地球科学进展 ›› 2018, Vol. 33 ›› Issue (12): 1237 -1247. doi: 10.11867/j.issn.1001-8166.2018.12.1237

综述与评述 上一篇    下一篇

河流筑坝对生源物质循环的改变研究进展 *
邓浩俊 1( ), 陶贞 1, *( ), 高全洲 1, 2, 姚玲 1, 冯雍 1, 李银花 1   
  1. 1.中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,广东 广州 510275
    2.广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
  • 收稿日期:2018-09-03 出版日期:2018-12-10
  • 通讯作者: 陶贞 E-mail:junnyinfujian@163.com;taozhen@mail.sysu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“雅砻江下游梯级筑坝对河流生源物质性质和输出的改变机制研究”(编号:41771216)和“湿热流域源区坡面径流及壤中流驱动的碳的生物地球化学循环”(编号:41871014)资助.

Research Advance of Changing Biogenic Substance Cycling in River Systems by Damming *

Haojun Deng 1( ), Zhen Tao 1, *( ), Quanzhou Gao 1, 2, Ling Yao 1, Yong Feng 1, Yinhua Li 1   

  1. 1.Geography and Planning School of Sun Yat-Sen University,Guangdong Provincial Key Laboratory for Urbanization and Geosimulation,Guangzhou 510275,China
    2.Key Laboratory of Mineral Resource & Geological Processes of Guangdong Province,Guangzhou 510275,China;
  • Received:2018-09-03 Online:2018-12-10 Published:2019-01-18
  • Contact: Zhen Tao E-mail:junnyinfujian@163.com;taozhen@mail.sysu.edu.cn
  • About author:

    First author:Deng Haojun(1990-),male,Guangzhou City,Guangdong Province,Ph.D student. Research areas include riverine carbon cycle and global change. E-mail:junnyinfujian@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Study of the altering riverine biogenic matter transformation and its export fluxes with cascade damming in the lower reach of the Yalongjiang River"(No.41771216) and "Biogeochemical cycling of carbon driven by slope runoff and subsurface flow in the headwater catchments of the humid subtropical basins"(No.41871014).

河流筑坝将异养的自然河流转变成自养的“蓄水河流”(下称水库),使得河流生源物质循环过程和输向海洋的物质性质及其通量发生变化。由于生源要素碳(C)、氮(N)、磷(P)、硅(Si)在生物过程中的行为不同,导致水库中生源要素有机碳(OC)、P和Si的循环效率不同,依次是Si>OC>P;而全球尺度上水库对生源要素的滞留效率表现为N>C>P>Si。水库的沉积埋藏作用构成河流OC的净汇。元素生态化学计量特征与稳定同位素组成联合使用可有效示踪生源物质在水库中的迁移转化过程。随着人类对清洁能源需求的增加,河流水库群建设强度将会增大,梯级筑坝下流域系统生源物质动力学的变化规律及其生态环境累积效应等科学问题应引起生物地球化学循环研究领域的关注。

River damming transforms allotropic natural rivers into autotrophic 'impound river' (referred to "reservoir"), which changes the processes of river biogenic substance cycle and the matter properties as well as export flux from land to ocean, thus becoming one of the key problems of element biogeochemical cycle. Due to the different behavior of biogenic substances (C, N, P, Si) in biological processes, biogenic substances cycle efficiency is different, in turns, Silicon (Si)>Organic Carbon (OC)>Phosphorus (P). The migration and transformation processes of C and Si are significantly affected by phytoplankton and water retention time. Nitrogen (N) and P are mainly affected by water pH, temperature, Dissolved Oxygen (DO) and retention time. The retention efficiency of biogenic substances is shown as N>C>P>Si at the global scale. Besides, the sedimentation and burial processes of reservoirs constitute the net sink of OC in rivers. River damming alters the stoichiometric characteristics of water elements, nutrient constraints, aquatic communities composition and the coupling effect of C/N/P/Si. The stable isotopic compositions of C, N and Si can effectively trace the source, migration and transformation of biogenic matter. A combination of elements stoichiometric characteristics and stable isotopic composition could effectively indicate the change of source materials in reservoirs. With the increasing demand for clean energy, the intensity of river damming and reservoir construction will increase. Thus, a series of scientific problems including changing law of biogenic substance migration and transformation dynamic, as well as accumulation effect of ecological environment in watershed systems by river cascade damming, should need to be concerned in the biogeochemistry cycle study.

中图分类号: 

表1 水库生源要素的主要存在形式
Table 1 The main forms of biogenic elements in reservoirs
图1 水库生源要素循环过程
宽箭头为入库、出库通量,虚线方框内为水库内各要素循环过程,图中数值单位均为Tg/a;(a)据参考文献[ 14 ]修改,(b)据参考文献[11,17]修改,(c)据参考文献[ 12 ]修改,(d) 据参考文献[ 13 ]修改
Fig.1 Biogenic elements cyclic processes in reservoirs
The wide arrow refers to influx and outflux, and the dotted box is element cyclic process, all fluxes are given in units of Tg/a; (a) modified after reference[14], (b) modified after references[11,17], (c) modified after reference[12], (d) modified after reference[13]
图2 全球水库生源要素滞留率和滞留量 [ 12 , 13 , 16 , 22 ]
Fig.2 Biogenic element retention efficiency in global scale reservoir [ 12 , 13 , 16 , 22 ]
图3 单个水库的滞留效率
虚线为平均滞留率;N数据来源于参考文献[ 25 , 34 ];P数据来源于参考文献[ 25 , 27 , 31 , 32 , 34 , 40 ];Si数据来源于参考文献[ 25 , 30 , 31 , 41 , 46 ]
Fig.3 Retention efficiency of regional reservoir
Dotted line isaverage retention rate;N data from references[ 25 , 34 ];P data from references[ 25 , 27 , 31 , 32 , 34 , 40 ];Si data from references[ 25 , 30 , 31 , 41 , 46 ]
图4 不同元素滞留量的差异 [ 27 , 29 , 30 , 32 , 42 , 46 ]
Fig.4 The difference of elements retention efficiency [ 27 , 29 , 30 , 32 , 42 , 46 ]
表2 C,N和Si稳定同位素组成表达式
Table 2 C, N and Si stable isotopic composition equation
图5 水库入库、库区和下泄水的δ 13C DIC值(数据源于参考文献[ 31 , 64 , 65 ] )
不同的小写字母指示数据之间存在显著的差异( p<0.05)
Fig.5 The δ 13C DIC value of influx,outflux and in reservoir(data from references[ 31 , 64 , 65 ])
Different small letters indicate statistically significant differences( p<0.05)
图6 湖泊、河流和地下水的δ 30Si值分布 [ 4 , 7 , 68 , 71 ]
Fig.6 The distribution of δ 30Si value in lake, river and groundwater [ 4 , 7 , 68 , 71 ]
[1] Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(5): 477-501.
doi: 10.1146/annurev-marine-121211-172346     URL     pmid: 22809182
[2] Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
doi: 10.1038/ngeo1830     URL    
[3] Beusen A H W, Bouwman A F, Van Beek L P H, et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum[J]. Biogeosciences, 2016, 13(8): 2 441-2 451.
doi: 10.5194/bg-13-2441-2016     URL    
[4] Frings P J, Clymans W, Fontorbe G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36.
doi: 10.1016/j.chemgeo.2016.01.020     URL    
[5] Lehner B, Liermann C, Revenga C, et al. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011, 9(9): 494-502.
doi: 10.1890/100125     URL    
[6] Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5 720): 376-380.
doi: 10.1126/science.1109454     URL     pmid: 15831750
[7] Hughes H J, Bouillon S, André L,et al. The effects of weathering variability. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed(Tana River,Kenya)[J]. Chemical Geology, 2012, 308/309(2): 18-25.
doi: 10.1016/j.chemgeo.2012.03.016     URL    
[8] Carey J C, Fulweiler R W.Human activities directly alter watershed dissolved silica fluxes[J]. Biogeochemistry, 2012, 111(1/3):125-138.
doi: 10.1007/s10533-011-9671-2     URL    
[9] Meybeck M.Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
doi: 10.2475/ajs.282.4.401     URL    
[10] Marx A, Dusek J, Jankovec J, et al. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 2017, 55(2):560-585.
doi: 10.1002/2016RG000547     URL    
[11] Han H, Lu X, Burger D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir[J]. Ecological Engineering, 2014, 73:146-153.
doi: 10.1016/j.ecoleng.2014.09.016     URL    
[12] Maavara T, Parsons C T, Ridenour C, et al. Global phosphorus retention by river damming[J]. Proceedings of the National Academy of Science, 2015, 112(51):15 603-15 608.
doi: 10.1073/pnas.1511797112     URL     pmid: 26644553
[13] Maavara T, Dürr H H, Cappellen P Van.Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate[J]. Global Biogeochemical Cycles, 2014, 28(8): 842-855.
doi: 10.1002/2014GB004875     URL    
[14] Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8:15 347. DOI:10.1038/ncomms15347.
doi: 10.1038/ncomms15347     URL     pmid: 28513580
[15] Schindler D.Evolution of phosphorus limitation in lakes[J]. Science, 1977, 195(4 275): 260-262.
doi: 10.1126/science.195.4275.260     URL    
[16] Hecky R, Kilham P.Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment[J]. Limnology and Oceanography, 1988, 33(4): 796-822.
doi: 10.4319/lo.1988.33.4part2.0796     URL    
[17] Han H J, Los F J, Burger D F, et al. A modelling approach to determine systematic nitrogen transformations in a tropical reservoir[J]. Ecological Engineering, 2016, 94: 37-49.
doi: 10.1016/j.ecoleng.2016.05.054     URL    
[18] Peng J F, Wang B Z, Song Y H, et al. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond[J]. Ecological Engineering, 2007, 31: 92-97.
doi: 10.1016/j.ecoleng.2007.06.005     URL    
[19] Vollenweider R A.Input-output models-With special reference to the phosphorus loading concept in limnology[J]. Schweizerische Zeitschrift für Hydrologie, 1975, 37(1): 53-84.
[20] Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
doi: 10.1029/95GB01070     URL    
[21] Harrison J A, Caraco N, Seitzinger S P.Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI: 10.1029/2004GB002357.
doi: 10.1029/2004GB002357     URL    
[22] Harrison J A, Maranger R J, Alexander R B, et al. The regional and global significance of nitrogen removal in lakes and reservoirs[J]. Biogeochemistry, 2009, 93(1/2): 143-157.
doi: 10.1007/s10533-008-9272-x     URL    
[23] Vörösmarty C J, Meybeck M, Fekete B, et al. Anthropogenic sediment retention: Major global impact from registered river impoundments[J]. Global and Planetary Change, 2003, 39(1):169-190.
doi: 10.1016/S0921-8181(03)00023-7     URL    
[24] Ouyang W, Hao F, Song K, et al. Cascade Dam-induced hydrological disturbance and environmental impact in the upper stream of the Yellow River[J]. Water Resources Management, 2011, 25(3): 913-927.
doi: 10.1007/s11269-010-9733-6     URL    
[25] Bartoszek L, Koszelnik P.The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs[J]. Springerplus, 2016, 5:1 157. DOI: 10.1186/s4006401628367.
doi: 10.1186/s40064-016-2836-7     URL     pmid: 4958087
[26] Némery J, Gratiot N, Doan P T K, et al. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir[J]. Aquatic Sciences, 2016, 78(1):171-189.
doi: 10.1007/s00027-015-0416-5     URL    
[27] Teodoru C, Wehrli B.Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River[J]. Biogeochemistry, 2005, 76(3): 539-565.
doi: 10.1007/s10533-005-0230-6     URL    
[28] Edokpa D A, Evans M G, Rothwell J J.Reservoirs are hotspots of nitrogen cycling in peatland catchments[J]. Hydrological Processes, 2016, 30(20):3 666-3 681.
doi: 10.1002/hyp.10892     URL    
[29] Ran X, Bouwman L, Yu Z, et al. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir: A mass balance approach[J]. Limnology and Oceanography, 2017, 62(5): 2 323-2 337.
doi: 10.1002/lno.10568     URL    
[30] Jossette G, Leporcq B, Sanchez N, et al. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry, 1999, 47(2): 119-146.
doi: 10.1007/BF00994919     URL    
[31] Bouillon S, Abril G, Borges A V, et al. Distribution, origin and cycling of carbon in the Tana River (Kenya): A dry season basin-scale survey from headwaters to the delta[J]. Biogeosciences, 2009, 6(11): 2 475-2 493.
doi: 10.5194/bg-6-2475-2009     URL    
[32] Xiang Peng, Wang Shilu, Lu Weiqi, et al. Distribution and retention efficiency of Nitrogen and phosphorus in cascade reservoirs in Wujiang River Basin[J]. Earth and Environment, 2016, 44(5): 492-500.
[向鹏, 王仕禄, 卢玮琦, 等. 乌江流域梯级水库的氮磷分布及其滞留效率研究[J]. 地球与环境, 2016, 44(5): 492-500.]
doi: 10.14050/j.cnki.1672-9250.2016.05.002     URL    
[33] Liu Meibing, Chen Xingwei, Chen Ying.Multiple time-scale analysis of nitrogen retention characteristics and influencing factors in Shanmei Reservoir[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2 348-2 356.
[刘梅冰, 陈兴伟, 陈莹. 山美水库氮营养盐滞留特征及其影响因素的多时间尺度分析[J]. 应用生态学报, 2016, 27(7): 2 348-2 356.]
doi: 10.13287/j.1001-9332.201607.016     URL    
[34] Wang S H, Huggins D G, Frees L, et al. An integrated modeling approach to total watershed management: Water quality and watershed assessment of Cheney Reservoir, Kansas, USA[J]. Water Air & Soil Pollution, 2005, 164(1/4): 1-19.
doi: 10.1007/s11270-005-1658-y     URL    
[35] Ran X B, Chen H T, Wei J F, et al. Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China[J]. Marine and Freshwater Research, 2016, 67(2): 173-186.
doi: 10.1071/MF14344     URL    
[36] Lu T, Chen N, Duan S, et al. Hydrological controls on cascade reservoirs regulating phosphorus retention and downriver fluxes[J]. Environmental Science and Pollution Research, 2016, 23(23): 24 166-24 177.
doi: 10.1007/s11356-016-7397-3     URL     pmid: 27646444
[37] Lin Guoen, Wang Tian, Lin Qiuqi, et al. Spatial pattern and temporal dynamics of limnological variables in Liuxihe Reservoir, Guangdong[J]. Journal of Lake Sciences, 2009, 21(3): 387-394.
[林国恩, 望甜, 林秋奇, 等. 广东流溪河水库湖沼学变量的时空动态特征[J]. 湖泊科学, 2009, 21(3) :387-394.]
doi: 10.3321/j.issn:1003-5427.2009.03.012     URL    
[38] Shen Xiao, Du Xinzhong, Jia Dongmin, et al. The influence of upstream input on phosphorus retention in Miyun Reservoir[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3 114-3 120.
[申校, 杜新忠, 贾东民, 等. 入库河流输入对密云水库磷滞留过程的影响分析[J]. 环境科学学报, 2015, 35(10): 3 114-3 120.]
doi: 10.13671/j.hjkxxb.2015.0010     URL    
[39] Brigault S, Ruban V.External phosphorus load estimates and P-budget for the hydroelectric reservoir of Bort-Les-Orgues, France[J]. Water Air & Soil Pollution, 2000, 119(1/4): 91-103.
doi: 10.1023/A:1005186122618     URL    
[40] Hart B T, Van D W, Djuangsih N.Nutrient budget for Saguling Reservoir, West Java, Indonesia[J]. Water Research, 2002, 36(8): 2 152-2 160.
doi: 10.1016/S0043-1354(01)00428-6     URL     pmid: 12092591
[41] Maavara T, Hood J L A, North R L, et al. Reactive silicon dynamics in a large prairie reservoir (Lake Diefenbaker, Saskatchewan)[J]. Journal of Great Lakes Research, 2015, 41(2):100-109.
doi: 10.1016/j.jglr.2015.04.003     URL    
[42] Ran X, Yu Z, Chen H, et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences, 2013, 70(4): 1 881-1 893.
doi: 10.1007/s12665-013-2275-5     URL    
[43] Ran X, Yu Z, Yao Q, et al. Silica retention in the Three Gorges Reservoir[J]. Biogeochemistry, 2013, 112(1/3): 209-228.
doi: 10.1007/s10533-012-9717-0     URL    
[44] Wang F, Yu Y, Liu C, et al. Dissolved silicate retention and transport in cascade reservoirs in Karst area, Southwest China[J]. Science of the Total Environment, 2010, 408(7): 1 667-1 675.
doi: 10.1016/j.scitotenv.2010.01.017     URL     pmid: 20116832
[45] McGinnis D F, Bocaniov S, Teodoru C, et al. Silica retention in the Iron Gate I reservoir on the Danube River: The role of side bays as nutrient sinks[J]. River Research and Applications, 2006, 22(4): 441-456.
doi: 10.1002/rra.916     URL    
[46] Friedl G, Teodoru C, Wehrli B.Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica?[J]. Biogeochemistry, 2004, 68(1): 21-32.
doi: 10.1023/B:BIOG.0000025738.67183.c0     URL    
[47] Li zhe, Chen Yongbai, Li Chong, et al. Advances of eco-environmental effects and adaptive management in river cascading development[J]. Advances in Earth Science, 2018, 33(7): 675-686.
[李哲, 陈永柏, 李翀, 等. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.]
URL    
[48] Wang F, Maberly C S, Wang B, et al. Effects of dams on riverine biogeochemical cycling and ecology[J]. Inland Waters, 2018, 8(2):130-140.
doi: 10.1080/20442041.2018.1469335     URL    
[49] Redfield A C, Ketchum B H, Richards F A.The influence of organism on the composition of seawater[M]∥Hill M N, ed. The Sea (Vol 2). New York: Interscience Publishers, 1963.
[50] Seitzinger S P, Harrison J A, Dumont E, et al. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application[J]. Global Biogeochemical Cycles, 2005, 19(4): 1-11.
doi: 10.1029/2005GB002606     URL    
[51] Guildford S J, Hecky R E.Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?[J]. Limnology and Oceanography, 2000, 45(6): 1 213-1 223.
doi: 10.4319/lo.2000.45.6.1213     URL    
[52] Cook P L M, Aldridge K T, Lamontagne S, et al. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system[J]. Biogeochemistry, 2010, 99(1): 49-63.
doi: 10.1007/s10533-009-9389-6     URL    
[53] Vanni M J, Renwick W H, Bowling A M, et al. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use[J]. Freshwater Biology, 2011, 56(5): 791-811.
doi: 10.1111/j.1365-2427.2010.02436.x     URL    
[54] Grantz E M, Haggard B E, Scott J T.Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs[J]. Limnology and Oceanography, 2014, 59(6): 2 203-2 216.
doi: 10.4319/lo.2014.59.6.2203     URL    
[55] Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences, 2008, 105(32): 11 254-11 258.
doi: 10.1073/pnas.0805108105     URL     pmid: 18667696
[56] Liu Congqiang, Wang Fushun, Wang Yuchun, et al. Responses of aquatic environment to river damming—From the geochemical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4): 384-396.
[刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384-396.]
doi: 10.3969/j.issn.1004-8227.2009.04.015     URL    
[57] Turner R E.Element ratios and aquatic food webs[J]. Estuaries, 2002, 25(4):694-703.
doi: 10.1007/BF02804900     URL    
[58] Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(6 623):385-388.
doi: 10.1038/386385a0    
[59] Yu Lihua, Li Daoji, Fang Tao, et al. Distributions of DSi, DIN and changes of Si∶ N ratio on summer in Changjiang Estuary before and after storage of Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2006, 26(9):2 817-2 824.
[余立华, 李道季, 方涛, 等. 三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化[J]. 生态学报, 2006, 26(9): 2 817-2 824.]
doi: 10.3321/j.issn:1000-0933.2006.09.006     URL    
[60] Assmy P, Smetacek V, Montresor M, et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current[J]. Proceedings of the National Academy of Sciences, 2013, 110(51): 20 633-20 638.
doi: 10.1073/pnas.1309345110     URL     pmid: 24248337
[61] Wang B L, Liu C Q, Maberly S C, et al. Coupling of carbon and silicon geochemical cycles in rivers and lakes[J]. Scientific Reports, 2016, 6:1-6.
doi: 10.1038/s41598-016-0001-8     URL     pmid: 27920424
[62] Li T, Li S, Bush R T, et al. Extreme drought decouples silicon and carbon geochemical linkages in lakes[J]. Science of the Total Environment, 2018, 634:1 184-1 191.
doi: 10.1016/j.scitotenv.2018.04.074     URL     pmid: 29710624
[63] Xue D, Botte J, De B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater[J]. Water Research, 2009, 43(5): 1 159-1 170.
doi: 10.1016/j.watres.2008.12.048     URL     pmid: 19157489
[64] Liu Wen, Pu Junbing, Yu Shi, et al. Preliminary research on the feature of dissolved inorganic carbon in Wulixia Reservoir in summer, Guangxi, China[J]. Environmental Science, 2014, 35(8):2 959-2 966.
[刘文, 蒲俊兵, 于奭, 等. 广西五里峡水库夏季溶解无机碳行为的初步研究[J]. 环境科学, 2014, 35(8):2 959-2 966.]
doi: 10.13227/j.hjkx.2014.08.017     URL    
[65] Peng Xi, Liu Congqiang, Wang Baoli, et al. The impact of damming on geochemical behavior of dissolved inorganic carbon in a karst river[J]. Chinese Science Bulletin, 2014, 59(4/5): 2 348-2 355.
[彭希, 刘丛强, 王宝利, 等. 筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响[J]. 科学通报, 2014, 59(4/5): 2 348-2 355.]
doi: 10.1360/csb2014-59-4-5-366     URL    
[66] Yu Yuanxiu, Liu Congqiang, Wang Fushun, et al. Dissolved inorganic carbon and its isotopic differentiation characteristic in cascade reservoirs in Wujiang River Basin[J]. Chinese Science Bulletin, 2008, 53(16): 1 935-1 941.
[喻元秀, 刘丛强, 汪福顺, 等. 乌江流域梯级水库中溶解无机碳及其同位素分异特征[J]. 科学通报, 2008, 53(16): 1 935-1 941.]
doi: 10.1360/csb2008-53-16-1935     URL    
[67] Tang Yongchun, Xu Piao, Yang Zhengjian, et al. Spatial difference and causes analysis of the δ15N of suspended particulate matter in the Lancang River Basin[J]. Environmental Science, 2018,39(11): 1-16. DOI:10.13227/j.hjkx.201804065.
[唐咏春, 徐飘, 杨正健, 等. 澜沧江流域水体悬浮颗粒物δ15N 空间差异及成因分析[J]. 环境科学, 2018,39(11): 1-16. DOI: 10.13227/j.hjkx.201804065.]
URL    
[68] Ding T P, Gao J F, Tian S H, et al. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6 672-6 689.
doi: 10.1016/j.gca.2011.07.040     URL    
[69] Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
doi: 10.1016/S0016-7037(03)00264-3     URL    
[70] Panizzo V N, Swann G E A, Mackay A W, et al. Insights into the transfer of silicon isotopes into the sediment record[J]. Biogeosciences, 2016, 13(1): 147-157.
doi: 10.5194/bg-13-147-2016     URL    
[71] Opfergelt S, Eiriksdottir E S, Burton K W, et al. Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 73-82.
doi: 10.1016/j.epsl.2011.02.043     URL    
[1] 李佳霖, 秦松. 海洋微微型蓝细菌分子生态学研究进展[J]. 地球科学进展, 2015, 30(4): 477-486.
[2] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
[3] 宋洪军,季如宝,王宗灵. 近海浮游植物水华动力学和生物气候学研究综述[J]. 地球科学进展, 2011, 26(3): 257-265.
[4] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[5] 刘诚刚,宁修仁,郝锵,乐凤凤. 海洋浮游植物溶解有机碳释放研究进展[J]. 地球科学进展, 2010, 25(2): 123-132.
[6] 陈纪新,黄邦钦,刘媛,曹振锐,洪华生. 应用特征光合色素研究东海和南海北部浮游植物的群落结构[J]. 地球科学进展, 2006, 21(7): 738-746.
[7] 孙军;宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939-945.
[8] 张运林;秦伯强;陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.
[9] 侯立军;刘敏;许世远;欧冬妮;刘巧梅;刘华林;蒋海燕. 潮滩生态系统中生源要素氮的生物地球化学过程研究综述[J]. 地球科学进展, 2004, 19(5): 774-781.
[10] 魏皓,赵亮,武建平. 浮游植物动力学模型及其在海域富营养化研究中的应用[J]. 地球科学进展, 2001, 16(2): 220-225.
阅读次数
全文


摘要