地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 648 -656. doi: 10.11867/j.issn.1001-8166.2013.06.0648

综述与评述 上一篇    下一篇

集合—变分数据同化方法的发展与应用
熊春晖 1,2,张立凤 1*,关吉平 1,陶恒锐 3,苏佳佳 4   
  1. 1.解放军理工大学气象海洋学院,江苏 南京 211101;2.空降兵95903部队90分队,湖北 武汉 430331;3.空军航空大学,吉林 长春 130022;4.71521部队75分队,河南 新乡 453002
  • 收稿日期:2013-01-31 修回日期:2013-04-25 出版日期:2013-06-10
  • 通讯作者: 张立凤(1961-),女,河北唐山人,教授,主要从事大气动力学和数值模拟研究.E-mail:zhanglf@yeah.net E-mail:张立凤zhanglf@yeah.net
  • 基金资助:

    国家自然科学基金面上项目“暴雨预报中初始误差的演变和可预报性研究”(编号:40975031);国家自然科学基金青年科学基金项目“大尺度初始扰动对暴雨可预报性的影响及在集合预报中的应用”(编号:41205074)资助.

Development and Application of Ensemble-Variational Data Assimilation Methods

Xiong Chunhui 1,2, Zhang Lifeng 1, Guan Jiping 1, Tao Hengrui 3, Su Jiajia 4   

  1. 1.College of Meteorology and Oceanography,PLA University of Science and Technology, Nanjing 211101,China;2.Unit No.95903 of Airborne Troops of Air Force, Wuhan 430331, China;3. Aviation University of Air Force, Changchun 130022, China;4.Unit No.71521 of PLA, Xinxiang 453002, China
  • Received:2013-01-31 Revised:2013-04-25 Online:2013-06-10 Published:2013-06-10

近年来,集合—变分数据同化方法已成为大气数据同化领域研究的热点问题。该方法能够综合利用集合卡尔曼滤波和变分同化的优势,是实现“集合预报和数据同化一体化”的有效途径。在分析变分同化和集合卡尔曼滤波优缺点的基础上引出集合—变分数据同化的概念;按照不同实现方式,将集合—变分同化分为协方差线性组合和增加控制变量2类,介绍了相应的研究进展,并将集合—变分同化概念拓展;然后介绍了集合—变分同化在英美两国的应用;最后回顾了集合—变分同化研究的主要问题,展望了未来的发展趋势。

In recent years, ensemble-variational Data Assimilation (DA) methods have become cuttingedge issues of atmospheric data assimilation. The ensemblevariational DA methods which adopt the advantages of ensemble Kalman filter and variational DA is an effective way to the integration of ensemble prediction system and DA system in the Numerical Weather Prediction (NWP) system. Firstly, the concept of ensemble-variational DA is introduced after the comparison of advantages and disadvantages between variational DA and ensemble Kalman filter. Secondly, the ensemble-variational DA methods are divided into two categories by different ways of background error covariance generation. One is simple linear combination of static and ensemble covariance, and the other is augmentation of control variables. Moreover, the related  development is introduced and the concept of ensemblevariational DA is expanded. Then, the application of ensemblevariational DA in the Great Britain and the U.S. is introduced. Finally, the main issues of ensemblevariational DA are reviewed and the prospect of the future development trend is listed.

中图分类号: 

[1]Daley. Atmospheric Data Analysis[M]. Cambridge: Cambridge University Press,1991.

[2]Panofsky H. Objective weather-map analysis[J]. Journal of Application Meteorolgy, 1949, 6:386-392.

[3]Cressman. An operational objective analysis system[J]. Monthly Weather Review, 1959, 87(10): 367-374.

[4]Gandin L S. Objective Analysis of Meteorological Fields[M]. Springfield: U.S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, 1965.

[5]Sasaki Y. An objective analysis based on the variational method[J]. Journal of Meteorolgy Society of Japan,1958,36(1):77-88.

[6]Sasaki Y. Some basic formalism in numerical variational[J]. Monthly Weather Review,1970,98(12):77-88.

[7]Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus,1986,38A(2):97-110.

[8]Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(10): 143-162.

[9]Gao Shanhong, Wu Zengmao, Xie Hongqin. The developments and applications of Kalman filters in meteorological data assimilation[J].Advances in Earth Science, 2000, 5(4): 571-575. [高山红,吴增茂,谢红琴.Kalman滤波在气象数据同化中的发展与应用[J].地球科学进展, 2000, 5(4): 571-575.]

[10]Chen Dongsheng, Shen Tongli, Ma Gelan, et al. Advances in the meteorological data assimilation[J]. Journal of Nanjing Institute of Meteorology,2004,27(4):550-564.[陈东升,沈桐立,马革兰,等.气象数据同化的研究进展[J].南京气象学院学报,2004,27(4):550-564.]

[11]Liu Chengsi, Xue Jishan. The ensemble Kalman filter theory and method development[J]. Journal of Tropical Meteorology,2005,21(6):628-633.[刘成思,薛纪善.关于集合Kalman滤波的理论和方法的发展[J].热带气象学报,2005,21(6):628-633.]

[12]Guan Yuanhong, Zhou Guangqing, Lu Weisong, et al.Theory development and application of data assimilation method[J]. Meteorology and Disaster Reduction Research,2007, 30(4):1-8.[官元红,周广庆,陆维松,等.数据同化方法的理论发展及应用综述[J].气象与减灾研究,2007,30(4):1-8.]

[13]Xue Jishan. Scientific issues and perspective of assimilation of satellite data[J]. Acta Meteorologica Sinica, 2009, 67(6):903-911.[薛纪善.气象卫星数据同化的科学问题与前景[J].气象学报,2009,67(6):903-911.]

[14]Li Hong, Xu Jianping. Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin,2011,30(4):463-472.[李宏,许建平.数据同化技术的发展及其在海洋科学中的应用[J].海洋通报,2011,30(4):463-472.]

[15]Parrish D F, Derber J C. The national meteorological center’s spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8):1 747-1 763.

[16]Rabier F, Thépaut J N, Courtier P. Extended assimilation and forecast experiments with a four-dimensional variational assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 1998,124(550): 1 861-1 887.

[17]Barker D M, Huang W, Guo Y R, et al. A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132: 897-914.

[18]Zou X, Kuo Y H. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model[J]. Monthly Weather Review, 1996,124: 2 859-2 882.

[19]Rabier F, Jrvinen H, Klinker E, et al. The ECMWF operational implementation of four dimensional variational assimilation[J]. Quarterly Journal of the Royal Meteorological Society,2000, 126(504): 1 143-1 170.

[20]Honda Y, Nishijima M, Koizumi K, et al. A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results[J]. Quarterly Journal of the Royal Meteorological Society,2005, 131(613): 3 465-3 475.

[21]Gauthier P, Tanguay M, Laroche S, et al. Extension of 3Dvar to 4Dvar:Implementation of 4Dvar at the meteorological service of Canada[J]. Monthly Weather Review,2007, 135:2 339-2 364.

[22]Huang X Y, Xiao Q, Barker D M, et al. Four-Dimensional variational data assimilation for WRF: Formulation and preliminary results[J]. Monthly Weather Review, 2009,137: 299-314.

[23]Cardinali C, Pezzulli S, Anderson E. Influence-matrix diagnostic of a data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,2004, 130: 2 767-2 786.

[24]Lorenc A C. The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2003,129(595): 3 183-3 203.

[25]Navon I M, Daescu D N, Liu Z. The impact of background error on incomplete observations for 4D-Var data assimilation with the FSU GSM[C]∥ICCS’05 Proceedings of the 5th International Conference on Computational Science, PartⅡ, 2005:837-844.

[26]Buehner M, Houtekamer P L, Charette C, et al. Inter-comparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments[J]. Monthly Weather Review,2010,138: 1 550-1 566.

[27]Buehner M, Houtekamer P L, Charette C, et al. Inter-comparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations[J]. Monthly Weather Review,2010,138:1 567-1 586.

[28]Whitaker J S, Hamill T M, Wei X, et al. Ensemble data assimilation with the NCEP global forecast system[J]. Monthly Weather Review, 2008,136:463-482.

[29]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3Dvar in a real-data case study[J]. Monthly Weather Review,2008, 136: 522-540.

[30]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warm-season month of June 2003[J]. Monthly Weather Review, 2008,136: 3 671-3 682.

[31]Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001,129: 2 884-2 903.

[32]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002,130: 1 913-1 924.

[33]Snyder C, Zhang F. Tests of an ensemble Kalman filter for convective-scale data assimilation[J]. Monthly Weather Review, 2003,131:1 663-1 677.

[34]Tong M, Xue M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments[J]. Monthly Weather Review, 2005,133: 1 789-1 807.

[35]Zhang F, Meng Z, Aksoy A. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect-model experiments[J]. Monthly Weather Review,2006,134: 722-736.

[36]Torn R D, Hakim G J, Snyder C. Boundary conditions for a limited-area ensemble Kalman filter[J]. Monthly Weather Review,2006,134: 2 490-2 502.

[37]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect-model experiments[J]. Monthly Weather Review, 2007,135:1 403-1 423.

[38]Zhang F, Weng Y, Sippel J A, et al. Cloud-resolving hurricane initialization and prediction through assimilation of doppler radar observations with an Ensemble Kalman Filter[J]. Monthly Weather Review,2009, 137:2 105-2 125.

[39]Buehner M. Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting[J]. Quarterly Journal of the Royal Meteorological Society,2005, 131:1 013-1 043.

[40]Wang X, Lei Ting, Jeff Whitaker, et al. Ensemble 4Dvar and Observation Impact Study with the GSI-based-hybrid-ensemble-variational Data Assimilation System for the GFS[R/OL].[2011-07-28]. http:∥www.weatherchaos.umd.edu/group_log/data/y1112/120220_weatherchaos_wang.pdf.

[41]Wang X, Snyder C, Hamill T M. On the theoretical equivalence of differently proposed ensemble/3D-Var hybrid analysis schemes[J]. Monthly Weather Review, 2007,135:222-227.

[42]Hamill T M, Snyder C. A hybrid ensemble Kalman filter-3Dvariational analysis scheme[J]. Monthly Weather Review,2000,128: 2 905-2 919.

[43]Etherton B, Bishop C H. Resilience of hybrid ensemble/3Dvar analysis schemes to model error and ensemble covariance error[J]. Monthly Weather Review, 2004,132:1 065-1 080.

[44]Wang X, Hamill T M, Whitaker  J S,et al. A comparison of hybrid ensemble transform Kalman filter-OI and ensemble square-root filter analysis schemes[J].Monthly Weather Review,2007,135:1 055-1 076.

[45]Zhang F, Zhang M, Hansen J A. Coupling ensemble Kalman filter with four-dimensional variational data assimilation[J]. Advances in Atmospheric Science, 2009,26: 1-8.

[46]Zhang M, Zhang F. E4Dvar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model[J]. Monthly Weather Review,2012,140: 587-600.

[47]Barker D M. Var Scientific Development Paper 25: The Use of Synoptic-Dependent Error Structure in 3Dvar[R].UK: Met Office Technical Report,1999:2.

[48]Zhang F, Zhang M, Poterjoy J. E3Dvar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4Dvar[J]. Monthly Weather Review,2012, doi:10.1175/MWR-D-12-00075.1.

[49]Corazza M, Kalnay E, Patil D J,et al. Use of the breeding technique in the estimation of the background error covariance matrix for a quasigeostrophic model[C]∥AMS Symposium on Observations, Data Assimilation and Probabilistic Prediction.Orlando, Florida,2002:154-157.

[50]Wang X, Barker D, Snyder C, et al. A hybrid ETKF-3Dvar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment[J]. Monthly Weather Review, 2008,136: 5 116-5 131.

[51]Wang X, Barker D, Snyder C, et al. A hybrid ETKF-3Dvar data assimilation scheme for the WRF model. Part II: Real observation experiments[J]. Monthly Weather Review, 2008,136: 5 132-5 147.

[52]Wang Xuguang. Application of the WRF hybrid ETKF-3Dvar data assimilation system for hurricane track forecasts[J]. Weather and Forecasting, 2011, 26: 868-884.

[53]Wang Xuguang. Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework[J]. Monthly Weather Review,2010,138:2 990-2 995.

[54]Li Y, Wang X, Xue M. Assimilation of radar radial velocity data with the WRF ensemble-3Dvar hybrid system for the prediction of hurricane IKE (2008) [J]. Monthly Weather Review, 2012, doi: http:∥dx.doi.org/10.1175/MWR-D-12-00043.1.

[55]Wu Xinrong, Han Guijun, Li Dong, et al. A hybrid ensemble filter and 3D variational analysis scheme[J].Journal of Tropical Oceanography,2011,30(6):24-30. [吴新荣,韩桂军,李冬,等.集合滤波和三维变分混合数据同化方法研究[J].热带海洋学报,2011,30(6):24-30.]

[56]Barker D M. Coupled Variational/Ensemble Data Assimilation[EB/OL]. [2009-11-12]. http:∥www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/coupled-variational-ensemble-data-assimilation.

[57]Bowler N E, Arribas A, Mylne K R, et al. The MOGREPS short-range ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2008,134: 703-722.

[58]Meral Demirtas, Dale Barker, Chen Yongsheng, et al. A Hybrid Data Assimilation (WRF-VAR and Ensemble Transform Kalman Filter) System Based Retrospective Tests[EB/OL].[2009-06-01].http:∥www.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/2A-10.pdf.

[59]Buehner M. Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation[J].Monthly Weather Review,2012,140:617-636.

[60]Bishop C H, Hodyss D. Adaptive ensemble covariance localizationin ensemble 4D-VAR state estimation[J].Monthly Weather Review,2011,139:1 241-1 255.

[61]Clayton A M, Lorenc A C, Barker D M. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office[J]. Quarterly Journal of the Royal Meteorological Society, 2012, doi:10.1002/qj.2054.

[1] 常明恒, 左洪超, 摆玉龙, 段济开. 两种耦合模糊控制的局地化方法研究[J]. 地球科学进展, 2021, 36(2): 185-197.
[2] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[3] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[4] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[5] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[6] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[7] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[8] 毛伏平, 张述文, 叶丹, 杨茜茜. 模式时间关联误差对集合平方根滤波估算土壤湿度的影响[J]. 地球科学进展, 2015, 30(6): 700-708.
[9] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[10] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
[11] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[12] 陈大可,雷小途,王伟,王桂华,韩桂军,周磊. 上层海洋对台风的响应和调制机理[J]. 地球科学进展, 2013, 28(10): 1077-1086.
[13] 马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.
[14] 李得勤,段云霞,张述文. 土壤湿度观测、模拟和估算研究[J]. 地球科学进展, 2012, 27(4): 424-434.
[15] 摆玉龙, 李新, 韩旭军. 陆面数据同化系统误差问题研究综述[J]. 地球科学进展, 2011, 26(8): 795-804.
阅读次数
全文


摘要