[1] |
Ciais P,Sabine C,Bala G,et al.Carbon and other biogeochemical cycles[M]∥Stocker T F,Qin D,Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013:465-570.
|
[2] |
Melnikov N B,O’Neill B C. Learning about the carbon cycle from global budget data[J]. Geophysical Research Letters,2006,33(2):L02705,doi:10.1029/2005GL023935.
|
[3] |
Lal R.Carbon sequestration[J]. Philosophical Transactions of the Royal Society B,2008,363(1 492):815-830.
|
[4] |
Le Quéré C, Andres R J, Boden T, et al.The global carbon budget 1959-2011[J]. Earth System Science Data, 2013,5(2):165-185.
|
[5] |
Le Quéré C,Peters G P,Andres R J, et al.Global carbon budget 2013[J]. Earth System Science Data,2013,6(1):235-263.
|
[6] |
Jacobson A R,Mikaloff Fletcher S E, Gruber N, et al. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results[J]. Global Biogeochemical Cycles, 2007, 21(1),doi:10.1029/2005GB002556.
|
[7] |
Piao S,Fang J,Ciais P,et al.The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7 241):1 009-1 013.
|
[8] |
Fang J, Chen A, Peng C, et al.Changes in forest biomass carbon storage in China between 1949 and 1988[J]. Science,2011,292(5 525):2 320-2 322.
|
[9] |
Gurney K R, Eckels W J.Regional trends in terrestrial carbon exchange and their seasonal signatures[J]. Tellus B,2011,63(3):328-339.
|
[10] |
Pan Y D,Birdsey R A,Fang J,et al.A large and persistent carbon sink in the world’s forest[J]. Science,2011,333(6 045):988-993.
|
[11] |
Regnier P,Friedlingstein P,Ciais P,et al.Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience,2013,6(8):597-603.
|
[12] |
Bellassen V,Luyssaert S.Managing forests in uncertain times[J]. Nature,2014,506(7 487):153-155.
|
[13] |
Higgins P A T,Harte J. Carbon cycle uncertainty increases climate change risks and mitigation challenges[J]. Journal of Climate,2012,25(21):7 660-7 668.
|
[14] |
Kurz W A,Stinson G,Rampley G J,et al.Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(5):1 551-1 555.
|
[15] |
Burgermeister J.Missing carbon mystery: Case solved?[J]. Nature Reports Climate Change, 2007,8:36-37.
|
[16] |
Zhao M,Running S W.Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5 994):940-943.
|
[17] |
Fang Jingyun,Piao Shilong,Zhao Shuqing.The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the northern hermisphere[J]. Acta Phytoecologica Sinica, 2001,25(2):594-602.
|
|
[方精云,朴世龙,赵淑清. CO2失汇与北半球中高纬度陆地生态系统碳汇[J]. 植物生态学报,2001,25(2):594-602.]
|
[18] |
Fang Jingyun.Forest biomass carbon pool of middle and high latitudes in the north hemisphere is probably much smaller than present estimates[J]. Acta Phytoecologica Sinica, 2000,24(5):635-638.
|
|
[方精云. 北半球中高纬度的森林碳库可能远小于目前的估算[J]. 植物生态学报,2000,24(5):635-638.]
|
[19] |
Lewis S.Tropical forests and the changing Earth system[J]. Philosophical Transactions of the Royal Society B,2006,361(1 465):195-210.
|
[20] |
Stephens B B,Gurney K R,Tans P P,et al.Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2[J]. Science,2007,316(5 832):1 732-1 735.
|
[21] |
Nadelhoffer K J,Emmett B A,Gundersen P,et al.Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature,1999,398(6 723): 145-148.
|
[22] |
Raupach M R,Gloor M,Sarmiento J L,et al.The declining uptake rate of atmospheric CO2 by land and ocean sinks[J]. Biogeosciences,2014,10(11):3 453-3 475.
|
[23] |
Yu Guirui,Wang Qiufeng,Fang Huajun.Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J].Quarternary Sciences,2014,34(4):683-698.
|
|
[于贵瑞,王秋凤,方华军.陆地生态系统碳—氮—水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究,2014,34(4):683-698.]
|
[24] |
Liu Zaihua.New progress and prospects in the study of rock-weathering-related carbon sink[J]. Chinese Science Bulletin,2012,57(2/3):95-102.
|
|
[刘再华. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报,2012,57(2/3):95-102.]
|
[25] |
Shi Yizhuo. IPCC Published Synthesis Report of the Fifth Assessment Report[N]. China Meteorological News, 2014-11-04(1).
|
|
[史一卓. IPCC发布第五次评估报告综合报告[N].中国气象报,2014-11-04(1).]
|
[26] |
Yu Li,Piao Shilong.Key scientific points on carbon and other biogeochemical cycles from the IPCC fifth assessment report[J]. Advances in Climate Change Research,2014,10(1):33-36.
|
|
[於琍,朴世龙. IPCC 第五次评估报告对碳循环及其他生物地球化学循环的最新认识[J]. 气候变化研究进展,2014,10(1):33-36.]
|
[27] |
Qin Dahe,Stocker T,259 Authors,et al. Highlights of the IPCC working group Ⅰ fifth assessment report[J]. Advances in Climate Change Research,2014,10(1):1-6.
|
|
[秦大河,Stocker T, 259名作者,等.IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展,2014,10(1):1-6.]
|
[28] |
Ciais P,Rayner P,Chevallier F,et al.Atmospheric inversions for estimating CO2 fluxes: Methods and perspectives[J]. Climate Change,2010,103(1/2):69-92.
|
[29] |
Cole J J,Prairie Y T,Caraco N F,et al.Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems,2007,10(1):171-184.
|
[30] |
Berner R A.A model for atmospheric CO2 over Phanerozoic time[J]. American Journal of Science,1991,291(4):339-376.
|
[31] |
Yuan D.The carbon cycle in karst[J]. Zeitschrift für Geomorphologie Neue Folge,1997,108(Suppl.):91-102.
|
[32] |
Jiang Z,Yuan D.CO2 source-sink in karst processes in karst areas of China[J].Episodes, 1999,22(1):33-35.
|
[33] |
Gombert P.Rolf of karstic dissolution in global carbon cycle[J].Global and Planetary Change,2002,32(1/2):177-184.
|
[34] |
Liu Z,Zhao J.Contribution of carbonate rock weathering to the atmospheric CO2 sink[J]. Environmental Geology,2000,39(9):1 053-1 058.
|
[35] |
Liu Z,Dreybrodt W,Wang H.A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99(3/4):162-172.
|
[36] |
Liu Z,Dreybrodt W.Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J].Science Bulletin,2015,60(2):182-191.
|
[37] |
White W B.Carbon fluxes in Karst aquifers: Sources, sinks, and the effect of storm flow[J].Acta Carsologica,2013,42(2/3):177-186.
|
[38] |
Lasaga A C.Chemical kinetics of water-rock interactions[J].Journal of Geophysical Research,1984,89(B6):4 009-4 025.
|
[39] |
Pokrovsky O S,Golubev S V,Schott J.Dissolution kinetics of calcite, dolomite and magnesite at 25 ℃ and 0 to 50 atm pCO2[J].Chemical Geology, 2005, 217(3/4):239-255.
|
[40] |
Yadav S K,Chakrapani G J.Dissolution kinetics of rock-water interactions and its implications[J].Current Science,2006,90(7):932-937.
|
[41] |
Jacobson A D, Blum J D, Chamberlain C P, et al.Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age[J].Geochimica et Cosmochimica Acta,2002,66(1):13-27.
|
[42] |
Liu Z,Li Q,Sun H,et al.Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO2 and dilution effects[J]. Journal of Hydrology,2007,337(1/2):207-223.
|
[43] |
Pu J,Yuan D,Zhao H,et al.Hydrochemical and pCO2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO2 and buffer effects[J].Environmental Earth Sciences,2014,71(9):4 039-4 049.
|
[44] |
Liu Z,Liu X,Liao C.Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool:Insights from high time-resolution monitoring of physico-chemistry of water[J].Environmental Geology,2008,55(6):1 159-1 168.
|
[45] |
Liu H,Liu Z,Macpherson G L,et al.Diurnal hydrochemical variations in a karst spring and two ponds, Maolan Karst experimental site, China: Biological pump effects[J].Journal of Hydrology,2015,522:407-417.
|
[46] |
Chen Bo,Yang Rui,Liu Zaihua,et al.Effects of aquatic phototrophs on diurnal hydrochemical and δ13CDIC variations in an epikarst spring and two spring-fed ponds of Laqiao, Maolan, SW China[J].Geochimica,2014,43(4):375-385.
|
|
[陈波,杨睿,刘再华,等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学,2014,43(4):375-385.]
|
[47] |
Jiang Y, Hu Y, Schirmer M.Biogeochemical controls on daily cycling of hydrochemistry and δ13C of dissolved inorganic carbon in a karst spring-fed pool[J].Journal of Hydrology,2013,478:157-168.
|
[48] |
Mo Xue,Pu Junbing,Yuan Daoxian,et al.Diel variation and influence factors of dissolved inorganic carbon in a surface creek fed by a karst subterranean stream in subtropical area, SW China[J].Quarternary Sciences,2014,34(4):873-880.
|
|
[莫雪,蒲俊兵,袁道先,等. 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素[J].第四纪研究,2014,34(4):873-880.]
|
[49] |
Mo Xue.Change Processes and Influence Factors of Dissolved Inorganic Carbon in a Surface Creek Fed by a Karst Subterranean Stream in Subtropical Karst Area, SW China[D]. Chongqing:Southwest University,2015.
|
|
[莫雪. 亚热带典型岩溶地表溪流溶解无机碳变化过程及其影响因素[D].重庆:西南大学,2015.]
|
[50] |
de Montety V, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J].Chemical Geology,2011,283(1/2):31-43.
|
[51] |
Hensley R,Cohen M J.Controls on solute transport in large spring-fed karst rivers[J].Limnology and Oceanography,2012,57(4):912-924.
|
[52] |
Planton S.IPCC 2013: Annex III: Glossary[M]∥Planton S.,Qin D,Stocker T F,et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013:1 447-1 466.
|
[53] |
Kasting J F.Theoretical constraints on oxygen a carbon dioxide concentrations in the Precambrian atmosphere[J].Precambrian Research,1987,34(3/4):205-229.
|
[54] |
Walker J C G. Precambrian evolution of the climate syste[J]. Palaeogeography, Palaeoclirnatology, Palaeoecology,1990,82(3/4):261-289.
|
[55] |
Köhler P,Hartmann J,Wolf-Gladrow D A. Geoengineering potential of artificially enhanced silicate weathering of olivine[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(47):20 228-20 233.
|
[56] |
Clarke L,Jiang K,Akimoto K,et al.Assessing transformation pathways[M]∥Edenhofer O,Pichs-Madruga R,Sokona Y,et al, eds. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2014:413-509.
|
[57] |
Liu Z,Dreybrodt W.Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+CO2⇔ H++HCO-3[J].Geochimica et Cosmochimica Acta,1997,61(14):2 879-2 889.
|
[58] |
Liu Z.Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink[J].Acta Geologica Sinica,2001,75(3):275-278.
|
[59] |
Cao J,Wang F.Reform of carbonate rock subsurface by Crustose Lichens and its environmental significance[J].Acta Geologica Sinica,1998,72(1):94-99.
|
[60] |
Wang Xingshan,Zhang Jie,Qin Zhong.Methods for measuring erosion rate of rock: An overview[J].Advances in Earth Sciences,2013,28(4):447-454.
|
|
[王兴山,张捷,秦中.岩石侵蚀速率测算方法研究综述及展望[J].地球科学进展,2013,28(4):447-454.]
|
[61] |
Lian Bin,Yuan Daoxian,Liu Zaihua.Effect of microbes on karstification in karst ecosystems[J].Chinese Science Bulletin,2011,56(26):2 158-2 161.
|
|
[连宾,袁道先,刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报,2011,56(26):2 158-2 161.]
|
[62] |
Curl R L.Carbon shifted but not sequestered[J].Science,2012,335(6 069):655.
|
[63] |
Holland H D,Lazar B,McCaffrey M. Evolution of the atmosphere and oceans[J].Nature, 1986,320(6 057):27-33.
|
[64] |
Oki T.The global water cycle[C]∥Browning K,Gurney R,eds. Global Energy and Water Cycle. Cambridge,UK: Cambridge University Press,1999:10-27.
|
[65] |
Zhang Cheng.Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin,2011,56(26):2 174-2 180.
|
|
[章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报,2011,56(26):2 174-2 180.]
|
[66] |
Chen Weijie,Ren Xiaodong,Xiong Kangning.Analysis on carbon fixation potentiality of rocky desert land: A case in Guizhou[J].Carsologica Sinica,2011, 3(2):163-168.
|
|
[陈伟杰,任晓东,熊康宁. 石漠化土地固碳潜力分析——以贵州为例[J].中国岩溶,2011, 3(2):163-168.]
|
[67] |
Zhao M,Liu Z,Li H,et al.Response of Dissolved Inorganic Carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments[J]. Geochimica et Cosmochimica Acta,2015,165:123-136.
|
[68] |
Zhang Xingbo,Jiang Yongjun,Qiu Shulan,et al.Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO2 sink[J].Advances in Earth Science,2012,27(4):466-476.
|
|
[张兴波,蒋勇军,邱述兰,等.农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展,2012,27(4):466-476.]
|
[69] |
Liu Changli,Zhang Yun,Song Chao,et al.The effect of farm manure on the dissolution of carbonate rocks and its eco-environmental impact[J].Geology in China,2009,36(6):1 395-1 404.
|
|
[刘长礼,张云,宋超,等. 施用农肥对岩溶溶蚀作用的影响及其生态环境意[J]. 中国地质,2009,36(6):1 395-1 404.]
|
[70] |
Li S,Calmels D,Han G,et al.Sulfuric acid as an agent of carbonate weathering constrained byδ13CDIC: Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008,270(3/4):189-199.
|
[71] |
Semhi K,Amiotte-Suchet P,Clauer N,et al.Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne Basin[J].Applied Geochemistry,2000,15(6):865-878.
|
[72] |
Macpherson G L.CO2 distribution in groundwater and the impact of groundwater extraction on the global C cycle[J].Chemical Geology,2009,264(1/4):328-336.
|