地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1091 -1099. doi: 10.11867/j.issn.1001-8166.2015.10.1091

综述与评述 上一篇    下一篇

人类用水活动对大尺度陆地水循环的影响
汤秋鸿 1, 黄忠伟 1, 2, 刘星才 1, 韩松俊 3, 4, 冷国勇 1, 张学君 1, 2, 穆梦斐 1, 5   
  1. 1.中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京 100101; 2. 中国科学院大学,北京 100049; 3.中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038; 4.国家节水灌溉北京工程技术研究中心,北京 100048; 5. 清华大学水利水电工程系,北京 100084
  • 收稿日期:2015-06-11 修回日期:2015-10-20 出版日期:2015-10-20
  • 基金资助:

    国家杰出青年科学基金项目“陆地水循环变化与全球变化的关系”(编号:41425002); 全球变化研究国家重大科学研究计划项目“中国及全球环境风险的区域规律研究”(编号:2012CB955403)资助

Impacts of Human Water Use on the Large-scale Terrestrial Water Cycle

Tang Qiuhong 1, Huang Zhongwei 1, 2, Liu Xingcai 1, Han Songjun 3, 4, Leng Guoyong 1, Zhang Xuejun 1, 2, Mu Mengfei 1, 5   

  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3.State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 4. National Center of Efficient Irrigation Engineering and Technology Research, Beijing 100048, China; 5. Department of Hydraulic Engineering,Tsinghua University, Beijing 100084, China
  • Received:2015-06-11 Revised:2015-10-20 Online:2015-10-20 Published:2015-10-20

随着人口增长和经济社会快速发展,人类活动已成为陆地水循环变化的重要驱动因子,人类用水活动对陆地水循环的影响越来越受到人们的关注。回顾近年来人类用水活动对大尺度陆地水循环影响方面的研究进展;阐述灌溉、生活和工业用水、水库调节以及地下水利用等典型人类用水活动影响大尺度陆地水循环的过程与机制,并在此基础上探讨了陆面水文模型中人类用水活动参数化方案及其存在的问题。目前,陆面水文模型对人类用水活动的考虑依然不足,使得应用模型模拟陆地水循环和评估变化环境下水资源安全面临挑战。展望未来,深入认识人类用水活动与水系统的影响与反馈,开发考虑人—水系统协同演化的水系统综合评估模型,预估水安全形势的演变趋势,将成为陆地水循环和水资源研究的长期重要任务。

Along with the increase of population and extraordinary economic and social development, human appropriation of freshwater supply increases rapidly. Anthropogenic activities have become an important driving factor of the large-scale terrestrial water cycle. The hydrological effects of human water use have attracted growing attention. In this paper, we briefly reviewed the recent studies addressing the anthropogenic disturbance of the large-scale terrestrial water cycle. The review focused on the direct alteration of the water cycle for human needs, with special coverage for the primary aspects of human water use such as irrigation, domestic and industrial water use, reservoir regulation and groundwater mining. The state-of-the-art parameterization schemes of human water use for macroscale land surface hydrological modeling were introduced and the limitations of the schemes were discussed. Considering the impacts of human water use on the terrestrial water cycle is currently a challenge for macroscale land surface hydrological modeling, which hinders the use of the models in assessing water resources under changing environment. Further studies are needed to understand the interactions between human and water systems, to develop integrated assessment model of coupled human-water systems, and to assess regional and global water security.

中图分类号: 

[1] Song Xiaomeng, Zhang Jianyun, Zhan Chesheng, et al. Review for impacts of climate change and human activities on water cycle[J]. Journal of Hydraulic Engineering, 2013,44(7):779-790. [宋晓猛, 张建云, 占车生,等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013,44(7):779-790.]
[2] Cuo L, Lettenmaier D P, Alberti M, et al. Effects of a century of land cover and climate change on the hydrology of the puget sound basin[J]. Hydrological Processes, 2009, 23(6):907-933.
[3] Cheng Guodong,Xiao Honglang,Fu Bojie,et al. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science,2014,29(4):431-437. [程国栋, 肖洪浪, 傅伯杰,等. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4):431-437.]
[4] Milly P C. Global pattern of trends in streamflow and water availability in a changing climate[J]. Nature, 2005, 438(7 066):347-350.
[5] Chiew F H S, Teng J, Vaze J, et al. Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method[J]. Water Resources Research, 2009, 45(10):82-90.
[6] Tang Q, Lettenmaier D P. 21st century runoff sensitivities of major global river basins[J]. Geophysical Research Letters, 2012, 39(6):92-104.
[7] Zhang X, Tang Q, Zhang X, et al. Runoff sensitivity to global mean temperature change in the CMIP5 Models[J]. Geophysical Research Letters, 2014, 41(15):5 492-5 498.
[8] Liu X, Zhang X J, Tang Q, et al. Effects of surface wind speed decline on modeled hydrological conditions in China[J]. Hydrology and Earth System Sciences, 2014, 18(8):2 803-2 813.
[9] Shi Jiansheng, Li Guomin, Liang Xing, et al. Evolution mechanism and control of groundwater in the North China Plain[J]. Acta Geoscientica Sinica, 2014,5:527-534. [石建省,李国敏,梁杏,等. 华北平原地下水演变机制与调控[J]. 地球学报,2014,5:527-534.]
[10] Wang Tao. Review and prospect of research on oasification and desertification in arid regions[J]. Journal of Desert Research, 2009, 29(1):1-9. [王涛. 干旱区绿洲化、荒漠化研究的进展与趋势[J]. 中国沙漠, 2009, 29(1):1-9.]
[11] National 973 Program Office of the Hai River Basin. Introduction of National 973 Program‘Water cycle evolution mechanism and efficient utilization of water resources in Hai River Basin’[J]. Journal of Hydraulic Engineering, 2007,7:893-894. [海河973项目办公室. 国家973项目“海河流域水循环演变机理与水资源高效利用”介绍[J]. 水利学报, 2007, 7:893-894.]
[12] The 11-th Five-year of the natural science foundation of China[J].Bulletin of National Natural Science Foundation of China, 2006,(5):310-320. [国家自然科学基金“十一五”发展规划[J]. 中国科学基金,2006,(5):310-320.]
[13] The 12-th Five-year of the natural science foundation of China[J]. Bulletin of National Natural Science Foundation of China,2011, (5):314-320. [国家自然科学基金“十二五”发展规划[J]. 中国科学基金,2011,(5):314-320.]
[14] Wei Yingqi. From the International Hydrological Program (IHP) to hydrological research trends[J].Science and Technology information, 2011,28:143. [尉颖琪. 从国际水文计划看水文研究变化趋势[J]. 科技资讯, 2011, 28:143.]
[15] Jing Lingyun, Sun Dongyuan, Fei Xiliang. The influence of human activities on water resources and water cycle[J].Gansu Agriculture, 2013,15:24-25. [景凌云,孙栋元,费喜亮. 浅析人类活动对水文水资源的影响[J]. 甘肃农业,2013,15:24-25.]
[16] Vörömarty C J, McIntyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J].Nature, 2010, 467(7 315):555-561.
[17] Leng G, Tang Q, Huang M, et al. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain[J]. Regional Environmental Change, 2015, 15(2):251-263.
[18] Gerten D, Rost S, Von Bloh W, et al. Causes of change in 20th century global river discharge[J]. Geophysical Research Letters,2008, 35(20):67-76.
[19] Döll P, Fiedler K, Zhang J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs[J].Hydrology and Earth System Sciences,2009,13(12): 2 413-2 432.
[20] Sivapalan M, Savenije H H G, Blöschl G. Socio-hydrology: A new science of people and water[J].Hydrological Processes,2012, 26(8):1 270-1 276.
[21] Sivapalan M, Konar M, Srinivasan V, et al. Socio-hydrology: Use-inspired water sustainability science for the anthropocene[J].Earths Future, 2014, 2(4):225-230.
[22] Montanari A, Young G, Savenije H H G, et al. “Panta Rhei-Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013-2022[J].Hydrological Sciences Journal,2013, 58:1 256-1 275.
[23] Kandasamy J, Sounthararajah D, Sivabalan P, et al. Socio-hydrologic drivers of the pendulum swing between agricultural development and environmental health: A case study from Murrumbidgee River Basin, Australia[J].Hydrology and Earth System Sciences,2014, 18(3):1 027-1 041.
[24] Liu Y, Tian F, Hu H, et al. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: The Taiji-Tire Model[J].Hydrology and Earth System Sciences,2013, 18(4):1 289-1 303.
[25] Lu Z, Wei Y, Xiao H, et al. Evolution of the human-water relationships in Heihe River Basin in the past 2000 years[J].Hydrology and Earth System Sciences, 2015, 19:2 261-2 273.
[26] Qin Dayong, Lu Chuiyu, Liu Jiahong, et al. Theoretical framework of dualistic nature-social water cycle[J].Chinese Science Bulletin, 2014, 59:419-427. [秦大庸, 陆垂裕, 刘家宏, 等. 流域“自然—社会”二元水循环理论框架[J]. 科学通报, 2014, 59: 419-427.]
[27] Wang Hao, Jia Yangwen, Yang Guiyu, et al. Integrated simulation of the dualistic water cycle and its associated processes in the Haihe River Basin[J].Chinese Science Bulletin, 2013, 58:1 064-1 077. [王浩, 贾仰文, 杨贵羽, 等. 海河流域二元水循环及其伴生过程综合模拟[J]. 科学通报, 2013, 58: 1 064-1 077.]
[28] Hagemann S, Gates L D. Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations[J]. Climate Dynamics,2003, 21(3/4):349-359.
[29] Siebert S, Kummu M, Porkka M, et al. A global dataset of the extent of irrigated land from 1900 to 2005[J]. Hydrology and Earth System Sciences Discussions, 2014, 11(12):13 207-13 258.
[30] Elliott J, Deryng D, Müller C, et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change[J]. Proceedings of the National Academy of Sciences, 2014, 111(9):3 239-3 244.
[31] Tang Q, Hu H, Oki T, et al. Water Balance within Intensively Cultivated Alluvial Plain in an Arid Environment[J]. Water Resources Management, 2007, 21(10):1 703-1 715.
[32] Tang Q, Hu H, Oki T. Groundwater recharge and discharge in a hyperarid Alluvial Plain (Akesu, Taklimakan Desert, China)[J]. Hydrological Processes,2007, 21(10):1 345-1 353.
[33] Tang Q, Oki T, Kanae S, et al. Hydrological cycles change in the Yellow River Basin during the Last Half of the Twentieth Century[J]. Journal of Climate,2008, 21(8):1 790-1 806.
[34] Tang Q, Rosenberg E A, Lettenmaier D P. Use of satellite data to assess the impacts of irrigation withdrawals on Upper Klamath Lake, Oregon[J].Hydrology and Earth System Sciences, 2009, 13(5):617-627.
[35] Boucher O, Myhre G, Myhre A. Direct human influence of irrigation on atmospheric water vapour and climate[J]. Climate Dynamics, 2004, 22(6/7):597-603.
[36] Biggs T W, Scott C A, Gaur A, et al. Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin[J]. Water Resources Research, 2008, 44(12):181-198.
[37] Pielke R, Beven K, Brasseur G, et al. Climate change: The need to consider human forcings besides greenhouse gases[J]. Eos,Transactions American Geophysical Vnion, 2009, 90(45):413-413.
[38] Bonfils C, Lobell D. Empirical evidence for a recent slowdown in irrigation-induced cooling[J]. Proceedings of the National Academy of Sciences, 2007, 104(34):13 582-13 587.
[39] Mahmood R, Hubbard K G, Leeper R D, et al. Increase in near-surface atmospheric moisture content due to land use changes: Evidence from the observed dewpoint temperature data[J]. Monthly Weather Review, 2008, 136(4):1 554-1 561.
[40] Bouchet R. Evapotranspiration réelle et potentielle, signification climatique[J]. International Association of Hydrological Sciences Publication, 1963, 62:134-142.
[41] Ozdogan M, Salvucci G D. Irrigation-induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet’s complementary hypothesis[J]. Water Resources Research, 2004, 40(4):W04301,doi:10.1029/2003WR002822.
[42] Han S, Tang Q, Xu D, et al. Irrigation-induced changes in potential evaporation: more attention is needed[J]. Hydrological Processes, 2014, 28(4):2 717-2 720.
[43] Han S, Hu H, Yang D, et al. Irrigation impact on annual water balance of the oases in Tarim Basin, Northwest China[J]. Hydrological Processes, 2010, 25(2):167-174.
[44] Lobell D, Bala G, Duffy P. Biogeophysical impacts of cropland management changes on climate[J]. Geophysical Research Letters, 2006, 33(6): L06708,doi:10.1029/2005GL025492.
[45] Tang Q, Oki T, Kanae S, et al. The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation[J]. Journal of Hydrometeorology,2007, 8(3):499.
[46] Hanasaki N, Kanae S, Oki T, et al. An integrated model for the assessment of global water resources-Part 1: Model description and input meteorological forcing[J]. Hydrology and Earth System Sciences,2008, 12(4):1 007-1 025.
[47] Tang Q, Oki T, Kanae S. A Distributed Biosphere Hydrological Model (DBHM) for large river basin[J]. Annual Journal of Hydraulic Engineering, JSCE,2006, 50:37-42.
[48] Pokhrel Y, Hanasaki N, Koirala S, et al. Incorporating anthropogenic water regulation modules into a land surface model[J]. Journal of Hydrometeorology, 2012, 13(1):255-269.
[49] Hu Heping, Tang Qiuhong, Lei Zhidong, et al. Runoff-evaporation hydrological model for arid plain oasis, 1, the model structure[J].Advances in Water Science, 2004, 15(2):140-145. [胡和平,汤秋鸿,雷志栋,等.干旱区平原绿洲散耗型水文模型―I模型结构,水科学进展,2004,15(2): 140-145.]
[50] Tang Qiuhong, Tian Fuqiang, Hu Heping. Runoff-evaporation hydrological model for arid plain oasis, 2, Applications of the model[J].Advances in Water Science, 2004, 15(2):146-150. [汤秋鸿,田富强,胡和平.干旱区平原绿洲散耗型水文模型―II模型应用[J].水科学进展,2004, 15(2): 146-150.]
[51] Rost S, Gerten D, Bondeau A, et al. Agricultural green and blue water consumption and its influence on the global water system[J]. Water Resources Research, 2008, 44(9):137-148.
[52] Loveland T R. Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data[J]. International Journal of Remote Sensing,2000, 21(6):1 303-1 330.
[53] Shiklomanov I. Appraisal and assessment of world water resources[J].Water International, 2000, 25:11-32.
[54] Meigh J R, Mckenzie A A, Sene K J. A grid-based approach to water scarcity estimates for eastern and southern Africa[J]. Water Resources Management, 1999, 13(2):85-115.
[55] Döll P, Kaspar F, Lehner B. A global hydrological model for deriving water availability indicators: Model tuning and validation[J]. Journal of Hydrology, 2003, 270(1):105-134.
[56] Hanasaki N, Kanae S, Oki T. A reservoir operation scheme for global river routing models[J].Journal of Hydrology, 2006, 327:22-41.
[57] Jida W, Yongwei S, Colin J G, et al. Downstream Yangtze River levels impacted by Three Gorges Dam[J].Environmental Research Letters, 2013, 8(4): 044012.
[58] Vörömarty C J, Sahagian D. Anthropogenic disturbance of the terrestrial water cycle[J].BioScience, 2000, 50(9):753-765.
[59] The notice: The environmental protection department issued the national ground water pollution control plan (2011-2020)[J]. The Bulletin of the State Council of the People’s Republic of China, 2012,12:63-71. [环境保护部关于印发《全国地下水污染防治规划(2011—2020年)》的通知[J]. 中华人民共和国国务院公报,2012,12:63-71.]
[60] McGuire V L. Water-level Changes in the High Plains Aquifer: Predevelopment to 2009, 2007-08, and 2008-09, and Change in Water in Storage, Predevelopment to 2009[R].The United States Geological Survey Scientific Investigations Report. USGS:Reston, 2011.
[61] Hu Y, Moiwo J P, Yang Y, et al. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain[J]. Journal of Hydrology,2010, 393(3/4):219-232.
[62] Cooley R L, Konikow L F, Naff R L. Nonlinear-regression groundwater flow modeling of a deep regional aquifer System[J]. Water Resources Research,1986, 22(13):1 759-1 778.
[63] Famiglietti J S, Lo M, Ho S L, et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley[J]. Geophysical Research Letters,2011, 38(3):L03403-L03406.
[64] Rodell M, Velicogna I, Famiglietti J S. Satellite—Based estimates of groundwater depletion in India[J].Nature, 2009, 460(7 258):999-1 002.
[65] Tang Q, Zhang X, Tang Y. Anthropogenic impacts on mass change in North China[J].Geophysical Research Letters, 2013, 40(15): 3 924-3 928.
[66] Konikow L F. Contribution of global groundwater depletion since 1900 to sea-level rise[J].Geophysical Research Letters,2011, 38(17): 245-255.
[67] Wada Y, Beek L P H V, Weiland F C S, et al. Past and future contribution of global groundwater depletion to sea-level rise[J]. Geophysical Research Letters, 2012, 39(9):L09402.
[68] Döll P, Muller Schmied H, Schuh C, et al. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites[J]. Water Resources Research, 2014, 50(7):5 698-5 720.
[69] Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of earth surface processes: Progress and prospect[J].Advances in Earth Science,2013,28(4):407-419. [丁永建,周成虎,邵明安,等.地表过程研究进展与趋势[J].地球科学进展,2013,28(4):407-419.

[1] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[2] 尤元红,黄春林,张莹,侯金亮. Noah-MP模型中积雪模拟对参数化方案的敏感性评估[J]. 地球科学进展, 2019, 34(4): 356-365.
[3] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[4] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[5] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
[6] 任晓倩,孙菽芬,陈 文,刘辉志. 湖泊数值模拟研究现状综述[J]. 地球科学进展, 2013, 28(3): 347-356.
[7] 王晨稀. 边界层参数化影响“梅花”台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.
[8] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
[9] 朱好,张宏升. 沙尘天气过程临界起沙因子的研究进展[J]. 地球科学进展, 2011, 26(1): 30-38.
[10] 王咏薇,蒋维楣,刘红年. 大气数值模式中城市效应参数化方案研究进展[J]. 地球科学进展, 2008, 23(4): 371-381.
[11] 黄安宁,张耀存,朱坚. 物理过程参数化方案对中国夏季降水日变化模拟的影响[J]. 地球科学进展, 2008, 23(11): 1174-1184.
[12] 刘春蓁. 气候变化对陆地水循环影响研究的问题[J]. 地球科学进展, 2004, 19(1): 115-119.
[13] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
阅读次数
全文


摘要