地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 657 -664. doi: 10.11867/j.issn.1001-8166.2013.06.0657

综述与评述 上一篇    下一篇

定量遥感升尺度转换研究综述
栾海军 1, 2,田庆久 1*,余涛 2,胡新礼 2,黄彦 1,刘李 2,杜灵通 1,魏曦 3   
  1. 1.南京大学 国际地球系统科学研究所, 江苏 南京 210023;
    2.遥感科学国家重点实验室, 中国科学院遥感与数字地球研究所, 北京 100101;
    3.电子科技大学 自动化学院, 四川 成都 611731
  • 收稿日期:2013-02-18 修回日期:2013-05-03 出版日期:2013-06-10
  • 通讯作者: 田庆久(1964-),男,山东济宁人,教授,主要从事高光谱遥感与遥感信息定量化研究.E-mail:tianqj@nju.edu.cn E-mail:田庆久tianqj@nju.edu.cn
  • 基金资助:

    高等学校博士学科点专项科研基金项目“浅水湖泊蓝藻水华遥感监测空间尺度效应研究”(编号:20100091110012);国家科技重大专项项目(编号:30-Y20A01-9003-12/13)资助.

Review of Upscaling of Quantitative Remote Sensing

Luan Haijun 1,2, Tian Qingjiu 1, Yu Tao 2, Hu Xinli 2 ,Huang Yan 1, Liu Li 2, Du Lingtong 1, Wei Xi 3   

  1. 1.International Institute for Earth System Science, Nanjing University, Nanjing 210023, China;2.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; 3.School of Automation, University of Electronic Science and Technology of China, Chengdu 611731,China
  • Received:2013-02-18 Revised:2013-05-03 Online:2013-06-10 Published:2013-06-10

尺度转换问题是定量遥感领域基础而重要的科学问题之一。重点针对升尺度转换研究现状,从现象描述、尺度效应产生原因分析、尺度转换方法归纳及尺度转换效果评价4个方面进行细致论述。认为目前的研究主要存在3个问题:①基于离散的多传感器影像进行的反演量尺度转换研究,受到不同传感器间成像参数归一化精度的影响;②反演量物理模型发展有限,基于这些模型的反演量连续空间尺度转换研究仍不成熟;③基于分形理论等数学方法的反演量连续空间尺度转换研究取得了一定的进展,但仍受限于尺度上推理论与技术的发展水平。对于定量遥感升尺度转换研究的发展趋势,做出如下展望:①随着成像参数归一化技术的进步,问题①将得到更有效的处理,这将有助于实际应用问题的解决;②连续空间尺度转换模型构建是升尺度转换研究发展的重要趋势。随着多学科知识的融入,定量遥感反演理论的发展及尺度上推理论与技术的进步,问题②与③亦将得到较好的解决,这将有益于揭示遥感反演量真正意义上的尺度转换规律。

Scale effect is a basic scientific problem of quantitative remote sensing. This review is focused on up-scaling research from these four aspects: the description of scaling phenomenon, the causes of scale effects, approaches for scale transformation, and the evaluation for scale transformation. The paper shows there should be three main issues concerning the research on upscaling. The first one is that scale transformation based on discrete images from different sensors can be affected by the accuracy of normalization of imaging parameters. Another issue is about the lack of reasonable physical models for retrievals, resulting in the immaturity of continuous scaling based on them. Thirdly, some proposals try to model continuous scaling of retrievals using mathematical technique like fractal model, but it is still limited by the development of up-scaling technique. It is forecasted that: ① the first issue would be solved with the improvement of normalization of imaging parameters, contributing to better solution for specific application of remotely sensed data; ② meanwhile, modeling continuous scaling of retrievals would be an obvious trend. With deeper fusion of multidiscipline and development of quantitative remote sensing theory and technology, the other two issues would be solved well, which would be beneficial to revealing the true scaling rules of retrievals.

中图分类号: 

[1]McCarthy Albert J P. The irish national electrification scheme[J]. Geographical Review, 1957, 47(4): 539-554.

[2]Cutis E W, Alan H S. The factor of scale in remote sensing[J]. Remote Sensing Environment, 1987, 21:311-332.

[3]Raffy M. Change of scale theory: A capital challenge for space observation of   Earth[J]. International Journal of Remote Sensing, 1994, 15(12): 2 353-2 357.

[4]Peng Xiaojuan, Deng Ruru, Liu Xiaoping. A review of scale transformation in remote sensing[J]. Geography and Geo-Information Science, 2004, 20(5): 6-10, 14.[彭晓鹃, 邓孺孺, 刘小平. 遥感尺度转换研究进展[J]. 地理与地理信息科学, 2004, 20(5): 6-10, 14.]

[5]Su Lihong, Li Xiaowen, Huang Yuxia. An review on scale in remote sensing[J]. Advances in Earth Science, 2001, 16(4): 544-548.[苏理宏, 李小文, 黄裕霞. 遥感尺度问题研究进展[J]. 地球科学进展, 2001, 16(4): 544-548.]

[6]Albert B J, Strahler A H, Li X W, et al. Radiometric measurements of gap probability in conifer tree canopies[J]. Remote Sensing of Environment, 1990, 34: 179-192.

[7]Li X W, Wan Z M. Comments on reciprocity in the BRDF Modeling[J]. Progress in Natural Science, 1999, 8(3): 354-358.

[8]Becker F, Li Z L. Surface temperature and emissivity at various scales: Definition, measurement, and related problems[J]. Remote Sensing Reviews,1995, 12: 225-253.

[9]Li X W, Wang J D. The definition of effective emissivity of land surface at the scale of remote sensing pixels[J]. Chinese Science Bulletin, 1999, 44(23): 2 154-2 158.

[10]Liang S L. Numerical experiments on the spatial scaling of land surface albedo and leaf area index[J]. Remote Sensing Reviews, 2000, 19(1/4): 225-242.

[11]Tian Y H,Woodcock C E, Wang Y J, et al. Multi-scale analysis and validation of the MODIS LAI product: Ⅰ. Uncertainty assessment[J]. Remote Sensing of Environment, 2002, 83(3): 414-430.

[12]Zeng Yelu,Li Jing, Liu Qinhuo. Review article: Global LAI ground validation dataset and product validation framework[J]. Advances in Earth Science, 2012, 27(2): 165-174.[曾也鲁, 李静, 柳钦火. 全球LAI地面验证方法及验证数据综述[J]. 地球科学进展, 2012, 27(2): 165-174.]

[13]Xu Xiru. Physical Principles of Remote Sensing[M]. Beijing: Peking University Press, 2005.[徐希孺. 遥感物理[M]. 北京: 北京大学出版社, 2005.]

[14]Bian L, Walsh S J. Scale dependencies of vegetation and topography in a mountainous environment of Montana[J]. Professional Geographer, 1993, 45(1): 1-11.

[15]Friedl M A, Davis F W, Michaelsen J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE[J]. Remote Sensing of  Environment, 1995, 54: 233-246.

[16]Van Der Meer F, Bakker W, Scholte K, et al. Spatial scale variations in vegetation indices and above-ground biomass estimates: Implications for MERIS[J]. International Journal of Remote Sensing, 2001, 22(17): 3 381-3 396.

[17]Chasmer L, Barr A, Hopkinson C, et al. Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests[J]. Remote Sensing of  Environment, 2009, 113(1): 82-93.

[18]Hilker T, Hall F G, Coops N C, et al. Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling[J]. Remote Sensing of  Environment, 2010, 114(2): 2 863-2 874.

[19]Liang L, Schwartz M D, Fei S L. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest[J]. Remote Sensing of  Environment, 2011, 115(1): 143-157.

[20]Roman M O, Gatebe C K, Schaaf C B, et al. Variability in surface BRDF at different spatial scales (30 m-500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements[J]. Remote Sensing of  Environment, 2011, 115(9): 2 184-2 203.

[21]Nagler P L, Brown T, Hultine K R, et al. Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western U.S. rivers as determined by multi-scale remote sensing methods[J]. Remote Sensing of  Environment, 2012, 118: 227-240.

[22]Li X W, Wang J D, Alan S. Scale effect of Planck’s law over nonisothermal blackbody surface[J]. Science in China (Series E), 1999, 42(6): 652-656.

[23]Li X W, Wang J D, Alan S. Scale effects and scaling-up by geometric-optical model[J]. Science in China (Series E), 2000, 43(Suppl.): 17-22.

[24]Wan Huawei, Wang Jindi, Qu Yonghua, et al. Preliminary research on scale effect and scaling-up of the vegetation spectrum[J]. Journal of Remote Sensing, 2008, 12(4): 538-545.[万华伟, 王锦地, 屈永华, 等. 植被波谱空间尺度效应及尺度转换方法初步研究[J]. 遥感学报, 2008, 12(4): 538-545.]

[25]Chen J M. Spatial scaling of a remotely sensed surface parameter by contexture[J]. Remote Sensing of  Environment, 1999, 69(1): 30-42.

[26]Zhang R H, Li Z L, Tang X Z, et al. Study of emissivity scaling and relativity of homogeneity of surface temperature[J]. Internation Journal of  Remote Sensing, 2004, 25: 245-259.

[27]Zhang R H, Tian J, Su H B, et al. A measuring device for studying scaling of emissivities from sub-pixel to pixel[C]∥IEEE Transactions on Geoscience Remote Sensing Symposium. Denver: IEEE, 2006.

[28]Wen J G, Liu Q, Liu Q H, et al. Scale effect and scale correction of land-surface albedo in rugged terrain[J]. Internation  Journal of  Remote Sensing, 2009, 30: 5 397-5 420.

[29]Zhang X, Yan G, Li Q, et al. Evaluating the fraction of vegetation cover based on NDVI spatial scale correction model[J]. Internation  Journal of  Remote Sensing, 2006, 27: 5 359-5 372.

[30]Jin Z, Tian Q, Chen J, et al. Spatial scaling between leaf area index maps of different resolutions[J]. Journal of  Environmental  Management, 2007, 85(3): 628-637.

[31]Wang L W, Wei Y X, Niu Z. Spatial scaling of net primary productivity model based on remote sensing[J]. Journal of Remote Sensing, 2010, 14(6): 1 082-1 096.

[32]Yao Yanjuan, Liu Qiang, Liu Qinhuo, et al. LAI inversion uncertainties in heterogeneous surface[J]. Journal of Remote Sensing, 2007, 11(6): 763-770.[姚延娟, 刘强, 柳钦火, 等. 异质性地表的叶面积指数反演的不确定性分析[J]. 遥感学报, 2007, 11(6): 763-770.]

[33]Chen Jian, Ni Shaoxiang, Li Jingjing, et al. Scaling effect and spatial variability in retrieval of vegetation LAI from remotely sensed data[J]. Acta Ecologica Sinica, 2006, 26(5): 1 502-1 508.[陈健, 倪绍祥, 李静静, 等. 植被叶面积指数遥感反演的尺度效应及空间变异性[J]. 生态学报, 2006, 26(5): 1 502-1 508.]

[34]Zhu Xiaohua, Feng Xiaoming, Zhao Yingshi, et al. Scale effect and error analysis of crop LAI inversion[J]. Journal of Remote Sensing, 2010, 14(3): 586-592.[朱小华, 冯晓明, 赵英时, 等. 作物LAI的遥感尺度效应与误差分析[J]. 遥感学报, 2010, 14(3): 586-592.]

[35]Hall F G, Huemmrich K F, Goetz S J, et al. Sattelitte remote sensing of surface energy balance: Success, failures, and unsolved idles in FIFE[J]. Journal of Geophysical Research, 1992, 97: 19 061-19 089.

[36]Hu Z L, Islam S. A framework for analyzing and designing scale invariant remote sensing algorithms[J]. IEEE Transanctions on Geiscience and Remote Sensing, 1997, 35(3): 747-755.

[37]Zhang Hao, Jiao Zidi, Yang Hua, et al. Scale effect of histogram[J].Science in China (Series D),2002, 32(4): 307-316.[张颢, 焦子锑, 杨华, 等. 直方图尺度效应研究[J]. 中国科学:D辑, 2002, 32(4): 307-316.]

[38]Garrigues S, Allard D, Baret F, et al. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data[J]. Remote Sensing of Environment, 2006, 105(4): 286-298.

[39]Zhang R H, Tian J, Li Z L, et al. Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D), 2010, 53(5): 741-751.

[40]Silvestri S, Marani M, Settle J, et al. Salt marsh vegetation radiometry: Data analysis and scaling[J]. Remote Sensing of Environment, 2002, 80(3):473-482.

[41]Aman A, Randriamanantena H P, Podaire A, et al. Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity[J]. Geosciences and Remote Sensing, 1992, 30(2): 326-338.

[42]Liang S L, Fang H L, Chen M Z, et al. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1/2): 149-162.

[43]Fernandes R A, Miller J R, Chen J M, et al. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery[J]. Remote Sensing of Environment, 2004, 89(2): 200-216.

[44]Tian Qingjiu,Jin Zhenyu. Research on calculation and spatial scaling of forest leaf area index from remote sensing image[J].Remote Sensing Information, 2006, 4: 5-11.[田庆久, 金震宇. 森林叶面积指数遥感反演与空间尺度转换研究[J]. 遥感信息, 2006, 4: 5-11.]

[45]Xu Xiru, Fan Wenjie, Tao Xin. The spatial scaling effect of continuous canopy leaves area index retrieved by remote sensing[J]. Science in China (Series D), 2009, 52(3): 393-401.[徐希孺, 范闻捷, 陶欣. 遥感反演连续植被叶面积指数的空间尺度效应[J]. 中国科学:D辑, 2009, 39(1): 79-87.]

[46]Kim G,Barros P A. Spatial characterization of soil moisture fields using passive remotely sensed soil moisture images[J].Remote Sensing of Environment,2002, 81: 1-11.

[47]Kim G,Barros P A. Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data[J]. Remote Sensing of Environment, 2002, 83: 400-413.

[48]Luan Haijun, Tian Qingjiu, Yu Tao, et al. Modeling continuous scaling of NDVI based on fractal theory[J]. Spectroscopy and Spectral Analysis, 2013, in press.[栾海军, 田庆久, 余涛,等. 基于分形理论的NDVI连续空间尺度转换模型研究[J]. 光谱学与光谱分析,2013, 已接收.]

[49]Takeuchi W, Tamura M, Yasuoka Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV[J]. Remote Sensing of Environment, 2003, 85(1): 21-29.

[50]Liang Shunlin. Quantitative Remote Sensing[M]. Fan Wenjie, translated. Beijing: Science Press, 2009:329-338.[梁顺林. 定量遥感[M]. 范闻捷,译. 北京: 科学出版社, 2009: 329-338.]

[51]Wang Xiaoqin,Ye Wei, Jiang Hong. Applicability analysis on LAI estimation model from remote sensing data for broadleaf forest based on spectral normalization[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 5: 713-718.[汪小钦, 叶炜, 江洪. 基于光谱归一化的阔叶林LAI遥感估算模型适用性分析[J]. 福州大学学报:自然科学版, 2011, 5: 713-718.]

[52]Ye Wei,Wang Xiaoqin, Jiang Hong, et al. Masson’s pine LAI estimation based on spectral normalization using remote sensing data[J]. Remote Sensing Information, 2011, 5: 52-58.[叶炜, 汪小钦, 江洪, 等. 基于光谱归一化的马尾松LAI遥感估算研究[J]. 遥感信息, 2011, 5: 52-58.]

[53]Liu Y,Hiyama T, Kimura R,et al. Temporal influences on Landsat-5 Thematic Mapper image in visible band[J]. International Journal of Remote Sensing,2006, 27(15):3 183-3 201.

[54]Chen Guo, Liu Qinhuo, Liu Qiang, et al. A study on geometrical processing methods for LAI products intercomparison between modis and TM[J]. Journal of Beijing Normal University (Natural Science), 2007, 43(3): 356-361.[陈果, 柳钦火, 刘强,等. MODIS和降尺度TM数据反演叶面积指数相互验证中几何处理方法的研究[J]. 北京师范大学学报:自然科学版, 2007, 43(3): 356-361.]

[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 朱栋, 高世腾, 朱欣欣, 吴彬, 程冰, 林强. 量子重力仪在地球科学中的应用进展[J]. 地球科学进展, 2021, 36(5): 480-489.
[3] 杜江民,龙鹏宇,杨鹏,丁强,胡秀银,李伟,柏杨,盛军. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[4] 张一诺,路紫,杜欣儒,董雅晴,张菁. 时空连续数据支持下的空域资源配置研究:评述与展望[J]. 地球科学进展, 2019, 34(9): 912-921.
[5] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[6] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[7] 王根, 盛绍学, 刘惠兰, 吴蓉, 杨寅. 基于L1范数正则项约束的不连续资料三维/四维变分融合研究[J]. 地球科学进展, 2017, 32(7): 757-768.
[8] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[9] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[10] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[11] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[12] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[13] 郭毅,赵景波. 1368—1948年陇中地区干旱灾害时间序列分形特征研究[J]. 地球科学进展, 2010, 25(6): 630-637.
[14] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
[15] 文战久,高 星,姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展, 2007, 22(6): 598-604.
阅读次数
全文


摘要