
[家乐. 天气预报新趋势——利用手机信号预测降雨[J]. 科学, 2017, 69(3): 8.]
URL    
[59] David N, Alpert P, Messer H.The potential of commercial microwave networks to monitordense fog-feasibility study[J]. Journal of Geophysical Research: Atmosphere, 2013, 118(20): 11 750-11 761.
doi: 10.1002/2013JD020346     URL    
[60] David N, Sendndik O, Messsser H, et al. Cellular network infrastructure—The future of fog monitoring?[J]. Bullitin of American Meteorological Society, 2015, 96(10): 1 687-1 698.
doi: 10.1175/BAMS-D-13-00292.1     URL    
[61] David N, Gao H O.Using cellular communication networks to detect air pollution[J]. Environmental Science & Technology, 2016, 50(17): 9 442-9 451.
doi: 10.1021/acs.est.6b00681     URL     pmid: 27490182
[62] Zohidov B, Andrieu H, Servièes M, et al. The potential of microwave communication networks to detect dew-experimental study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(9): 4 396-4 404.
doi: 10.1109/JSTARS.2015.2465909     URL    
[63] Sharma P K, Sharma D,Singh R K.Development of propagation model by considering different climatic conditions[J]. Magnt Research Report, 2014, 2(6): 389-401.
URL    
[64] Helhel S, Ozen S, Goksu H.Investigation of GSM signal variation dry and wet earth effects[J]. Progress in Electromagnetics Research, 2008, 1: 147-157.
doi: 10.2528/PIERB07101503     URL    
[65] Dalip Kumar V.Effect of environmental parameters on GSM and GPS[J]. Indian Journal of Science and Technology, 2014, 7(8): 1 183-1 188.
[66] Usman A U, Okereke O U, Omizegba E E.Instantaneous GSM signal strength variation with weather and environmental factors[J]. American Journal of Engineering Research, 2015, 4(3): 104-115.
[67] Zamora J L F, Kashihara S, Yamaguchi S. Radio signal-based measurements for localized heavy rain detection using smartphones[C]∥ IEEE Global Humanitarian Technology Conference. San Jose, California, USA, 2013.
[68] Liu Xichuan, Gao Taichang, Liu Lei, et al. Discussion on electromagnetic scattering characteristics of ice-water two-phases particles in atmosphere[J]. Progress in Geophysics, 2013, 28(1): 71-82.
[刘西川, 高太长, 刘磊, 等. 大气中冰水两相粒子的电磁散射特性研究[J]. 地球物理学进展, 2013, 28(1): 71-82.]
doi: 10.6038/pg20130108     URL    
[69] Yin Min, Jiang Shitai, Gao Taichang, et al. Microwave characteristics of rain attenuation and its application in rainfall measurement[J]. Meteorological Science and Technology, 2015, 43(1): 1-7.
[印敏, 姜世泰, 高太长, 等. 微波雨衰特性在降雨测量中的应用[J]. 气象科技, 2015, 43(1): 1-7.]
doi: 10.3969/j.issn.1671-6345.2015.01.001     URL    
[70] Jiang Shitai, Gao Taichang, Liu Xichuan, et al. Investigation of the inversion of rainfall field based on microwave links[J]. Acta Physica Sinica, 2013, 62(15): 154 303.
[姜世泰, 高太长, 刘西川, 等. 基于微波链路的降雨场反演方法研究[J]. 物理学报, 2013, 62(15): 154 303.]
doi: 10.7498/aps.62.154303     URL    
[71] Gao Taichang, Song Kun, Liu Xichuan, et al. Research on the method and experiment of path rainfall intensity inversion using a microwave link[J]. Acta Physica Sinica, 2015, 64(17): 174 301.
[高太长, 宋堃, 刘西川, 等. 基于微波链路的路径雨强反演方法及实验研究[J]. 物理学报, 2015, 64(17): 174 301.]
doi: 10.7498/aps.64.174301     URL    
[72] Song Kun, Gao Taichang, Liu Xichuan, et al. Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine[J]. Acta Physica Sinica, 2015,64(24): 244 301.
[宋堃, 高太长, 刘西川, 等. 基于支持向量机的微波链路雨强反演方法[J]. 物理学报, 2015, 64(24): 244 301.]
doi: 10.7498/aps.64.244301     URL    
[73] Song Kun, Gao Taichang, Liu Xichuan, et al. Method and experiment of path rainfall intensity inversion using a microwave link based on nonspherical rain-induced model[J]. Acta Physica Sinica, 2017, 66(5): 154 301.
[宋堃, 高太长, 刘西川, 等. 基于非球形雨衰模型的微波链路雨强反演方法[J]. 物理学报, 2017, 66(5): 154 301.]
doi: 10.7498/aps.66.154301     URL    
[74] Xue Y, Liu X C, Gao T C, et al. Regional attenuation correction of weather radar using a distributed microwave-links network[J]. Advances in Meteorology, 2017.DOI:10.1155/2017/8621239.
[75] Zhang P, Liu X, Li Z, et al. Attenuation correction of weather radar reflectivity with arbitrary oriented microwave link[J]. Advances in Meteorology, 2017. DOI:10.1155/2017/6124149.
[76] Overeem A, Robinson J C R, Leijnse H,et al. Crowdsourcing urban air temperatures from smartphone battery temperatures[J]. Geophysical Research Letters, 2013, 40(15): 4 081-4 085.
doi: 10.1002/grl.50786     URL    
[77] Pape J J, Overeem A, Leijnse H, et al. Urban air temperature estimation from smartphone battery temperatures[C]∥EMS Annual Meeting. Sofia, Bulgaria, 2015.
[78] Droste A, Pape J J, Overeem A, et al. Using smartphone batteries as an urban thermometer[C]∥EGU General Assembly. Vienna, Austria, 2017.
[79] Droste A M, Pape J J, Overeem A, et al. Crowdsourcing urban air temperatures through smartphone battery temperatures in São Paulo, Brazil[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(9): 1 853-1 866.
doi: 10.1175/JTECH-D-16-0150.1     URL    
[80] Look at the Role of Pressure Sensors in Smart Phones[J]. Cards World, 2012, 17(11): 53.
[看看压力传感器在智能手机中的作用[J]. 金卡工程, 2012, 17(11): 53.]
URL    
[81] Mass C F, Madaus L E.Surface pressure observations from smartphones[J]. Bulletin of the American Meteorological Society, 2014, 95(9): 1343-1349.
doi: 10.1175/BAMS-D-13-00188.1     URL    
[82] Kim N Y, Kim Y H, Yoon Y, et al. Correcting air-pressure data collected by mems sensors in smartphones[J]. Journal of Sensors, 2015.DOI:10.1155/2015/245498.
doi: 10.1155/2015/245498     URL    
[83] Kim Y H, Ha J H, Yoon Y, et al. Improved correction of atmospheric pressure data obtained by smartphones through machine learning[J]. Computational Intelligence and Neuroscience, 2016. DOI:10.1155/2016/9467878.
doi: 10.1155/2016/9467878     URL     pmid: 4976262
[84] Ha J H, Kim Y H.A survey on data correction of observation and prediction using machine learning: Preliminary study for optimizing oil spill model[J]. International Journal of Applied Engineering Research, 2016, 11(16): 8 892-8 895.
[85] Madaus L E, Mass C F.Evaluating smartphone pressure observations for mesoscale analyses and forecasts[J]. Weather and Forecasting, 2017, 32(4): 511-531.
doi: 10.1175/WAF-D-16-0135.1     URL    
[86] Hanson G S.Impact of Assimilating Surface Pressure Observations from Smartphones on a Regional, High Resolution Ensemble Forecast: Observing system simulation experiments[D]. Pennsylvania: The Pennsylvania State University, 2016.
[87] Ramanathan N, Lukac M, Ahmed T, et al. A cellphone based system for large-scale monitoring of black carbon[J]. Atmospheric Environment, 2011, 45: 4 481-4 487.
doi: 10.1016/j.atmosenv.2011.05.030     URL    
[88] Snik F, Heikamp S, Boer J D, et al. iSPEX: The creation of an aerosol sensor network of smartphone spectropolarimeters[C]∥EGU General Assembly. Vienna, Austria, 2012.
[89] Apituley A. iSPEX: First results of aerosols measured by smartphones in the Netherlands[C]∥ Proceedings of the European Aerosol Conference. Prague, Czech, 2013.
[90] Frans Snik, Rietjens J H H, Apituley A, et al. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters[J]. Geophysical Research Letters, 2014, 41(20): 7 351-7 358.
doi: 10.1002/2014GL061462     URL    
[91] Land-Zandstra A M, Devilee J L A, Snik F, et al. Citizen science on a smartphone: Participants' motivations and learning[J]. Public Understanding of Science, 2016, 25(1): 45-60.
doi: 10.1177/0963662515602406     URL     pmid: 26346340
[92] Fang Lingsheng.Smart phone science[J]. World Science, 2016, 38(5): 26-28.
[方陵生. 智能手机科学[J]. 世界科学, 2016, 38(5): 26-28.]
[93] Igoe D, Parisi A, Carter B.Characterization of a smartphone camera's response to ultraviolet a radiation[J]. Photochemistry and Photobiology, 2013, 89(1): 215-218.
doi: 10.1111/j.1751-1097.2012.01216.x     URL     pmid: 22862556
[94] Igoe D, Parisi A V, Carter B.A method for determining the dark response for scientific imaging with smartphones[J]. Instrumentation Science & Technology, 2014, 42(5): 586-592.
doi: 10.1080/10739149.2014.915557     URL    
[95] Igoe D P, Parisi A V, Carter B.Evaluating UVA aerosol optical depth using a smartphone camera[J]. Photochemistry and Photobiology, 2013, 89(5): 1 244-1 248.
doi: 10.1111/php.12082     URL     pmid: 23581749
[96] Igoe D.Development and Characterisation of a Modified Smartphone Camera for Determining UVA Aerosol Optical Depth[D]. Queensland: University of Southern Queensland, 2013.
[97] Igoe D P, Parisi A, Carter B.Smartphone-based and roid APP for determining UVA aerosol optical depth and direct solar irradiances[J]. Photochemistry and Photobiology, 2014, 90: 233-237.
doi: 10.1111/php.12185     URL     pmid: 24117514
[98] Igoe D, Parisi A V.Broadband direct UVA irradiance measurement for clear skies evaluated using a smartphone[J]. Radiation Protection Dosimetry, 2014, 167(4): 1-5.
doi: 10.1093/rpd/ncu344     URL     pmid: 25449750
[99] Igoe D, Parisi A V.Evaluation of a smartphone sensor to broadband and narrowband ultraviolet a radiation[J]. Instrumentation Science & Technology, 2015, 43(3): 283-289.
doi: 10.1080/10739149.2014.1002039     URL    
[100] Igoe D P, Amar A, Parisi A V, ,et al. Characterisation of a smartphone image sensor response to direct solar 305 nm irradiation at high air masses[J]. Science of the Total Environment,2017, 587/588: 407-413.
doi: 10.1016/j.scitotenv.2017.02.175     URL     pmid: 28245932
[101] Turner J, Parisi A V, Igoe D P, et al. Detection of Ultraviolet B radiation with internal smartphone sensors[J]. Instrumentation Science & Technology, 2017, 45(6): 618-638.
doi: 10.1080/10739149.2017.1298042     URL    
[102] Cao T, Thompson J E.Remote sensing of atmospheric optical depth using a smartphone sun photometer[J]. PLoS ONE, 2014, 9(1): e84119.
doi: 10.1371/journal.pone.0084119     URL     pmid: 24416199
[103] Tith S, Chankow N.Measurement of gamma-rays using smartphones[J]. Open Journal of Applied Sciences, 2016, 6: 31-37.
doi: 10.4236/ojapps.2016.61004     URL    
[104] Liu Xiaoyang.Research and Implementation of Air Quality Monitoring System Based on Participatory Sensing[D]. Beijing: Beijing University of Posts and Telecommunications, 2014.
[刘肖阳. 基于参与式感知的空气质量检测系统的研究与实现[D]. 北京: 北京邮电大学, 2014.]
[105] Chen Hongbin, Zheng Guoguang.Mobile systems for monitoring the atmosphere and its environments based on commercial transport platforms[J]. Advances in Earth Science, 2005, 20(5): 520-524.
[陈洪滨, 郑国光. 基于商用运输平台的流动大气和环境监测系统[J]. 地球科学进展, 2005, 20(5): 520-524.]
doi: 10.3321/j.issn:1001-8166.2005.05.006     URL    
[1] 杨金红,高玉春,程明虎. 相控阵技术在大气探测中的应用及面临的挑战[J]. 地球科学进展, 2008, 23(2): 142-150.
[2] 马舒庆,郑国光,汪改,吴蕾,张小平,潘毅,李强,蔡青. 一种人工影响天气微型无人驾驶飞机及初步试验[J]. 地球科学进展, 2006, 21(5): 545-550.
阅读次数
全文


摘要