[1] |
Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5(5): 477-501.
doi: 10.1146/annurev-marine-121211-172346
URL
pmid: 22809182
|
[2] |
Regnier P, Friedlingstein P, Ciais P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
doi: 10.1038/ngeo1830
URL
|
[3] |
Beusen A H W, Bouwman A F, Van Beek L P H, et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum[J]. Biogeosciences, 2016, 13(8): 2 441-2 451.
doi: 10.5194/bg-13-2441-2016
URL
|
[4] |
Frings P J, Clymans W, Fontorbe G, et al. The continental Si cycle and its impact on the ocean Si isotope budget[J]. Chemical Geology, 2016, 425: 12-36.
doi: 10.1016/j.chemgeo.2016.01.020
URL
|
[5] |
Lehner B, Liermann C, Revenga C, et al. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011, 9(9): 494-502.
doi: 10.1890/100125
URL
|
[6] |
Syvitski J P M, Vörösmarty C J, Kettner A J, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 2005, 308(5 720): 376-380.
doi: 10.1126/science.1109454
URL
pmid: 15831750
|
[7] |
Hughes H J, Bouillon S, André L,et al. The effects of weathering variability. The effects of weathering variability and anthropogenic pressures upon silicon cycling in an intertropical watershed(Tana River,Kenya)[J]. Chemical Geology, 2012, 308/309(2): 18-25.
doi: 10.1016/j.chemgeo.2012.03.016
URL
|
[8] |
Carey J C, Fulweiler R W.Human activities directly alter watershed dissolved silica fluxes[J]. Biogeochemistry, 2012, 111(1/3):125-138.
doi: 10.1007/s10533-011-9671-2
URL
|
[9] |
Meybeck M.Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282(4): 401-450.
doi: 10.2475/ajs.282.4.401
URL
|
[10] |
Marx A, Dusek J, Jankovec J, et al. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 2017, 55(2):560-585.
doi: 10.1002/2016RG000547
URL
|
[11] |
Han H, Lu X, Burger D F, et al. Nitrogen dynamics at the sediment-water interface in a tropical reservoir[J]. Ecological Engineering, 2014, 73:146-153.
doi: 10.1016/j.ecoleng.2014.09.016
URL
|
[12] |
Maavara T, Parsons C T, Ridenour C, et al. Global phosphorus retention by river damming[J]. Proceedings of the National Academy of Science, 2015, 112(51):15 603-15 608.
doi: 10.1073/pnas.1511797112
URL
pmid: 26644553
|
[13] |
Maavara T, Dürr H H, Cappellen P Van.Worldwide retention of nutrient silicon by river damming: From sparse data set to global estimate[J]. Global Biogeochemical Cycles, 2014, 28(8): 842-855.
doi: 10.1002/2014GB004875
URL
|
[14] |
Maavara T, Lauerwald R, Regnier P, et al. Global perturbation of organic carbon cycling by river damming[J]. Nature Communications, 2017, 8:15 347. DOI:10.1038/ncomms15347.
doi: 10.1038/ncomms15347
URL
pmid: 28513580
|
[15] |
Schindler D.Evolution of phosphorus limitation in lakes[J]. Science, 1977, 195(4 275): 260-262.
doi: 10.1126/science.195.4275.260
URL
|
[16] |
Hecky R, Kilham P.Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment[J]. Limnology and Oceanography, 1988, 33(4): 796-822.
doi: 10.4319/lo.1988.33.4part2.0796
URL
|
[17] |
Han H J, Los F J, Burger D F, et al. A modelling approach to determine systematic nitrogen transformations in a tropical reservoir[J]. Ecological Engineering, 2016, 94: 37-49.
doi: 10.1016/j.ecoleng.2016.05.054
URL
|
[18] |
Peng J F, Wang B Z, Song Y H, et al. Adsorption and release of phosphorus in the surface sediment of a wastewater stabilization pond[J]. Ecological Engineering, 2007, 31: 92-97.
doi: 10.1016/j.ecoleng.2007.06.005
URL
|
[19] |
Vollenweider R A.Input-output models-With special reference to the phosphorus loading concept in limnology[J]. Schweizerische Zeitschrift für Hydrologie, 1975, 37(1): 53-84.
|
[20] |
Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372.
doi: 10.1029/95GB01070
URL
|
[21] |
Harrison J A, Caraco N, Seitzinger S P.Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI: 10.1029/2004GB002357.
doi: 10.1029/2004GB002357
URL
|
[22] |
Harrison J A, Maranger R J, Alexander R B, et al. The regional and global significance of nitrogen removal in lakes and reservoirs[J]. Biogeochemistry, 2009, 93(1/2): 143-157.
doi: 10.1007/s10533-008-9272-x
URL
|
[23] |
Vörösmarty C J, Meybeck M, Fekete B, et al. Anthropogenic sediment retention: Major global impact from registered river impoundments[J]. Global and Planetary Change, 2003, 39(1):169-190.
doi: 10.1016/S0921-8181(03)00023-7
URL
|
[24] |
Ouyang W, Hao F, Song K, et al. Cascade Dam-induced hydrological disturbance and environmental impact in the upper stream of the Yellow River[J]. Water Resources Management, 2011, 25(3): 913-927.
doi: 10.1007/s11269-010-9733-6
URL
|
[25] |
Bartoszek L, Koszelnik P.The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs[J]. Springerplus, 2016, 5:1 157. DOI: 10.1186/s4006401628367.
doi: 10.1186/s40064-016-2836-7
URL
pmid: 4958087
|
[26] |
Némery J, Gratiot N, Doan P T K, et al. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir[J]. Aquatic Sciences, 2016, 78(1):171-189.
doi: 10.1007/s00027-015-0416-5
URL
|
[27] |
Teodoru C, Wehrli B.Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River[J]. Biogeochemistry, 2005, 76(3): 539-565.
doi: 10.1007/s10533-005-0230-6
URL
|
[28] |
Edokpa D A, Evans M G, Rothwell J J.Reservoirs are hotspots of nitrogen cycling in peatland catchments[J]. Hydrological Processes, 2016, 30(20):3 666-3 681.
doi: 10.1002/hyp.10892
URL
|
[29] |
Ran X, Bouwman L, Yu Z, et al. Nitrogen transport, transformation, and retention in the Three Gorges Reservoir: A mass balance approach[J]. Limnology and Oceanography, 2017, 62(5): 2 323-2 337.
doi: 10.1002/lno.10568
URL
|
[30] |
Jossette G, Leporcq B, Sanchez N, et al. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry, 1999, 47(2): 119-146.
doi: 10.1007/BF00994919
URL
|
[31] |
Bouillon S, Abril G, Borges A V, et al. Distribution, origin and cycling of carbon in the Tana River (Kenya): A dry season basin-scale survey from headwaters to the delta[J]. Biogeosciences, 2009, 6(11): 2 475-2 493.
doi: 10.5194/bg-6-2475-2009
URL
|
[32] |
Xiang Peng, Wang Shilu, Lu Weiqi, et al. Distribution and retention efficiency of Nitrogen and phosphorus in cascade reservoirs in Wujiang River Basin[J]. Earth and Environment, 2016, 44(5): 492-500.
|
|
[向鹏, 王仕禄, 卢玮琦, 等. 乌江流域梯级水库的氮磷分布及其滞留效率研究[J]. 地球与环境, 2016, 44(5): 492-500.]
doi: 10.14050/j.cnki.1672-9250.2016.05.002
URL
|
[33] |
Liu Meibing, Chen Xingwei, Chen Ying.Multiple time-scale analysis of nitrogen retention characteristics and influencing factors in Shanmei Reservoir[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2 348-2 356.
|
|
[刘梅冰, 陈兴伟, 陈莹. 山美水库氮营养盐滞留特征及其影响因素的多时间尺度分析[J]. 应用生态学报, 2016, 27(7): 2 348-2 356.]
doi: 10.13287/j.1001-9332.201607.016
URL
|
[34] |
Wang S H, Huggins D G, Frees L, et al. An integrated modeling approach to total watershed management: Water quality and watershed assessment of Cheney Reservoir, Kansas, USA[J]. Water Air & Soil Pollution, 2005, 164(1/4): 1-19.
doi: 10.1007/s11270-005-1658-y
URL
|
[35] |
Ran X B, Chen H T, Wei J F, et al. Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China[J]. Marine and Freshwater Research, 2016, 67(2): 173-186.
doi: 10.1071/MF14344
URL
|
[36] |
Lu T, Chen N, Duan S, et al. Hydrological controls on cascade reservoirs regulating phosphorus retention and downriver fluxes[J]. Environmental Science and Pollution Research, 2016, 23(23): 24 166-24 177.
doi: 10.1007/s11356-016-7397-3
URL
pmid: 27646444
|
[37] |
Lin Guoen, Wang Tian, Lin Qiuqi, et al. Spatial pattern and temporal dynamics of limnological variables in Liuxihe Reservoir, Guangdong[J]. Journal of Lake Sciences, 2009, 21(3): 387-394.
|
|
[林国恩, 望甜, 林秋奇, 等. 广东流溪河水库湖沼学变量的时空动态特征[J]. 湖泊科学, 2009, 21(3) :387-394.]
doi: 10.3321/j.issn:1003-5427.2009.03.012
URL
|
[38] |
Shen Xiao, Du Xinzhong, Jia Dongmin, et al. The influence of upstream input on phosphorus retention in Miyun Reservoir[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3 114-3 120.
|
|
[申校, 杜新忠, 贾东民, 等. 入库河流输入对密云水库磷滞留过程的影响分析[J]. 环境科学学报, 2015, 35(10): 3 114-3 120.]
doi: 10.13671/j.hjkxxb.2015.0010
URL
|
[39] |
Brigault S, Ruban V.External phosphorus load estimates and P-budget for the hydroelectric reservoir of Bort-Les-Orgues, France[J]. Water Air & Soil Pollution, 2000, 119(1/4): 91-103.
doi: 10.1023/A:1005186122618
URL
|
[40] |
Hart B T, Van D W, Djuangsih N.Nutrient budget for Saguling Reservoir, West Java, Indonesia[J]. Water Research, 2002, 36(8): 2 152-2 160.
doi: 10.1016/S0043-1354(01)00428-6
URL
pmid: 12092591
|
[41] |
Maavara T, Hood J L A, North R L, et al. Reactive silicon dynamics in a large prairie reservoir (Lake Diefenbaker, Saskatchewan)[J]. Journal of Great Lakes Research, 2015, 41(2):100-109.
doi: 10.1016/j.jglr.2015.04.003
URL
|
[42] |
Ran X, Yu Z, Chen H, et al. Silicon and sediment transport of the Changjiang River (Yangtze River): Could the Three Gorges Reservoir be a filter?[J]. Environmental Earth Sciences, 2013, 70(4): 1 881-1 893.
doi: 10.1007/s12665-013-2275-5
URL
|
[43] |
Ran X, Yu Z, Yao Q, et al. Silica retention in the Three Gorges Reservoir[J]. Biogeochemistry, 2013, 112(1/3): 209-228.
doi: 10.1007/s10533-012-9717-0
URL
|
[44] |
Wang F, Yu Y, Liu C, et al. Dissolved silicate retention and transport in cascade reservoirs in Karst area, Southwest China[J]. Science of the Total Environment, 2010, 408(7): 1 667-1 675.
doi: 10.1016/j.scitotenv.2010.01.017
URL
pmid: 20116832
|
[45] |
McGinnis D F, Bocaniov S, Teodoru C, et al. Silica retention in the Iron Gate I reservoir on the Danube River: The role of side bays as nutrient sinks[J]. River Research and Applications, 2006, 22(4): 441-456.
doi: 10.1002/rra.916
URL
|
[46] |
Friedl G, Teodoru C, Wehrli B.Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica?[J]. Biogeochemistry, 2004, 68(1): 21-32.
doi: 10.1023/B:BIOG.0000025738.67183.c0
URL
|
[47] |
Li zhe, Chen Yongbai, Li Chong, et al. Advances of eco-environmental effects and adaptive management in river cascading development[J]. Advances in Earth Science, 2018, 33(7): 675-686.
|
|
[李哲, 陈永柏, 李翀, 等. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.]
URL
|
[48] |
Wang F, Maberly C S, Wang B, et al. Effects of dams on riverine biogeochemical cycling and ecology[J]. Inland Waters, 2018, 8(2):130-140.
doi: 10.1080/20442041.2018.1469335
URL
|
[49] |
Redfield A C, Ketchum B H, Richards F A.The influence of organism on the composition of seawater[M]∥Hill M N, ed. The Sea (Vol 2). New York: Interscience Publishers, 1963.
|
[50] |
Seitzinger S P, Harrison J A, Dumont E, et al. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application[J]. Global Biogeochemical Cycles, 2005, 19(4): 1-11.
doi: 10.1029/2005GB002606
URL
|
[51] |
Guildford S J, Hecky R E.Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?[J]. Limnology and Oceanography, 2000, 45(6): 1 213-1 223.
doi: 10.4319/lo.2000.45.6.1213
URL
|
[52] |
Cook P L M, Aldridge K T, Lamontagne S, et al. Retention of nitrogen, phosphorus and silicon in a large semi-arid riverine lake system[J]. Biogeochemistry, 2010, 99(1): 49-63.
doi: 10.1007/s10533-009-9389-6
URL
|
[53] |
Vanni M J, Renwick W H, Bowling A M, et al. Nutrient stoichiometry of linked catchment-lake systems along a gradient of land use[J]. Freshwater Biology, 2011, 56(5): 791-811.
doi: 10.1111/j.1365-2427.2010.02436.x
URL
|
[54] |
Grantz E M, Haggard B E, Scott J T.Stoichiometric imbalance in rates of nitrogen and phosphorus retention, storage, and recycling can perpetuate nitrogen deficiency in highly-productive reservoirs[J]. Limnology and Oceanography, 2014, 59(6): 2 203-2 216.
doi: 10.4319/lo.2014.59.6.2203
URL
|
[55] |
Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences, 2008, 105(32): 11 254-11 258.
doi: 10.1073/pnas.0805108105
URL
pmid: 18667696
|
[56] |
Liu Congqiang, Wang Fushun, Wang Yuchun, et al. Responses of aquatic environment to river damming—From the geochemical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4): 384-396.
|
|
[刘丛强, 汪福顺, 王雨春, 等. 河流筑坝拦截的水环境响应——来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4): 384-396.]
doi: 10.3969/j.issn.1004-8227.2009.04.015
URL
|
[57] |
Turner R E.Element ratios and aquatic food webs[J]. Estuaries, 2002, 25(4):694-703.
doi: 10.1007/BF02804900
URL
|
[58] |
Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature, 1997, 386(6 623):385-388.
doi: 10.1038/386385a0
|
[59] |
Yu Lihua, Li Daoji, Fang Tao, et al. Distributions of DSi, DIN and changes of Si∶ N ratio on summer in Changjiang Estuary before and after storage of Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2006, 26(9):2 817-2 824.
|
|
[余立华, 李道季, 方涛, 等. 三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化[J]. 生态学报, 2006, 26(9): 2 817-2 824.]
doi: 10.3321/j.issn:1000-0933.2006.09.006
URL
|
[60] |
Assmy P, Smetacek V, Montresor M, et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current[J]. Proceedings of the National Academy of Sciences, 2013, 110(51): 20 633-20 638.
doi: 10.1073/pnas.1309345110
URL
pmid: 24248337
|
[61] |
Wang B L, Liu C Q, Maberly S C, et al. Coupling of carbon and silicon geochemical cycles in rivers and lakes[J]. Scientific Reports, 2016, 6:1-6.
doi: 10.1038/s41598-016-0001-8
URL
pmid: 27920424
|
[62] |
Li T, Li S, Bush R T, et al. Extreme drought decouples silicon and carbon geochemical linkages in lakes[J]. Science of the Total Environment, 2018, 634:1 184-1 191.
doi: 10.1016/j.scitotenv.2018.04.074
URL
pmid: 29710624
|
[63] |
Xue D, Botte J, De B, et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater[J]. Water Research, 2009, 43(5): 1 159-1 170.
doi: 10.1016/j.watres.2008.12.048
URL
pmid: 19157489
|
[64] |
Liu Wen, Pu Junbing, Yu Shi, et al. Preliminary research on the feature of dissolved inorganic carbon in Wulixia Reservoir in summer, Guangxi, China[J]. Environmental Science, 2014, 35(8):2 959-2 966.
|
|
[刘文, 蒲俊兵, 于奭, 等. 广西五里峡水库夏季溶解无机碳行为的初步研究[J]. 环境科学, 2014, 35(8):2 959-2 966.]
doi: 10.13227/j.hjkx.2014.08.017
URL
|
[65] |
Peng Xi, Liu Congqiang, Wang Baoli, et al. The impact of damming on geochemical behavior of dissolved inorganic carbon in a karst river[J]. Chinese Science Bulletin, 2014, 59(4/5): 2 348-2 355.
|
|
[彭希, 刘丛强, 王宝利, 等. 筑坝对喀斯特河流水体溶解性无机碳地球化学行为的影响[J]. 科学通报, 2014, 59(4/5): 2 348-2 355.]
doi: 10.1360/csb2014-59-4-5-366
URL
|
[66] |
Yu Yuanxiu, Liu Congqiang, Wang Fushun, et al. Dissolved inorganic carbon and its isotopic differentiation characteristic in cascade reservoirs in Wujiang River Basin[J]. Chinese Science Bulletin, 2008, 53(16): 1 935-1 941.
|
|
[喻元秀, 刘丛强, 汪福顺, 等. 乌江流域梯级水库中溶解无机碳及其同位素分异特征[J]. 科学通报, 2008, 53(16): 1 935-1 941.]
doi: 10.1360/csb2008-53-16-1935
URL
|
[67] |
Tang Yongchun, Xu Piao, Yang Zhengjian, et al. Spatial difference and causes analysis of the δ15N of suspended particulate matter in the Lancang River Basin[J]. Environmental Science, 2018,39(11): 1-16. DOI:10.13227/j.hjkx.201804065.
|
|
[唐咏春, 徐飘, 杨正健, 等. 澜沧江流域水体悬浮颗粒物δ15N 空间差异及成因分析[J]. 环境科学, 2018,39(11): 1-16. DOI: 10.13227/j.hjkx.201804065.]
URL
|
[68] |
Ding T P, Gao J F, Tian S H, et al. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River, China, with implications for the global silicon cycle[J]. Geochimica et Cosmochimica Acta, 2011, 75(21):6 672-6 689.
doi: 10.1016/j.gca.2011.07.040
URL
|
[69] |
Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 205-216.
doi: 10.1016/S0016-7037(03)00264-3
URL
|
[70] |
Panizzo V N, Swann G E A, Mackay A W, et al. Insights into the transfer of silicon isotopes into the sediment record[J]. Biogeosciences, 2016, 13(1): 147-157.
doi: 10.5194/bg-13-147-2016
URL
|
[71] |
Opfergelt S, Eiriksdottir E S, Burton K W, et al. Quantifying the impact of freshwater diatom productivity on silicon isotopes and silicon fluxes: Lake Myvatn, Iceland[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 73-82.
doi: 10.1016/j.epsl.2011.02.043
URL
|