[1]Li Xin, Huang Chunlin, Che Tao,et al. Development of a Chinese land data assimilation system: Its process and prospects[J].Process in Natural Science,2007,17(8): 881-892.[李新, 黄春林, 车涛, 等.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展,2007, 17(2): 163-173.]
[2]Evensen G.Data Assimilation: The Ensemble Kalman Filter[M].Berlin, Heidelberg: Springer, 2007: 279.
[3]Reichle R H. Data assimilation methods in the Earth science[J].Advances in Water Resources,2008, 31: 1 411-1 418.
[4]Mitchell K E, Lohmann D, Houser P R,et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system[J].Journal of Geophysical Research,2004, 109(D07):32:doi.10.1029/2003JD003823.
[5]McLaughlin D.An integrated approach to hydrologic data assimilation:Interpolation, smoothing and filtering[J].Advances in Water Resources,2002, 25: 1 275-1 286.
[6]Bai Y L, Li X. Evolutionary algorithmbased error parameterization methods for data assimilation[J].Monthly Weather Review,2011,139(8):2 668-2 685, doi: 10.1175/2011MWR3641.1
[7]Han Xujun. Algorithm Development and Application of the Land Data Assimilation at Catchment Scale[D]. Beijing: Graduate University of the Chinese Academy of Sciences,2008.[韩旭军. 流域尺度陆面数据同化方法及其应用研究[D]. 北京:中国科学院研究生院,2008.]
[8]Jin Rui, Li Xin. Improve the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data[J].Science in China(Series D),2009, 52(11): 1 732-1 745.[晋锐, 李新. 同化站点观测和SSM/I亮温改善冻土活动层状态变量的模拟精度[J]. 中国科学:D辑, 2009, 39(9): 1 220-1 231.]
[9]Han Lijuan. Estimation of Evapotranspiration by Assimilating MODIS LST Product into the CLM[D]. Beijing: Beijing Normal University,2006.[韩丽娟. 同化MODIS 地表温度产品和陆面过程模型研究地表蒸散[D]. 北京:北京师范大学,2006.]
[10]Talagrand O.Assimilation of observations, an introduction[J].Journal of the Meteorological Society of Japan,1997, 75(1B):191-209.
[11]Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation[J].Ocean Dynamics,2003, 53:343-367.
[12]Huang C L,Li X, Lu L,et al. Experiments of onedimensional soil moisture assimilation system based on ensemble Kalman filter[J].Remote Sensing of Environment,2008, 112(3): 888-900.
[13]Ide K,Courtier P, Ghil M,et al. Unified notation for data assimilation: Operational, sequential and variational[J].Journal of the Meteorological Society of Japan, 1997, 75(1B):181-189.
[14]Li X,Koike T, Mahadevan P. A Very Fast Simulated re-Annealing (VFSA) approach for land data assimilation[J].Computers and Geosciences,2004, 30(3): 239-248.
[15]Daley R.Atmospheric Data Analysis[M]. New York: Cambridge University Press, 1991.
[16]Li Xin, Bai Yulong. A Bayesian filter framework for sequential data assimilation[J].Advances in Earth Science,2010, 25(5):515-523.
[李新, 摆玉龙. 顺序数据同化的Bayes框架[J]. 地球科学进展, 2010, 25(5):515-523.]
[17]Kalman R E. A new approach to linear filtering and prediction problems[J].Transactions of the ASME Journal of Basic Engineering, 1960, 82 (Series D):35-46.
[18]Li Hong. Local Ensemble Transform Kalman Filter with Realistic Observations[D]. Maryland: University of Maryland, 2007.
[19]Crow W T, Van Loon E. Impact of incorrect model error assumption on the sequential assimilation of remotely sensed surface soil moisture[J].Journal of Hydrometeorology,2006,7:421-432.
[20]Kumar P, Kaleita A L. Assimilation of nearsurface temperature using extended Kalman filter[J].Advances in Water Resources,2003, 26: 79-93.
[21]Pham D T, Verron J, Roubaud M C. A singular evolutive extended Kalman filter for data assimilation in oceanography[J].Journal of Marine Systems,1998, 16(3):323-340.
[22]Chai Lin, Yuan Jianping, Luo Jianjun,et al. New development in nonlinear systems estimation[J].Journal of Astronautics,2005, 26(3):380-384.[柴霖, 袁建平, 罗建军,等. 非线性估计理论的最新进展[J]. 宇航学报, 2005, 26(3): 380-384.]
[23]Han Xujun, Li Xin. Review of nonlinear filters in the land data assimilation[J].Advances in Earth Science,2008, 23(8):813-820.[韩旭军,李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008, 23(8): 813-820.]
[24]Courtier P. Variational methods[J].Journal of the Meteorological Society of Japan,1997, 75(1B):211-218.
[25]Kalnay E, Li H, Miyoshi T, et al. 4D-Var or ensemble Kalman filter?[J].Fellus A,2007, 59A(5):758-773.
[26]Bannister R N. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariance[J].Quarterly Journal of the Royal Meteorological Society,2008, 134(11):1 951-1 970.
[27]Hamill T M, Whitaker J S. Accounting for the error due to unresolved scales in ensemble data assimilation:A comparison of different approaches[J].Monthly Weather Review, 2005, 133(11):3 132-3 147.
[28]Qiu Chongjian.Four dimensional variational data assimilation with discontinuous models[J].Journal of Lanzhou University (Natural Sciences),1997, 33(1): 115-119.[邱崇践.变分四维同化方法中的不连续问题[J]. 兰州大学学报:自然科学版, 1997, 33(1):115-119.]
[29]Reichle R H, Walker J P, Koster R D,et al. Extended versus ensemble filtering for land data assimilation[J].Journal of Hydrometeorology,2002, 3(12): 728-740.
[30]Goodrich D C, Faures J, Woolhiser D A,et al. Measurement and analysis of small-scale convective storm rainfall variability[J].Journal of Hydrology,1995, 173(4):283-308.
[31]Han X J, Li X. On the representation of spatial uncertainty with stochastic simulation in land data assimilation[C]∥The 8th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Vol.1. Shanghai: World Academic Press, 2008:221-227.
[32]Beven K J, Binley A. The future of distributed models: Model calibration and uncertainty prediction[J].Hydrological Processes,1992, 6: 279-298.
[33]Yin Xiongrui, Xia Jun, Zhang Xiang,et al. Recent progress and prospect of the study on uncertainties in hydrological modeling and forecasting[J].Water Power,2006, 32(10): 27-31.[尹雄锐,夏军,张翔,等.水文模拟与预测的不确定性研究与展望[J]. 水力发电,2006,32(10): 27-31.]
[34]Dee D P, Todling R. Data assimilation in the presence of forecast bias:The GEOS moisture analysis[J].Monthly Weather Review,2000, 128(9): 3 268-3 282.
[35]Zhang Peng, Yang Jun, Dong Chaohua,et al. General introduction on payloads, ground segment and data application of Fengyun 3A[J].Front Earth Science China,2009, 132: 1 238-1 253.
[36]Hamill T M, Whitaker J S. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J].Monthly Weather Review,2001, 129(11):2 776-2 790.
[37]Whitaker J S, Hamill T M. Ensemble data assimilation with the NCEP Global forecast system[J].Monthly Weather Review,2007, 136(2): 463-482. [38]Qin J, Liang S, Yang K,et al. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal[J].Journal of Geophysical Research,2009, 114, D15103, doi: 10.1029/2008JD011358.
[39]Anderson J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilation and forecast [J].Monthly Weather Review,1999, 127(12):2 741-2 758.
[40]Houtekamer P L,Mitchell H L. Ensemble Kalman filer[J].Quarterly Journal of the Royal Meteorological Society,2005, 131:3 269-3 289.
[41]Zhang F, Snyder C, Sun J. Impacts if initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter[J].Monthly Weather Review,2004, 132(5): 1 238-1 253.
[42]Meng Z, Zhang F. Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation Part II:Imperfect model experiments[J].Monthly Weather Review,2007, 135(4): 1 403-1 423.
[43]Li H, Kalnay E, Miyoshi T. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter[J].Quarterly Journal of the Royal Meteorological Society,2009,135: 523-533,doi: 10.1002/qj.371.
[44]Li H, Kalnay E, Miyoshi T,et al. Accounting for model errors in ensemble data assimilation[J].Monthly Weather Review,2009, 137(10): 3 407-3 419.
[45]Jazwinski A H. Stochastic Processes and Filtering Theory[M].New York: Academic Press, 1970.
[46]Dee D P, Gaspari G, Redder C,et al. Maximumlikelihood estimation of forecast and observation error covariance parameters. Part II:Applications[J].Monthly Weather Review,1999, 127(8):1 835-1 849.
[47]Dee D P, da Silva A M. Maximumlikelihood estimation of forecast and observation error covariance parameters. Part I: Methodology[J]. Monthly Weather Review,1999, 127(8):1 822-1 834.[48]Martin M J, Bell M J, Nichols N K. Estimation of systematic error in an equatorial ocean model using data assimilation[J].International Journal for Numerical Methods in Fluids,2002,40(3): 435-444.
[49]Carton J A, Chepurin G, Cao X,et al. A simple ocean data assimilation analysis of the global upper ocean 1950-95, Part I:Methodology[J]. Journal of Physical Oceanography,2000, 30(2): 294-309.
[50]Baek S J, Hunt B R, Kalnay E, et al. Local ensemble Kalman filtering in the presence of model bias[J].Tellus,2006,58A:293-306.
[51]Zupanski D, Zupanski M. Model error estimation employing an ensemble data assimilation approach[J]. Monthly Weather Review,2006, 134(5):1 337-1 354.
[52]Tremolet Yannick. Modelerror estimation in 4D-Var[J].Quarterly Journal of the Royal Meteorological Society,2007, 133:1 367-1 380.
[53]Carrassi A, Vannitsem S, Nicolis C. Model error and sequential data assimilation:A deterministic formulation[J].Quarterly Journal of the Royal Meteorological Society,2008, 134:1 297-1 313.
[54]Houtekamer P L, Mitchell H L,Deng Xingxiu,et al. Model error representation in an operational ensemble kalman filter[J].Monthly Weather Review, 2009, 137(7):2 126-2 143. |