Please wait a minute...
img img
高级检索
地球科学进展  2004, Vol. 19 Issue (5): 767-773    DOI: 10.11867/j.issn.1001-8166.2004.05.0767
综述与评述     
高温高压岩石粒间熔体(和流体)形态学及其研究进展
侯渭;周文戈;谢鸿森;刘永刚
中国科学院地球化学研究所,贵州 贵阳 550002
THE MORPHOLOGY OF MELT (AND FLUID) IN INTERGRANULAR PORES OF ROCK UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE AND SOME DEVELOPMENT OF 
EXPERAMENTAL STUDIES OF THIS BRANCH
HOU Wei, ZHOU Wen-ge, XIE Hong-sen ,LIU Yong-gang
Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550002,China
 全文: PDF(98 KB)  
摘要:

高温高压岩石粒间熔体(和流体)形态学是现代岩石学的前沿领域之一。它主要研究高温高压下低程度部分熔融(或含少量流体)岩石中,矿物颗粒之间熔体(或流体)形态特征、连通性,以及与周围矿物相互关系的科学。研究中较多地借鉴了材料科学的研究方法,与界面物理化学密切相关。高温高压下地幔岩石粒间熔体(和流体)形态学的研究为探讨地幔部分熔融作用、软流圈和地幔交代作用的成因提供了重要的实验依据,已成为地球深部研究的重要手段之一。目前该学科还没有为我国广大地学工作者所熟悉。为此,对高温高压岩石粒间熔体(和流体)形态学的基础理论、实验方法,以及某些实验研究结果进行简要介绍,从而为读者对该学科的了解提供一些便利。

关键词: 高温高压岩石熔体流体二面角    
Abstract:

The morphology of melt (and fluid) in intergranular pores of rock under high-temperature and high-pressure is one of forward branches in modern petrology. In this branch, the morphological features of melt (and fluid) in intergranular pores of rock, interconnectivity, and the relation between melt (or fluid) and mineral crystals around them under high-temperature and high-pressure are studied. Some observational methods of materials science are  used in the study of this brach. The interfacial energy theory of physical chemistry is theoretical basis of this branch. The studies of morphology of melt (and fluid) in intergranular pores of mantle rock under high-temperature and high-pressure are very important for partial melting of mantle, asthenosphere, and metasomatism of mantle. In this paper, the theoretical basis, experimental method, and some results of this branch are reviewed.

Key words: High-temperature and high-pressure    Rock    Melt    Fluid    Dihedral angle.
收稿日期: 2003-08-13 出版日期: 2004-10-01
:  P59   
基金资助:

国家自然科学基金重大项目“地球内部几个重要界面物质的高温高压物性研究”(编号:10299040);中国科学院知识创新工程重要方向项目“同步辐射高压高温实验技术及地幔地核重要矿物的物性研究”(编号:KJCX2-SW-No.3)资助

通讯作者: 侯渭(1942-),女,山西省榆次人,研究员,主要从事地球深部物质科学研究.     E-mail: E-mail:xiehongsen@sina.com
作者简介: 侯渭(1942-),女,山西省榆次人,研究员,主要从事地球深部物质科学研究.E-mail:xiehongsen@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
侯渭
周文戈
刘永刚
谢鸿森

引用本文:

侯渭;周文戈;谢鸿森;刘永刚. 高温高压岩石粒间熔体(和流体)形态学及其研究进展[J]. 地球科学进展, 2004, 19(5): 767-773.

HOU Wei, ZHOU Wen-ge, XIE Hong-sen ,LIU Yong-gang. THE MORPHOLOGY OF MELT (AND FLUID) IN INTERGRANULAR PORES OF ROCK UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE AND SOME DEVELOPMENT OF 
EXPERAMENTAL STUDIES OF THIS BRANCH. Advances in Earth Science, 2004, 19(5): 767-773.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2004.05.0767        http://www.adearth.ac.cn/CN/Y2004/V19/I5/767

[1]Ringwood A E. Mineralogical constitution of the deep mantle[J]. Journal of Geophysical Research,1962, 67:4 005-4 010. 
[2]Green D H, Ringwood A E. The genesis of basalt magmas[J]. Contributiona to Mineralogy and Petrology,1967,15:103-190.
[3]Kushiro I. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt[J]. Annual Review on Earth and Planet Science,2001, 29:71-107.
[4]Jin Zhenming, Green W H , Zhou Yi. Melt topology in partially molten peridotite during ductile deformation[J]. Nature,1994,372:164-167.
[5]Ye Ruilun(叶瑞伦),Fang Yonghan(方永汉),Lu Peiwen(陆佩文). Physical Chemistry of Inorganic Material[M]. Beijing: Press of Chinese Architecture Industry,1986.103-115(in Chinese).
[6]Watson E B, Brenan J M. Fluids in the lithosphere,1. experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport,host-rock physical properties, and fluid inclusion formation[J].Earth and Planetary Science Letters,1987,85: 497-515. 
[7]Ikeda S, Toriumi M, Yoshida H,et al. Experimental study of the textural development of igneous rocks in the late stage of crystallization: The importance of interfacial energies under non-equilibrium conditions[J].Contributiona to Mineralogy and Petrology,2002, 142:397-415.
[8] Cmiral M, John D, Gerald F,et al. A clock look at dihedral angles and melt geometry in olivine-basalt aggregates: A TEM study[J]. Contributiona to Mineralogy and Petrology,1998,130:336-345.
[9]Laporte D, Watson E B. Experimental and theoretical constraints on melt distribution in crustal sources: The effect of crystalline anisotropy on melt interconnectivity[J]. Chemical Geology,1995, 124:161-184.
[10]Holness M B. The effect of feldspar on quartz- H2O -CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites[J]. Contributiona to Mineralogy and Petrology,1995,118(4):356-364.
[11]Hiraga T, Nishikawa O, Nagase T, et al. Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy[J]. Contributiona to Mineralogy and Petrology,2001, 141: 613-622.
[12]Harte B, Hunter R H, Kinny P D. Melt geometry, movement and crystallization,in relatrion to mantle dykes,veins and metasomatism[A]. In: Cox K G, McKenzie D, White R S,eds. Melting and Melt Movement in the Earth[C]. London:Oxford Science Publications,1993.1-21. 
[13]Waff  H S, Faul U H. Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts[J].Journal of Geophysical Research, 1992, 97(B6):9 003-9 014.
[14]Faul U H. Permeability of partially molten upper mantle rocks from experiments and percolation theory[J].Journal of Geophysical Research,1997,102(B5): 10 299-10 311.
[15]Schafer F N, Foley S F. The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals[J]. Contributiona to Mineralogy and Petrology,2002,143:245-261.
[16]Laporte D,Watson E B.Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600-800℃ and 2-10.5 kbar[J].Journal of Geology,1991, 99:873-878.
[17]Holness M B. Equilibrium dihedral angles in the system quartz-CO2-H2O-NaCl at 800℃ and 1-15kbar:The effects of pressure and fluid composition on the permeability of quartzites[J].Earth and Planetary Science Letters, 1992, 114: 171-184.
[18]Holness M B. Temperature and pressure dependence of quartz-aqueous fluid dihedral angles:The control of adsorbed H2O on the permeability of quartzites[J].Earth and Planetary Science Letters, 1993,117:363-377.
[19]Hiraga T, Nishikawa O, Nagase T,et al.Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy[J].Contributiona to Mineralogy and Petrology,2001, 141: 613-622.
[20] Bargen N V, Waff H S. Permeabilities, interfacial areas and curvatures of partially molten system: Results of numerical computations of equilibrium microstructures[J].Journal of Geophysical Research,1986,91(B9): 9 261-9 276. 
[21]Mo Xuanxue(莫宣学). Structure of magma melt[J].Geological Science and Technology Information(地质科技情报),1985,4(2):21-31(in Chinese).

[1] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[4] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[5] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[6] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[7] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[8] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
[9] 余星. 海底岩石地球化学研究中的“大数据”——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.
[10] 王翠芝. 紫金山铜金矿明矾石交代蚀变岩的岩石地球化学特征[J]. 地球科学进展, 2013, 28(8): 897-912.
[11] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[12] 蒋建军,代立东,李和平,单双明,胡海英,惠科石 . 地球内部物质电学性质原位测量的影响因素和导电机制——以地壳矿物为例[J]. 地球科学进展, 2013, 28(4): 455-466.
[13] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[14] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[15] 刘显凡,赵甫峰,李春晖,楚亚婷,邓碧平,宋祥峰,张民. 深部过程中地幔流体现实微观踪迹的实验证据[J]. 地球科学进展, 2012, 27(10): 1161-1166.