地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 774 -781. doi: 10.11867/j.issn.1001-8166.2004.05.0774

综述与评述 上一篇    下一篇

潮滩生态系统中生源要素氮的生物地球化学过程研究综述
侯立军 1,2;刘敏 2;许世远 2;欧冬妮 2;刘巧梅 2;刘华林 2;蒋海燕 2   
  1. 华东师范大学河口海岸动力沉积和动力地貌综合国家重点实验室,上海 200062;华东师范大学地理系,上海 200062
  • 收稿日期:2003-06-30 修回日期:2003-11-07 出版日期:2004-12-20
  • 通讯作者: 侯立军(1975-),男,山东日照市人,博士后,主要从事环境地球化学和环境生态学研究. E-mail:E-mail: ljunhou@yahoo.com
  • 基金资助:

    国家自然科学基金重点项目“长江口滨岸潮滩复杂环境条件下物质循环研究”(编号:40131020);教育部高等学校骨干教师资助计划项目“长江口滨岸环境污染物动态交换、模型及环境效应”;上海市重点学科建设资助项目“长江口的生态系统健康与环境可持续发展的基础研究”资助.

ADVANCES IN THE STUDY ON NITROGEN BIOGEOCHEMISTRY IN TIDAL FLAT ECOSYSTEM

 HOU Li-jun 1,2, LIU Min 2, XU Shi-yuan 2, OU Dong-ni 2, LIU Qiao-mei 2, LIU Hua-lin 2, JIANG Hai-yan 2   

  1. 1.State Key Laboratory of Estuarine and Coastal Research,Shanghai 200062,China;2.Department of Geography, East China Normal University, Shanghai 200062, China
  • Received:2003-06-30 Revised:2003-11-07 Online:2004-12-20 Published:2004-10-01

海岸带潮滩生源要素生物地球化学循环过程是国际地圈生物圈计划(IGBP)、海岸带陆海交互作用(LOICZ)研究的重要内容,也是全球变化区域响应研究中的重要组成部分。在过去的10~20年之间,潮滩生源要素氮的生物地球化学循环研究得到了长足的发展。基于此,较为全面、系统地总结和分析了有关潮滩氮营养盐的来源、潮滩氮素的物理、化学和生物迁移转化过程及氮素地球化学循环过程中底栖生物效应等一系列研究成果,并提出了今后潮滩生源要素氮的生物地球化学循环研究重点和发展趋向。

Nutrient biogeochemical cycling in the tidal flat ecosystem is not only one of the key studying contents of IGBP and LOICZ projects, but also the important component in the study of global change and region Response. Coast and tidal flat is an open and complex ecosystem. A lot of nitrogen nutrient may be directly transported into coastal zone through riverine input, penetration of groundwater, atmospheric deposition and the exchange with offshore water. Some findings showed that atmospheric inputs made the main contribution to the source of nitrogen in the coastal and tidal flat ecosystem. In addition, the decomposition of organic matter accumulated in the tidal sediment is also an important source of nitrogen. In recent years, some researchers have tried to source nitrogen by using carbon and nitrogen isotopes in organic matter in the tidal flat ecosystem. Nitrogen cycling has the important and ecological significance to primary products in the tidal flat ecosystem. Therefore, the processes of nitrogen cycling in the tidal flat ecosystem, e.g. nitrogen fixation, nitrification and denitrifciation, have well been studied in the last decades. Many references reported the effects of environmental factors and sediment physiochemical parameters on the processes of nitrogen cycling including physical, chemical and biological process of nitrogen transportation and transformation. Benthic benthos is an important component of the tidal flat ecosystem, which plays a key role in the nitrogen cycling in the tidal flat ecosystem. It has been reported that benthic benthos had the important effects on the processes of nitrogen cycling in tidal flat. In addition, the trend of the study on nitrogen biogeochemistry cycling in the tidal flat ecosystem was also expatiated in the paper.

中图分类号: 

[1]Werner B T. Complexity in natural landform patterns[J]. Science, 1999, 284:102-104.
[2]Whitesides G M, Ismagilov R F. Complexity in chemistry[J]. Science, 1999,284:89-92.
[3]Goldenfeld N, Kadanoff L P. Simple lessons from complexity[J]. Science, 1999, 284:87-89.
[4]Cerwall H. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone[J]. AMBIO, 1990, 19:109-112.
[5]Sanger D M, Holland A F, Scott G I. Tidal creek and salt marsh sediments in south Carolina coastal estuarines: I. Distribution of trace metals[J]. Archives of Environmental Contamination and Toxicology, 1999, 37:445-457.
[6]Vitousek P M, Mooney H A, Lubchenco H A, et al. Human domination of Earth's ecosystem[J]. Science, 1997, 25:494-499.
[7]Bonsdorff E, Blomqvist E A, Mahila J,et al. Coastal eutrophication: Causes, consequences and perspectives in the Archipelago areas of the Northern Baltic Sea [J]. Estuarine, Coastal and Shelf Science, 1997, 44(Suppl.A):63-72.
[8]Klump J V. Biogeochemical cycling in an organic rich coastal marine basin-Ⅱ: Nutrient sediment-water exchange processes[J]. Geochimica et Cosmochimica, 1981, 45:101-121.
[9]Sahtschi P N. Chemical processes at the sediment-water interface[J].Marine Chemistry, 1990, 30:269-315.
[10]Wu Fengchang (吴丰昌), Wan Guojiang (万国江), Cai Yurong (蔡玉蓉). Biogeochemistry progresses at the sediment-water interface[J].Advances in Earth Science(地球科学进展), 1996, 11(2): 191-197(in Chinese).
[11]Jickells T D. Nutrient biogeochemistry of the coastal zone[J].Science, 1998, 281:217-222.
[12]Ren Ling (任玲), Yang Jun (杨军). Nitrogen nutrient cycling in marine environment and its modeling research[J].Advances in Earth Science(地球科学进展), 2000,15(1): 58-64(in Chinese).
[13]Paerl H W, Dennis R L, Whitall D R. Atmospheric deposition of nitrogen: Implications for nutrient over-enrichment of coastal waters[J]. Estuaries, 2002, 25:677-693. 
[14]Shen Zhiliang (沈志良). The study of nitrogen biogeochemistry in the Changjiang and its mouth: The main sources of inorganic nitrogen[J]. Marine Science(海洋科学), 2001,25(7):56(in Chinese).
[15]Shen Zhiliang (沈志良), Liu Qun (刘群), Zhang Shumei (张淑美), et al. The dominant controlling factors of high content inorganic nitrogen in the Changjiang river and its mouth[J]. Oceanologia et Limnologia Sinica(海洋与湖沼), 2001, 32(5): 465-473(in Chinese).
[16] Fogel M L, Sprague K, Gize A,et al. Digenesis of organic matter in Georgia salt marshes[J]. Estuarine, Coastal and Shelf Science, 1989, 28:211-230.
[17]Alongi D M, Tirendi F, Dixon P,et al. Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed delta[J].Estuarine, Coastal and Shelf Science, 1999, 48: 451-467.
[18]Goi M A,Thomas K A. Sources and transformations of organic matter in surface soils and sediments from a tidal estuary( north inlet, South Carolina USA)[J]. Estuaries, 2000, 23:548-564.  
[19]Riera P, Stal L J, Nieuwenhuize J. Heavy δ15N in intertidal benthic algae and invertebrates in the Scheldt estuary (the Netherlands): Effect of river nitrogen inputs[J]. Estuarine, Coastal and Shelf Science, 2000, 51:365-372.
[20]Middelburg J J, Nieuwenhuize J.Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary[J]. Marine Chemistry, 1998, 60:217-225.
[21]Thornton S F, Mcmauns J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay estuary, Scotland[J]. Estuarine, Coastal and Shelf Science, 1994, 38: 219-233.
[22]Andrews J E, Greenaway A M, Dennis P F. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica[J]. Estuarine, Coastal and Shelf Science, 1998, 46:743-756.
[23]Graham M C, Eaves M A, Farmer J G,et al. A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth estuary, Scotland[J].Estuarine, Coastal and Shelf Science, 2001, 52: 375-380.
[24]Howarth R W, Marino R, Lane J, et al. Nitrogen fixation in freshwater, estuarine  and marine ecosystem 1. Rates and importance[J].Limnology and Oceanography, 1988,33:669-687.
[25]Claret C, Marmonier P, Bravard J P. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river[J]. Aquatic Sciences, 1998, 60:33-55.
[26]Schinner F, Ohlinger R, Kandeler E, et al. Methods in Soil Biology[M].Berlin: Springer, 1996122-134.
[27]Casselman M E, Patrick W H Jr,Delaune R D,et al. Nitrogen fixation in a gulf coast salt marsh[J]. Soil Science Society of America Journal, 1981, 45:51-56.
[28]Teal J M,Valiela I, Berlo D. Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments[J]. Limnology and Oceanography, 1979, 24: 126-132.
[29]Capone D G, Budin J M. Nitrogen fixation associated with rinsed roots and rhizomes of the eelgrass zostera marina[J]. Plant Physiology, 1982, 70:1 601-1 604.
[30]Jones K. Nitrogen fixation in the temperate estuarine intertidal sediments of the River Lune[J]. Limnology and Oceanography, 1982, 27:455-460.
[31]Carpenter E J,Van Raalte C D,Valiela I. Nitrogen fixation by algae in a Massachusetts salt marsh[J]. Limnology and Oceanography,1978, 23:318-327.
[32]Abd Aziz S A, Nedwell D B. The nitrogen cycle of an east coast, UK saltmarsh Ⅱ. Nitrogen fixation, nitrification, denitrification, tidal exchange[J]. Estuarine, Coastal and Shelf Science, 1986, 22:689-704. 
[33]Bebout B M, Paerl H W, Crocker K M, et al. Diel interactions of oxygen photosynthesis and N2-fixation (acetylene reduction) in a marine microbial mat community[J]. Applied and Environmental Microbiology, 1987, 53:2 353-2 362.
[34]Currin C A, Joye S B, Paerl H W. Diel rates of N2-fixation and dinitrification in a transplanted Spartina alterniflora marsh: Implications for N-flux dynamics[J]. Estuarine, Coastal and Shelf Science, 1996, 42:597-616.
[35]Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiology Review, 1999, 23:563-590.
[36]Rocha C. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary[J]. Limnology and Oceanogrphy, 1998, 43:823-831.
[37]Vouvé F, Guiraud G, Mariol C, et al. NH+4 turnover in intertidal sediment of Marennes-Oléron bay (France): Effect of sediment temperature[J].Oceanologica Acta, 2000, 23:575-584.
[38]Bowden W B. A nitrogen-15 isotope dilution study of ammonium production and consumption in a marsh sediment[J]. Limnology and Oceanography, 1984, 29: 1 004-1 015.
[39]Sumi T, Koike I. Estimation of ammonification and ammonium assimilation in surficial coastal and estuarine sediments[J].Limnology and Oceanography, 1990, 35:270-286.
[40]De Bie J M, Starink M, Boschker H,et al. Nitrification in the Schelde estuary: Methodological aspects and factors influence its activity[J].FEMS Microbiology Ecology, 2002, 42:99-107.
[41]Laima M, Brossard D, Dauriau P G,et al. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of  Marennes-Oléron Bay, France[J]. Marine Environmental research, 2002, 53:381-402.
[42]Gardner W S, Seitzinger S P, Malczyk J M. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux? [J]. Estuaries, 1991, 14:157-166.
[43]Rysgaard S,Thastum P, Dalsggard T, et al. Effects of salinity on NH+4 adsorption capacity, nitrification, and denitrification in Danish estuarine sediment[J]. Estuaries, 1999, 22:21-30.
[44]Seitzinger S P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance[J].Limnology and Oceanography, 1988, 33: 702-724.
[45]Peng Xiaotong (彭晓彤), Zhou Huaiyang (周怀阳). Advance in denitrification research in coastal sediments[J].Marine Science(海洋科学), 2002,26(5):31-34(in Chinese).
[46]Eyre B D, Rysgaard S, Dalsgaard T, et al. Comparison of isotope paring and N2:Ar methods for measuring sediment denitrification- assumption, modifications, and implications[J]. Estuaries, 2002, 25:1 077-1 087.
[47]Rivera-Monroy V H, Twilley R. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico)[J]. Limnology and Oceanolography, 1996, 41:284-296.
[48]An S, Joye S B. An improved gas chromatographic method for measuring nitrogen, oxygen, argon and methane in gas or liquid samples[J].Marine Chemistry, 1997, 59: 63-70.
[49]Kana T M, Darkangelo C, Hunt M D, et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2,O2 and Ar in environmental samples[J].Analytical Chemistry, 1994, 66: 4 166-4 170.
[50]Kana T M, Sullivan M B, Cornwell J C, et al. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry[J]. Limnology and Oceanography, 1998, 43: 334-339.
[51]Smith L K, Sartoris J J, Thullen J S, et al. Investigation of denitrification rates in an ammonia-dominated constructed wastewater treatment wetland [J]. Wetlands, 2000, 20: 684-696.
[52]Nowicki B L. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique[J].Estuarine, Coastal and Shelf Science, 1994, 38:137-156.
[53]Koch M S, Maltby E, Oliver G A, et al. Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in south-west England[J]. Estuarine, Coastal and Shelf Science, 1992, 34:471-485.
[54]Coney D J, Stockenberg A, Carman R, et al. Sediment-water nutrient fluxes in the Gulf of Finland, Baltic Sea[J]. Estuarine, Coastal and Shelf Science, 1997, 45:591-598.
[55]Christensen P B, Sorensen J. Temporal variation of denitrification activity in plant-covered littoral sediment from Lake Hampen, Denmar[J]. Applied Environmental, Microbiology, 1986, 51:1 174-1 179.
[56]Joye S B, Hollibaugh J T. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments[J]. Science, 1995, 270:623-625.
[57]Underhill S E, Prosser J I. Surface attachment of nitrifying bacteria and their inhibition by potassium ethylxanthate[J]. Microbial Ecology, 1987, 14:129-139.
[58]Rosenfeld J K. Ammonium adsorption in nearshore anoxic sediments[J].Limnology and Oceanography, 1979, 24:356-364.
[59]Seitzinger S P, Gardner W S, Spratt A K. The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling[J].Estuaries, 1991, 14:167-174.
[60]Hou Lijun, Liu Min, Jiang Haiyan, et al. Ammonium adsorption on tidal flat surface sediments from the Yangtze estuary[J]. Environmental Geology, 2003, 45(1):72-78.
[61]Boatman C D, Murray J W. Modeling exchangeable NH+4 adsorption in marine sediments: Process and controls of adsorption[J].Limnology and Oceanography, 1984, 27:99-110.
[62]Hou Lijun (侯立军), Liu Min (刘敏), Jiang Haiyan (蒋海燕), et al. Ammonium adsorption isotherm of the estuarine tidal flat sediments[J].Environmental Chemistry(环境化学), 2003, 22:568-572(in Chinese).
[63]Simon N S, Kennedy M M. The distribution of nitrogen species and adsorption of ammonium in sediments from the tidal Potomac river and estuary[J].Estuarine, Coastal and Shelf Science, 1987, 25: 11-26.
[64]Morin J, Morse J W. Ammonium release from resuspended sediments in the Laguna Madre estuary[J].Marine Chemistry, 1999, 65:97-110.
[65]Liu Min (刘敏), Hou Lijun (侯立军), Xu Shiyuan (许世远), et al. Nitrogen and phosphorus diffusive fluxes across the sediment-water interface in estuarine and coastal tidal flat[J]. Marine Environmental Science(海洋环境科学), 2001,20(3):19-23(in Chinese).
[66]Pan Jianming (潘建明), Zhou Huaiyang (周怀阳), Hu Chuanyu (扈传昱), et al. Nutrient profiles in interstitial water and flux in water-sediment interface of Zhujiang estuary of China in summer[J]. Acta Oceanologica Sinica(海洋学报),2002, 24(3):52-59(in Chinese).
[67]Ye Xiwen (叶曦雯), Liu Sumei (刘素美), Zhang Jing (张经). Nutrient in sediment pore water in tidal flat in Yalujiang estuary[J].Environmental Science(环境科学), 2002,23(3):92-96(in Chinese).
[68]Wang Dongqi (王东启), Chen Zhenlou (陈振楼), Qian Changping (钱嫦萍), et al. Effect of salinity on ammonium exchange behavior at the sediment-water interface in east Chongming tidal flat[J]. Marine Environmental Science(海洋环境科学), 2002, 21(3):5-9(in Chinese).
[69]Yu Kunyu (玉坤宇), Liu Sumei (刘素美), Zhang Jing (张经), et al. A study on the exchange of nutrient between sediment and sea water[J].Environmental Chemistry(环境化学),2001,20(5):425-434(in Chinese).
[70]Magalhäes C M, Bordalo A A, Wiebe W J. Temporal and spatial patterns of intertidal sediment-water nutrient and oxygen fluxes in the Doure River estuary, Portugal[J]. Marine Ecology Progress Series, 2002, 233:55-71.
[71]Falco M,Vale C. Sediment-water exchange of ammonium and phosphate in intertidal and subtidal areas of a mesotidal coastal lagoon (Ria Formosa)[J].Hydrobiology, 1998,(373~374):193-201.
[72]Bolalek J, Graca Z. Ammonia nitrogen at the water-sediment interface in Puck bay (Baltic Sea)[J]. Estuarine, Coastal and Shelf Science, 1996, 43:767-779.
[73]Asmus R M, Jensen M H, Jensen K M, et al. The role of water movement and spatial scaling for measurement of dissolved inorganic nitrogen fluxes in intertidal sediments[J]. Estuarine, Coastal and Shelf Science, 1998, 46:221-232.
[74]Yin K D, Harrison P J. Influence of flood and ebb tides on nutrient fluxes and chlorophyll on an intertidal flat[J]. Marine Ecology Progress Series, 2000, 196:75-85.
[75]Laima M, Brossard, Sauriau P, et al. The influence of long emersion on biota, ammonium fluxes and nitrification in intertidal sediments of Marennes-Oléron Bay, France[J].Marine Environmental Research, 2002, 53:381-402.
[76]Clavero V, Izquierdo J, Fernández J A, et al. Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain)[J]. Marine Ecology Progress Series, 2000, 198:51-60.
[77]Reise K. Tidal Flat Ecology: An Experiment Approach to Species Interactions[M]. Berlin: Springer-Verlag, 1985.  
[78]Trimmer M, Nedwell D B,Sivyer D B, et al. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp[J]. Marine Ecology Progress Series, 2000, 203: 67-80.
[79]Tuominen L, Makela K, Lehtonen K K, et al. Nutrient fluxes, porewater profiles and denitrification in sediment influenced by algal sedimentation and bioturbation by Monoporeia affinis[J]. Estuarine, Coastal and Shelf Science, 1999, 49:83-97.
[80]Sundbäck K, Miles A, Göransson E. Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study[J].Marine Ecology Progress Series, 2000, 200:59-76.
[81]Petersen N R, Jensen K. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna[J]. Limnology and Oceanography, 1997, 42: 529-537.
[82]Eriksson P G, Weisner S E B. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems[J]. Limnology and Oceanography, 1999, 44:1 993-1 999.
[83]Caffrey J M, Kemp W M. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments[J]. Limnology and Oceanography, 1992, 37:1 483-1 495.
[84]Wigand G, Finn M, Findlay S, et al. Submersed macrophyte effects on nutrient exchanges in riverine sediments[J]. Estuaries, 2001, 24:398-406.
[85]Gilbert F, Stora G, Bonin P. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: An in situ experiment approach[J]. Marine Ecology Progress Series, 1998, 163:99-107.
[86]Rysgaard S, Christensen P B, Nielsen L P. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna[J]. Marine Ecology Progress Series, 1995, 126:111-121. 
[87]Liu Min (刘敏), Hou Lijun (侯立军), Xu Shiyuan (许世远), et al. The effect of caving macrobenthos on the early diagenesis of nutrients in tidal flat sediments[J]. Shanghai Environmental Science(上海环境科学), 2003, 22(3):180-185(in Chinese).
[88]Mortimer R J G, Davey J T, Krom M D, et al. The effect of macrofauna on pore-water profiles and nutrient fluxes in the intertidal zone of the Humber estuary[J]. Estuarine, Coastal and Shelf Science, 1999, 48:683-699.
[89]Hughes D J, Atkinson R J A, Ansell A D. A field test of the effects of megafaunal burrows on benthic chamber measurements of sediment-water solute fluxes[J]. Marine Ecology Progress Series, 2000, 195:189-199.

[1] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[2] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[3] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[4] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[5] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[6] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[7] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[8] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[9] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[10] 邓浩俊, 陶贞, 高全洲, 姚玲, 冯雍, 李银花. 河流筑坝对生源物质循环的改变研究进展 *[J]. 地球科学进展, 2018, 33(12): 1237-1247.
[11] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[12] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[13] 周浙昆, 周忠和, 王怿. 陆地生态系统与地球环境的协同演化[J]. 地球科学进展, 2016, 31(7): 682-688.
[14] 孟伟庆, 胡蓓蓓, 刘百桥, 周俊. 基于生态系统的海洋管理:概念、原则、框架与实践途径[J]. 地球科学进展, 2016, 31(5): 461-470.
[15] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
阅读次数
全文


摘要