[1]Daley. Atmospheric Data Analysis[M]. Cambridge: Cambridge University Press,1991.
[2]Panofsky H. Objective weather-map analysis[J]. Journal of Application Meteorolgy, 1949, 6:386-392.
[3]Cressman. An operational objective analysis system[J]. Monthly Weather Review, 1959, 87(10): 367-374.
[4]Gandin L S. Objective Analysis of Meteorological Fields[M]. Springfield: U.S. Department of Commerce, Clearinghouse for Federal Scientific and Technical Information, 1965.
[5]Sasaki Y. An objective analysis based on the variational method[J]. Journal of Meteorolgy Society of Japan,1958,36(1):77-88.
[6]Sasaki Y. Some basic formalism in numerical variational[J]. Monthly Weather Review,1970,98(12):77-88.
[7]Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects[J]. Tellus,1986,38A(2):97-110.
[8]Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics[J]. Journal of Geophysical Research, 1994, 99(10): 143-162.
[9]Gao Shanhong, Wu Zengmao, Xie Hongqin. The developments and applications of Kalman filters in meteorological data assimilation[J].Advances in Earth Science, 2000, 5(4): 571-575. [高山红,吴增茂,谢红琴.Kalman滤波在气象数据同化中的发展与应用[J].地球科学进展, 2000, 5(4): 571-575.]
[10]Chen Dongsheng, Shen Tongli, Ma Gelan, et al. Advances in the meteorological data assimilation[J]. Journal of Nanjing Institute of Meteorology,2004,27(4):550-564.[陈东升,沈桐立,马革兰,等.气象数据同化的研究进展[J].南京气象学院学报,2004,27(4):550-564.]
[11]Liu Chengsi, Xue Jishan. The ensemble Kalman filter theory and method development[J]. Journal of Tropical Meteorology,2005,21(6):628-633.[刘成思,薛纪善.关于集合Kalman滤波的理论和方法的发展[J].热带气象学报,2005,21(6):628-633.]
[12]Guan Yuanhong, Zhou Guangqing, Lu Weisong, et al.Theory development and application of data assimilation method[J]. Meteorology and Disaster Reduction Research,2007, 30(4):1-8.[官元红,周广庆,陆维松,等.数据同化方法的理论发展及应用综述[J].气象与减灾研究,2007,30(4):1-8.]
[13]Xue Jishan. Scientific issues and perspective of assimilation of satellite data[J]. Acta Meteorologica Sinica, 2009, 67(6):903-911.[薛纪善.气象卫星数据同化的科学问题与前景[J].气象学报,2009,67(6):903-911.]
[14]Li Hong, Xu Jianping. Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin,2011,30(4):463-472.[李宏,许建平.数据同化技术的发展及其在海洋科学中的应用[J].海洋通报,2011,30(4):463-472.]
[15]Parrish D F, Derber J C. The national meteorological center’s spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8):1 747-1 763.
[16]Rabier F, Thépaut J N, Courtier P. Extended assimilation and forecast experiments with a four-dimensional variational assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 1998,124(550): 1 861-1 887.
[17]Barker D M, Huang W, Guo Y R, et al. A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132: 897-914.
[18]Zou X, Kuo Y H. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model[J]. Monthly Weather Review, 1996,124: 2 859-2 882.
[19]Rabier F, Jrvinen H, Klinker E, et al. The ECMWF operational implementation of four dimensional variational assimilation[J]. Quarterly Journal of the Royal Meteorological Society,2000, 126(504): 1 143-1 170.
[20]Honda Y, Nishijima M, Koizumi K, et al. A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results[J]. Quarterly Journal of the Royal Meteorological Society,2005, 131(613): 3 465-3 475.
[21]Gauthier P, Tanguay M, Laroche S, et al. Extension of 3Dvar to 4Dvar:Implementation of 4Dvar at the meteorological service of Canada[J]. Monthly Weather Review,2007, 135:2 339-2 364.
[22]Huang X Y, Xiao Q, Barker D M, et al. Four-Dimensional variational data assimilation for WRF: Formulation and preliminary results[J]. Monthly Weather Review, 2009,137: 299-314.
[23]Cardinali C, Pezzulli S, Anderson E. Influence-matrix diagnostic of a data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society,2004, 130: 2 767-2 786.
[24]Lorenc A C. The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2003,129(595): 3 183-3 203.
[25]Navon I M, Daescu D N, Liu Z. The impact of background error on incomplete observations for 4D-Var data assimilation with the FSU GSM[C]∥ICCS’05 Proceedings of the 5th International Conference on Computational Science, PartⅡ, 2005:837-844.
[26]Buehner M, Houtekamer P L, Charette C, et al. Inter-comparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments[J]. Monthly Weather Review,2010,138: 1 550-1 566.
[27]Buehner M, Houtekamer P L, Charette C, et al. Inter-comparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations[J]. Monthly Weather Review,2010,138:1 567-1 586.
[28]Whitaker J S, Hamill T M, Wei X, et al. Ensemble data assimilation with the NCEP global forecast system[J]. Monthly Weather Review, 2008,136:463-482.
[29]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3Dvar in a real-data case study[J]. Monthly Weather Review,2008, 136: 522-540.
[30]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warm-season month of June 2003[J]. Monthly Weather Review, 2008,136: 3 671-3 682.
[31]Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001,129: 2 884-2 903.
[32]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002,130: 1 913-1 924.
[33]Snyder C, Zhang F. Tests of an ensemble Kalman filter for convective-scale data assimilation[J]. Monthly Weather Review, 2003,131:1 663-1 677.
[34]Tong M, Xue M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments[J]. Monthly Weather Review, 2005,133: 1 789-1 807.
[35]Zhang F, Meng Z, Aksoy A. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect-model experiments[J]. Monthly Weather Review,2006,134: 722-736.
[36]Torn R D, Hakim G J, Snyder C. Boundary conditions for a limited-area ensemble Kalman filter[J]. Monthly Weather Review,2006,134: 2 490-2 502.
[37]Meng Z, Zhang F. Test of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect-model experiments[J]. Monthly Weather Review, 2007,135:1 403-1 423.
[38]Zhang F, Weng Y, Sippel J A, et al. Cloud-resolving hurricane initialization and prediction through assimilation of doppler radar observations with an Ensemble Kalman Filter[J]. Monthly Weather Review,2009, 137:2 105-2 125.
[39]Buehner M. Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting[J]. Quarterly Journal of the Royal Meteorological Society,2005, 131:1 013-1 043.
[40]Wang X, Lei Ting, Jeff Whitaker, et al. Ensemble 4Dvar and Observation Impact Study with the GSI-based-hybrid-ensemble-variational Data Assimilation System for the GFS[R/OL].[2011-07-28]. http:∥www.weatherchaos.umd.edu/group_log/data/y1112/120220_weatherchaos_wang.pdf.
[41]Wang X, Snyder C, Hamill T M. On the theoretical equivalence of differently proposed ensemble/3D-Var hybrid analysis schemes[J]. Monthly Weather Review, 2007,135:222-227.
[42]Hamill T M, Snyder C. A hybrid ensemble Kalman filter-3Dvariational analysis scheme[J]. Monthly Weather Review,2000,128: 2 905-2 919.
[43]Etherton B, Bishop C H. Resilience of hybrid ensemble/3Dvar analysis schemes to model error and ensemble covariance error[J]. Monthly Weather Review, 2004,132:1 065-1 080.
[44]Wang X, Hamill T M, Whitaker J S,et al. A comparison of hybrid ensemble transform Kalman filter-OI and ensemble square-root filter analysis schemes[J].Monthly Weather Review,2007,135:1 055-1 076.
[45]Zhang F, Zhang M, Hansen J A. Coupling ensemble Kalman filter with four-dimensional variational data assimilation[J]. Advances in Atmospheric Science, 2009,26: 1-8.
[46]Zhang M, Zhang F. E4Dvar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model[J]. Monthly Weather Review,2012,140: 587-600.
[47]Barker D M. Var Scientific Development Paper 25: The Use of Synoptic-Dependent Error Structure in 3Dvar[R].UK: Met Office Technical Report,1999:2.
[48]Zhang F, Zhang M, Poterjoy J. E3Dvar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4Dvar[J]. Monthly Weather Review,2012, doi:10.1175/MWR-D-12-00075.1.
[49]Corazza M, Kalnay E, Patil D J,et al. Use of the breeding technique in the estimation of the background error covariance matrix for a quasigeostrophic model[C]∥AMS Symposium on Observations, Data Assimilation and Probabilistic Prediction.Orlando, Florida,2002:154-157.
[50]Wang X, Barker D, Snyder C, et al. A hybrid ETKF-3Dvar data assimilation scheme for the WRF model. Part I: Observing system simulation experiment[J]. Monthly Weather Review, 2008,136: 5 116-5 131.
[51]Wang X, Barker D, Snyder C, et al. A hybrid ETKF-3Dvar data assimilation scheme for the WRF model. Part II: Real observation experiments[J]. Monthly Weather Review, 2008,136: 5 132-5 147.
[52]Wang Xuguang. Application of the WRF hybrid ETKF-3Dvar data assimilation system for hurricane track forecasts[J]. Weather and Forecasting, 2011, 26: 868-884.
[53]Wang Xuguang. Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework[J]. Monthly Weather Review,2010,138:2 990-2 995.
[54]Li Y, Wang X, Xue M. Assimilation of radar radial velocity data with the WRF ensemble-3Dvar hybrid system for the prediction of hurricane IKE (2008) [J]. Monthly Weather Review, 2012, doi: http:∥dx.doi.org/10.1175/MWR-D-12-00043.1.
[55]Wu Xinrong, Han Guijun, Li Dong, et al. A hybrid ensemble filter and 3D variational analysis scheme[J].Journal of Tropical Oceanography,2011,30(6):24-30. [吴新荣,韩桂军,李冬,等.集合滤波和三维变分混合数据同化方法研究[J].热带海洋学报,2011,30(6):24-30.]
[56]Barker D M. Coupled Variational/Ensemble Data Assimilation[EB/OL]. [2009-11-12]. http:∥www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/coupled-variational-ensemble-data-assimilation.
[57]Bowler N E, Arribas A, Mylne K R, et al. The MOGREPS short-range ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2008,134: 703-722.
[58]Meral Demirtas, Dale Barker, Chen Yongsheng, et al. A Hybrid Data Assimilation (WRF-VAR and Ensemble Transform Kalman Filter) System Based Retrospective Tests[EB/OL].[2009-06-01].http:∥www.mmm.ucar.edu/wrf/users/workshops/WS2009/abstracts/2A-10.pdf.
[59]Buehner M. Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation[J].Monthly Weather Review,2012,140:617-636.
[60]Bishop C H, Hodyss D. Adaptive ensemble covariance localizationin ensemble 4D-VAR state estimation[J].Monthly Weather Review,2011,139:1 241-1 255.
[61]Clayton A M, Lorenc A C, Barker D M. Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office[J]. Quarterly Journal of the Royal Meteorological Society, 2012, doi:10.1002/qj.2054. |