地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1081 -1090. doi: 10.11867/j.issn.1001-8166.2015.10.1081.

综述与评述 上一篇    下一篇

岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析
蒲俊兵, 蒋忠诚 *, 袁道先, 章程   
  1. 国土资源部、广西岩溶动力学重点实验室,中国地质科学院岩溶地质研究所,广西 桂林541004
  • 收稿日期:2015-06-29 修回日期:2015-08-21 出版日期:2015-10-20
  • 通讯作者: 蒋忠诚(1962-),男,湖南永州人,研究员,主要从事岩溶环境学方面的研究. E-mail:zhjiang@karst.ac.cn E-mail:junbingpu@karst.ac.cn
  • 基金资助:

    国家自然科学基金青年基金项目“岩溶水动态变化对岩溶水体水生植物碳汇效应的影响研究”(编号:41202185); 国家自然科学基金面上项目“岩溶地表水体水—气界面CO2交换通量的时空差异及其控制机制”(编号:41572234)资助

Some Opinions on Rock-Weathering-Related Carbon Sinks from the IPCC Fifth Assessment Report

Pu Junbing, Jiang Zhongcheng, Yuan Daoxian, Zhang Cheng   

  1. Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
  • Received:2015-06-29 Revised:2015-08-21 Online:2015-10-20 Published:2015-10-20

岩石风化碳汇特别是碳酸盐岩风化碳汇积极参与了全球碳循环过程。最新的IPCC第五次气候变化评估报告(AR5)指出全球岩石风化碳汇约为0.4 Pg C/a,占不平衡碳通量的1/2~1/3,并改进和区分了岩石风化碳汇的时间尺度,将硅酸盐岩风化碳汇时间尺度视为104~106年,碳酸盐岩风化碳汇时间尺度视为103~104年。AR5报告将岩石风化碳汇列为CO2移除的4种方法之一,其碳酸盐岩风化碳汇时间尺度属于百年至千年级。虽然AR5报告提出了前述新认识,但仍认为岩石风化碳汇速率太慢,未纳入全球碳收支核算。结合近年来的研究进展,讨论了AR5报告目前对岩石风化碳汇在通量、时间尺度和风化碳汇效应等方面认识的不足,提出了加强岩石风化碳汇速率、稳定性、影响因素和尺度转换方面的研究建议,以期进一步加强岩石风化碳汇研究工作,为平衡全球碳收支做出科学贡献。

Many recent researches show that rock-weathering-related carbon sink, especially carbonate-weathering-related carbon sink, actively takes part in the modern global carbon cycle, which might greatly contribute to balancing global carbon budget. Some new opinions on flux, time scale and effect of rock-weathering-related carbon sink were released in IPCC fifth Assessment Report (AR5). The flux of global rock-weathering-related carbon sink is about 0.4 Pg C/a in AR5 report, which accounts for about 1/2~1/3 of unbalanced global carbon budget. New time scale of global rock-weathering-related carbon sink was released. Time scale of silicate-weathering-related carbon sink is 104~ 106 year, while carbonate-weathering-related carbon sink (karst processes) is 103~104 year. A highlight is that rock-weathering-related carbon sink is listed as one of four carbon dioxide removal methods in AR5 report, whose time scale is 102~ 103 year. Although AR5 report released these new opinions, it is still thought that the rate of global rock-weathering-related carbon sink is currently too small to offset the rate at which fossil fuel CO2 is being emitted. According to many researches in the field of rock weathering science in the past decades, this review discussed the shortage in carbon flux, time scale and effect of rock-weathering-related carbon sink in AR5 report. Many recent researches indicated that the carbon sink originated from carbonate rock weathering was a fast and sensitive geochemical process, which showed multiple time scales (diel, seasonal, annual or storm event). A new model based on H2O carbonate-CO2-aquatic phototroph interaction was established, which coupled geological, land surface water, and submerged phototroph carbon cycle process. The global carbon sink from carbonate rock weathering in new model is 0.477 Pg C/a,which accounts for about 39%~59% of unbalanced global carbon budget. Some key scientific issues on rate, stability, controlling mechanisms and scaling of rock-weathering-related carbon sink should be vitally concerned in the future, which could greatly contribute to balancing the global carbon budget.

中图分类号: 

[1] Ciais P,Sabine C,Bala G,et al. Carbon and other biogeochemical cycles[M]∥Stocker T F,Qin D,Plattner G K,et al,eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013:465-570.
[2] Melnikov N B,O’Neill B C. Learning about the carbon cycle from global budget data[J]. Geophysical Research Letters,2006,33(2):L02705,doi:10.1029/2005GL023935.
[3] Lal R. Carbon sequestration[J]. Philosophical Transactions of the Royal Society B,2008,363(1 492):815-830.
[4] Le Quéré C, Andres R J, Boden T, et al. The global carbon budget 1959-2011[J]. Earth System Science Data, 2013,5(2):165-185.
[5] Le Quéré C,Peters G P,Andres R J, et al. Global carbon budget 2013[J]. Earth System Science Data,2013,6(1):235-263.
[6] Jacobson A R,Mikaloff Fletcher S E, Gruber N, et al. A joint atmosphere- ocean inversion for surface fluxes of carbon dioxide: 2. Regional results[J]. Global Biogeochemical Cycles, 2007, 21(1),doi:10.1029/2005GB002556.
[7] Piao S,Fang J,Ciais P,et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7 241):1 009-1 013.
[8] Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1988[J]. Science,2011,292(5 525):2 320-2 322.
[9] Gurney K R, Eckels W J. Regional trends in terrestrial carbon exchange and their seasonal signatures[J]. Tellus B,2011,63(3):328-339.
[10] Pan Y D,Birdsey R A,Fang J,et al. A large and persistent carbon sink in the world’s forest[J]. Science,2011,333(6 045):988-993.
[11] Regnier P,Friedlingstein P,Ciais P,et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience,2013,6(8):597-603.
[12] Bellassen V,Luyssaert S. Managing forests in uncertain times[J]. Nature,2014,506(7 487):153-155.
[13] Higgins P A T,Harte J. Carbon cycle uncertainty increases climate change risks and mitigation challenges[J]. Journal of Climate,2012,25(21):7 660-7 668.
[14] Kurz W A,Stinson G,Rampley G J,et al. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(5):1 551-1 555.
[15] Burgermeister J. Missing carbon mystery: Case solved?[J]. Nature Reports Climate Change, 2007,8:36-37.
[16] Zhao M,Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5 994):940-943.
[17] Fang Jingyun,Piao Shilong,Zhao Shuqing. The carbon sink: The role of the middle and high latitudes terrestrial ecosystems in the northern hermisphere[J]. Acta Phytoecologica Sinica, 2001,25(2):594-602. [方精云,朴世龙,赵淑清. CO 2 失汇与北半球中高纬度陆地生态系统碳汇[J]. 植物生态学报,2001,25(2):594-602.]
[18] Fang Jingyun. Forest biomass carbon pool of middle and high latitudes in the north hemisphere is probably much smaller than present estimates[J]. Acta Phytoecologica Sinica, 2000,24(5):635-638. [方精云. 北半球中高纬度的森林碳库可能远小于目前的估算[J]. 植物生态学报,2000,24(5):635-638.]
[19] Lewis S. Tropical forests and the changing Earth system[J]. Philosophical Transactions of the Royal Society B,2006,361(1 465):195-210.
[20] Stephens B B,Gurney K R,Tans P P,et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO 2 [J]. Science,2007,316(5 832):1 732-1 735.
[21] Nadelhoffer K J,Emmett B A,Gundersen P,et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature,1999,398(6 723): 145-148.
[22] Raupach M R,Gloor M,Sarmiento J L,et al. The declining uptake rate of atmospheric CO 2 by land and ocean sinks[J]. Biogeosciences,2014,10(11):3 453-3 475.
[23] Yu Guirui,Wang Qiufeng,Fang Huajun. Fundamental scientific issues, theoretical framework and relative research methods of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J].Quarternary Sciences,2014,34(4):683-698. [于贵瑞,王秋凤,方华军.陆地生态系统碳—氮—水耦合循环的基本科学问题、理论框架与研究方法[J]. 第四纪研究,2014,34(4):683-698.]
[24] Liu Zaihua. New progress and prospects in the study of rock-weathering-related carbon sink[J]. Chinese Science Bulletin,2012,57(2/3):95-102. [刘再华.岩石风化碳汇研究的最新进展和展望[J]. 科学通报,2012,57(2/3):95-102.]
[25] Shi Yizhuo. IPCC Published Synthesis Report of the Fifth Assessment Report[N]. China Meteorological News, 2014-11-04(1). [史一卓. IPCC发布第五次评估报告综合报告[N].中国气象报,2014-11-04(1).]
[26] Yu Li,Piao Shilong. Key scientific points on carbon and other biogeochemical cycles from the IPCC fifth assessment report[J]. Advances in Climate Change Research,2014,10(1):33-36. [於琍,朴世龙. IPCC 第五次评估报告对碳循环及其他生物地球化学循环的最新认识[J]. 气候变化研究进展,2014,10(1):33-36.]
[27] Qin Dahe,Stocker T,259 Authors,et al. Highlights of the IPCC working group Ⅰ fifth assessment report[J]. Advances in Climate Change Research,2014,10(1):1-6. [秦大河,Stocker T, 259名作者,等.IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展,2014,10(1):1-6.]
[28] Ciais P,Rayner P,Chevallier F,et al. Atmospheric inversions for estimating CO 2 fluxes: Methods and perspectives[J]. Climate Change,2010,103(1/2):69-92.
[29] Cole J J,Prairie Y T,Caraco N F,et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems,2007,10(1):171-184.
[30] Berner R A. A model for atmospheric CO 2 over Phanerozoic time[J]. American Journal of Science,1991,291(4):339-376.
[31] Yuan D. The carbon cycle in karst[J]. Zeitschrift für Geomorphologie Neue Folge,1997,108 (Suppl.):91-102.
[32] Jiang Z,Yuan D. CO 2 source-sink in karst processes in karst areas of China[J].Episodes, 1999,22(1):33-35.
[33] Gombert P. Rolf of karstic dissolution in global carbon cycle[J].Global and Planetary Change,2002,32(1/2):177-184.
[34] Liu Z,Zhao J. Contribution of carbonate rock weathering to the atmospheric CO 2 sink[J]. Environmental Geology,2000,39(9):1 053-1 058.
[35] Liu Z,Dreybrodt W,Wang H. A new direction in effective accounting for the atmospheric CO 2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99(3/4):162-172.
[36] Liu Z,Dreybrodt W. Significance of the carbon sink produced by H 2 O-carbonate-CO 2 -aquatic phototroph interaction on land[J].Science Bulletin,2015,60(2):182-191.
[37] White W B. Carbon fluxes in Karst aquifers: Sources, sinks, and the effect of storm flow[J].Acta Carsologica,2013,42(2/3):177-186.
[38] Lasaga A C. Chemical kinetics of water-rock interactions[J].Journal of Geophysical Research,1984,89(B6):4 009-4 025.
[39] Pokrovsky O S,Golubev S V,Schott J. Dissolution kinetics of calcite, dolomite and magnesite at 25 ℃ and 0 to 50 atm p CO 2 [J].Chemical Geology, 2005, 217(3/4):239-255.
[40] Yadav S K,Chakrapani G J. Dissolution kinetics of rock-water interactions and its implications[J].Current Science,2006,90(7):932-937.
[41] Jacobson A D, Blum J D, Chamberlain C P, et al. Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: Carbonate versus silicate weathering rates as a function of landscape surface age[J].Geochimica et Cosmochimica Acta,2002,66(1):13-27.
[42] Liu Z,Li Q,Sun H,et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China: Soil CO 2 and dilution effects[J]. Journal of Hydrology,2007,337(1/2):207-223.
[43] Pu J,Yuan D,Zhao H,et al. Hydrochemical and p CO 2 variations of a cave stream in a subtropical karst area, Chongqing, SW China: Piston effects, dilution effects, soil CO 2 and buffer effects[J].Environmental Earth Sciences,2014,71(9):4 039-4 049.
[44] Liu Z,Liu X,Liao C. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool:Insights from high time-resolution monitoring of physico-chemistry of water[J].Environmental Geology,2008,55(6):1 159-1 168.
[45] Liu H,Liu Z,Macpherson G L,et al. Diurnal hydrochemical variations in a karst spring and two ponds, Maolan Karst experimental site, China: Biological pump effects[J].Journal of Hydrology,2015,522:407-417.
[46] Chen Bo,Yang Rui,Liu Zaihua,et al. Effects of aquatic phototrophs on diurnal hydrochemical and δ 13 C DIC variations in an epikarst spring and two spring-fed ponds of Laqiao, Maolan, SW China[J].Geochimica,2014,43(4):375-385. [陈波,杨睿,刘再华,等. 水生光合生物对茂兰拉桥泉及其下游水化学和 δ 13 C DIC 昼夜变化的影响[J]. 地球化学,2014,43(4):375-385.]
[47] Jiang Y, Hu Y, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and δ 13 C of dissolved inorganic carbon in a karst spring-fed pool[J].Journal of Hydrology,2013,478:157-168.
[48] Mo Xue,Pu Junbing,Yuan Daoxian,et al. Diel variation and influence factors of dissolved inorganic carbon in a surface creek fed by a karst subterranean stream in subtropical area, SW China[J].Quarternary Sciences,2014,34(4):873-880. [莫雪,蒲俊兵,袁道先,等. 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素[J].第四纪研究,2014,34(4):873-880.]
[49] Mo Xue. Change Processes and Influence Factors of Dissolved Inorganic Carbon in a Surface Creek Fed by a Karst Subterranean Stream in Subtropical Karst Area, SW China[D]. Chongqing:Southwest University,2015. [莫雪. 亚热带典型岩溶地表溪流溶解无机碳变化过程及其影响因素[D].重庆:西南大学,2015.]
[50] de Montety V, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J].Chemical Geology,2011,283(1/2):31-43.
[51] Hensley R,Cohen M J. Controls on solute transport in large spring-fed karst rivers[J].Limnology and Oceanography,2012,57(4):912-924.
[52] Planton S. IPCC 2013: Annex III: Glossary[M]∥Stocker T F,Qin D,Plattner G K,et al, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2013:1 447-1 466.
[53] Kasting J F. Theoretical constraints on oxygen a carbon dioxide concentrations in the Precambrian atmosphere[J].Precambrian Research,1987,34(3/4):205-229.
[54] Walker J C G. Precambrian evolution of the climate syste[J]. Palaeogeography, Palaeoclirnatology, Palaeoecology,1990,82(3/4):261-289.
[55] Köhler P,Hartmann J,Wolf-Gladrow D A. Geoengineering potential of artificially enhanced silicate weathering of olivine[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(47):20 228-20 233.
[56] Clarke L,Jiang K,Akimoto K,et al. Assessing transformation pathways[M]∥Edenhofer O,Pichs-Madruga R,Sokona Y,et al, eds. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2014:413-509.
[57] Liu Z,Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H 2 O-CO 2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H 2 O+CO 2 ⇔ H + +HCO - 3 [J].Geochimica et Cosmochimica Acta,1997,61 (14):2 879-2 889.
[58] Liu Z. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO 2 sink[J].Acta Geologica Sinica,2001,75(3):275-278.
[59] Cao J,Wang F. Reform of carbonate rock subsurface by Crustose Lichens and its environmental significance[J].Acta Geologica Sinica,1998,72(1):94-99.
[60] Wang Xingshan,Zhang Jie,Qin Zhong. Methods for measuring erosion rate of rock: An overview[J].Advances in Earth Sciences,2013,28(4):447-454. [王兴山,张捷,秦中.岩石侵蚀速率测算方法研究综述及展望[J].地球科学进展,2013,28(4):447-454.]
[61] Lian Bin,Yuan Daoxian,Liu Zaihua. Effect of microbes on karstification in karst ecosystems[J].Chinese Science Bulletin,2011,56(26):2 158-2 161. [连宾,袁道先,刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报,2011,56(26):2 158-2 161.]
[62] Curl R L. Carbon shifted but not sequestered[J].Science,2012,335(6 069):655.
[63] Holland H D,Lazar B,McCaffrey M. Evolution of the atmosphere and oceans[J].Nature, 1986,320(6 057):27-33.
[64] Oki T. The global water cycle[C]∥Browning K,Gurney R,eds. Global Energy and Water Cycle. Cambridge,UK: Cambridge University Press,1999:10-27.
[65] Zhang Cheng. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin,2011,56(26):2 174-2 180. [章程. 不同土地利用下的岩溶作用强度及其碳汇效应[J]. 科学通报,2011,56(26):2 174-2 180.]
[66] Chen Weijie,Ren Xiaodong,Xiong Kangning. Analysis on carbon fixation potentiality of rocky desert land: A case in Guizhou[J].Carsologica Sinica,2011, 3(2):163-168. [陈伟杰,任晓东,熊康宁. 石漠化土地固碳潜力分析——以贵州为例[J].中国岩溶,2011, 3(2):163-168.]
[67] Zhao M,Liu Z,Li H,et al. Response of Dissolved Inorganic Carbon (DIC) and δ 13 C DIC to changes in climate and land cover in SW China karst catchments[J]. Geochimica et Cosmochimica Acta,2015,165:123-136.
[68] Zhang Xingbo,Jiang Yongjun,Qiu Shulan,et al. Agricultural activities and carbon cycling in karst areas in Southwest China: Dissolving carbonate rocks and CO 2 sink[J].Advances in Earth Science,2012,27(4):466-476. [张兴波,蒋勇军,邱述兰,等.农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展,2012,27(4):466-476.]
[69] Liu Changli,Zhang Yun,Song Chao,et al. The effect of farm manure on the dissolution of carbonate rocks and its eco-environmental impact[J].Geology in China,2009,36(6):1 395-1 404. [刘长礼,张云,宋超,等. 施用农肥对岩溶溶蚀作用的影响及其生态环境意[J]. 中国地质,2009,36(6):1 395-1 404.]
[70] Li S,Calmels D,Han G,et al. Sulfuric acid as an agent of carbonate weathering constrained by δ 13 C DIC : Examples from Southwest China[J]. Earth and Planetary Science Letters, 2008,270(3/4):189-199.
[71] Semhi K,Amiotte-Suchet P,Clauer N,et al. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne Basin[J].Applied Geochemistry,2000,15(6):865-878.
[72] Macpherson G L. CO 2 distribution in groundwater and the impact of groundwater extraction on the global C cycle[J].Chemical Geology,2009,264(1/4):328-336.

[1] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[2] 刘鹏, 江志红, 于华英, 秦怡. 全球海表温度在不同时间尺度的主模态对比分析[J]. 地球科学进展, 2014, 29(7): 844-853.
[3] 郑晓东,鲁帆,马静. 汉江流域降水多时间尺度特性及其与环流因子的相关性分析[J]. 地球科学进展, 2013, 28(5): 618-626.
[4] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[5] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:II.月及年时间尺度的剖析[J]. 地球科学进展, 2010, 25(5): 505-514.
[6] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的 210Pb和 7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[7] 陈文,魏科. 大气准定常行星波异常传播及其在平流层影响东亚冬季气候中的作用[J]. 地球科学进展, 2009, 24(3): 272-285.
[8] 陈燕,齐清文,杨桂山. 地学信息图谱时空维的诠释与应用[J]. 地球科学进展, 2006, 21(1): 10-13.
阅读次数
全文


摘要