地球科学进展 ›› 2018, Vol. 33 ›› Issue (5): 483 -492. doi: 10.11867/j.issn.1001-8166.2018.05.0483

综述与评述 上一篇    下一篇

定量遥感地表参数尺度转换研究趋势探讨
栾海军 1( ), 田庆久 2, 3, 章欣欣 1, 聂芹 1, 朱晓玲 1   
  1. 1.厦门理工学院 计算机与信息工程学院, 福建 厦门 361024
    2.南京大学 国际地球系统科学研究所, 江苏 南京 210023
    3.南京大学 江苏省地理信息技术重点实验室, 江苏 南京 210023
  • 收稿日期:2017-12-15 修回日期:2018-04-02 出版日期:2018-05-20
  • 基金资助:
    *国家自然科学基金项目“融合地物类别信息的NDVI升降尺度转换耦合研究”(编号:41601350);福建省自然科学基金项目“融合地物类别信息的NDVI尺度转换研究”(编号:2017J05069)资助.

Trends on Scaling Research for Land Surface Parameters in Quantitative Remote Sensing

Haijun Luan 1( ), Qingjiu Tian 2, 3, Xinxin Zhang 1, Qin Nie 1, Xiaoling Zhu 1   

  1. 1.College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
    2.International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
    3.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
  • Received:2017-12-15 Revised:2018-04-02 Online:2018-05-20 Published:2018-06-13
  • About author:

    First author:Luan Haijun (1984-), male, Luyi County, Henan Province, Lecturer. Research areas include scale effects research of quantitative remote sensing. E-mail:luanhaijun@xmut.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Coupling of NDVI’s up-scaling and down-scaling fusing with ground objects classification”(No.41601350);The Natural Science Foundation of Fujian Province, China “Research on NDVI’s scaling fusing with ground objects classification”(No.2017J05069).

尺度效应是定量遥感重要而基础的问题之一,学者们利用尺度转换模型定量描述尺度效应。重点以归一化差分植被指数(NDVI)为例,对其尺度转换研究现状进行分析,进而对定量遥感地表参数尺度转换研究趋势进行探讨。认为:① 融合地物类别信息的升尺度转换模型建立将成为遥感地表参数升尺度转换研究的一种新趋势;② 利用分形理论与方法尝试揭示尺度转换动力学过程也是遥感地表参数降尺度转换研究的一个新的发展趋势;③ 时空尺度转换耦合研究将继续成为未来遥感地表参数尺度转换研究的新主题,对利用多重分形方法建立时空尺度转换耦合模型的可能性进行分析,展示了该方法的潜在研究价值;④ 定量遥感尺度转换与遥感影像地类自动识别结合研究将成为新趋势,2个研究领域可相辅相成,在今后的研究中取得新的成果。

Scale effect is a crucial scientific problem in quantitative remote sensing, and scholars attempt to solve it with scales transformation models. As a significant land surface parameter, NDVI’s scaling has been studied for a long time. Therefore, we took NDVI as a main example. Its development of scaling research was described and analyzed in the paper, and the development trends were discussed for land surface parameters in quantitative remote sensing. Our opinions are as follows: ① It will be the new trend to establish upscaling models fused with ground objects classification information for land surface parameters in quantitative remote sensing; ② It will be the new trend to establish downscaling models based on fractal for land surface parameters in quantitative remote sensing; ③ It is still the hotspot to establish temporal-spatial coupled scaling models for land surface parameters in quantitative remote sensing in the future. The multi-fractal scaling methodology was proposed and its availability was analyzed in the paper, which presented significant potential; ④ It will be the novel trend to combine scales transformation in quantitative remote sensing presented automatic ground objects recognition in remote sensing images. It is proposed that the two research fields can help each other and both can make much progress in the future.

中图分类号: 

[1] Liang Shunlin.Quantitative Remote Sensing[M]. Fan Wenjie, translated.Beijing: Science Press, 2009:180-183.
[梁顺林. 定量遥感[M]. 范闻捷,译. 北京: 科学出版社, 2009:180-183.]
[2] Mohanty B P.Soil hydraulic property estimation using remote sensing: A review[J]. Vadose Zone Journal, 2013, 12(4). DOI: 10.2136/vzj2013.06.0100.
doi: 10.2136/vzj2013.06.0100     URL    
[3] Li Xiaowen, Wang Yiting.Prospects on future developments of quantitative remote sensing[J]. Acta Geographica Sinica, 2013, 68(9): 1 163-1 169.
[李小文, 王祎婷. 定量遥感尺度效应刍议[J]. 地理学报, 2013, 68(9): 1 163-1 169.]
[4] Luan Haijun, Tian Qingjiu, Yu Tao, et al.Review of up-scaling of quantitative remote sensing[J]. Advances in Earth Science, 2013, 28(6): 657-664.
[栾海军, 田庆久, 余涛, 等. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.]
[5] Zhang X, Yan G, Li Q, et al.Evaluating the fraction of vegetation cover based on NDVI spatial scale correction model[J]. International Journal of Remote Sensing, 2006, 27(24): 5 359-5 372.
doi: 10.1080/01431160600658107     URL    
[6] Liu Liangyun.Simulation and correction of spatial scaling effects for leaf area index[J]. Journal of Remote Sensing, 2014, 18(6): 1 158-1 168.
[刘良云. 叶面积指数遥感尺度效应与尺度纠正[J]. 遥感学报, 2014, 18(6): 1 158-1 168.]
[7] Hilker T,Hall F G, Coops N C, et al.Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling[J]. Remote Sensing of Environment, 2010, 114(12): 2 863-2 874.
doi: 10.1016/j.rse.2010.07.004     URL    
[8] Flanagan L B, Sharp E J, Gamon J A.Application of the photosynthetic light-use efficiency model in a northern Great Plains grassland[J]. Remote Sensing of Environment, 2015, 168: 239-251.
doi: 10.1016/j.rse.2015.07.013     URL    
[9] Ju J C, Masek J G.The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data[J]. Remote Sensing of Environment, 2016, 176: 1-16.
doi: 10.1016/j.rse.2016.01.001     URL    
[10] Chasmer L,Barr A, Hopkinson C, et al.Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests[J]. Remote Sensing of Environment, 2009, 113: 82-93.
doi: 10.1016/j.rse.2008.08.009     URL    
[11] Gu Y X, Wylie B K.Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations[J]. Remote Sensing of Environment, 2015, 171: 291-298.
doi: 10.1016/j.rse.2015.10.018     URL    
[12] Liang L, Schwartz M D, Fei S L.Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest[J]. Remote Sensing of Environment, 2011, 115(1): 143-157.
doi: 10.1016/j.rse.2010.08.013     URL    
[13] Balzarolo M, Vicca S, Nguy-Robertson A L, et al. Matching the phenology of net ecosystem exchange and vegetation indices estimated with MODIS and FLUXNET in-situ observations[J]. Remote Sensing of Environment, 2016, 174: 290-300.
doi: 10.1016/j.rse.2015.12.017     URL    
[14] Jin Rui, Li Xin, Ma Mingguo, et al.Key methods and experiment verification for the validation of quantitative remote sensing products[J]. Advances in Earth Science, 2017, 32(6): 630-642.
[晋锐, 李新, 马明国, 等. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.]
doi: 10.11867/j.issn.1001-8166.2017.06.0630     URL    
[15] Ma Jin, Zhou Ji, Liu Shaomin, et al.Review on validation of remotely sensed land surface temperature[J]. Advances in Earth Science, 2017, 32(6): 615-629.
[马晋, 周纪, 刘绍民, 等. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.]
doi: 10.11867/j.issn.1001-8166.2017.06.0615     URL    
[16] Liang S L.Numerical experiments on the spatial scaling of land surface albedo and leaf area index[J]. Remote Sensing Reviews, 2000, 19: 225-242.
doi: 10.1080/02757250009532420     URL    
[17] Liang S L, Fang H L, Chen M Z, et al.Validating MODIS land surface reflectance and albedo products: Methods and preliminary results[J]. Remote Sensing of Environment, 2002, 83(1/2): 149-162.
doi: 10.1016/S0034-4257(02)00092-5     URL    
[18] Romn M O,Gatebe C K, Schaaf C B, et al.Variability in surface BRDF at different spatial scales (30~500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements[J]. Remote Sensing of Environment, 2011, 115: 2 184-2 203.
doi: 10.1016/j.rse.2011.04.012     URL    
[19] Tian Y H, Woodcock C E, Wang Y J, et al.Multiscale analysis and validation of the MODIS LAI product: Ⅰ. Uncertainty assessment[J]. Remote Sensing of Environment, 2002, 83(3): 414-430.
doi: 10.1016/S0034-4257(02)00047-0     URL    
[20] Xu X R, Fan W J, Tao X.The spatial scaling effect of continuous canopy Leaves Area Index retrieved by remote sensing[J]. Science in China (Series D), 2009, 52: 393-401.
doi: 10.1007/s11430-009-0024-0     URL    
[21] Zhu Xiaohua, Feng Xiaoming, Zhao Yingshi, et al.Scale effect and error analysis of crop LAI inversion[J]. Journal of Remote Sensing, 2010, 14(3): 586-592.
[朱小华, 冯晓明, 赵英时, 等. 作物LAI的遥感尺度效应与误差分析[J]. 遥感学报, 2010, 14(3): 586-592.]
URL    
[22] Fan W J, Gai Y Y, Xu X R, et al.The spatial scaling effect of the discrete-canopy effective Leaf Area Index retrieved by remote sensing[J]. Science in China (Series D), 2013, 56(9): 1 548-1 554.
doi: 10.1007/s11430-012-4554-5     URL    
[23] Aman A, Randriamanantena H P, Podaire A, et al.Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity[J]. IEEE Transactions on Geosciences and Remote Sensing, 1992, 30(2): 326-338.
doi: 10.1109/36.134082     URL    
[24] Bian L, Walsh S J.Scale dependencies of vegetation and topography in a mountainous environment of Montana[J]. Professional Geographer, 1993, 45: 1-11.
doi: 10.1111/j.0033-0124.1993.00001.x     URL    
[25] Friedl M A, Davis F W, Michaelsen J, et al.Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE[J]. Remote Sensing of Environment, 1995, 54(3): 233-246.
doi: 10.1016/0034-4257(95)00156-5     URL    
[26] Van Der Meer F, Bakker W, Scholte K, et al. Spatial scale variations in vegetation indices and above-ground biomass estimates: Implications for MERIS[J]. International Journal of Remote Sensing, 2001, 22(17): 3 381-3 396.
doi: 10.1080/01431160152609227     URL    
[27] Becker F, Li Z L.Surface temperature and emissivity at various scales: Definition, measurement, and related problems[J]. Remote Sensing Reviews, 1995, 12(3/4): 225-253.
doi: 10.1080/02757259509532286     URL    
[28] Li X W, Wan Z M.Comments on reciprocity in the directional reflectance modeling[J]. Progress in Natural Science, 1999, 8(3): 354-358.
[29] Li X W, Wang J D.The definition of effective emissivity of land surface at the scale of remote sensing pixels[J]. Chinese Science Bulletin, 1999, 44(23): 2 154-2 158.
doi: 10.1007/BF03182699     URL    
[30] Li X W, Wang J D, Strahler A H.Scale effect of Planck’s law over nonisothermal blackbody surface[J]. Science in China (Series E), 1999, 42(6): 652-656.
doi: 10.1007/BF02917003     URL    
[31] Li X W, Wang J D, Strahler A H.Scale effects and scaling-up by geometric-optical model[J]. Science in China (Series E), 2000, 43(Suppl.): 17-22.
doi: 10.1007/BF02916574     URL    
[32] Hu Z L, Islam S.A framework for analyzing and designing scale invariant remote sensing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 747-755.
doi: 10.1109/36.581996     URL    
[33] Wu Hua, Jiang Xiaoguang, Xi Xiaohuan, et al.Comparison and analysis of two general scaling methods for remotely sensed information[J]. Journal of Remote Sensing, 2009, 13(2): 183-189.
[吴骅, 姜小光, 习晓环, 等. 两种普适性尺度转换方法比较与分析研究[J]. 遥感学报, 2009, 13(2): 183-189.]
doi: 10.11834/jrs.20090235    
[34] Liu Yan, Wang Jindi, Zhou Hongmin, et al.Upscaling approach for validation of LAI products derived from remote sensing observation[J]. Journal of Remote Sensing, 2014, 18(6): 1 189-1 198.
[刘艳, 王锦地, 周红敏, 等. 用地面点测量数据验证LAI产品中的尺度转换方法[J]. 遥感学报, 2014, 18(6): 1 189-1 198.]
[35] Chen J M.Spatial scaling of a remotely sensed surface parameter by contexture[J]. Remote Sensing of Environment, 1999, 69: 30-42.
doi: 10.1016/S0034-4257(99)00006-1     URL    
[36] Wang Yiting, Xie Donghui, Li Xiaowen.Universal scaling methodology in remote sensing science by constructing geographic trend surface[J]. Journal of Remote Sensing, 2014, 18(6): 1 139-1 146.
[王祎婷, 谢东辉, 李小文. 构造地理要素趋势面的尺度转换普适性方法探讨[J]. 遥感学报, 2014, 18(6): 1 139-1 146.]
[37] Shi Y, Wang J, Qin J, et al.An upscaling algorithm to obtain the representative ground truth of LAI time series in heterogeneous land surface[J]. Remote Sensing, 2015, 7(10): 12 887-12 908.
doi: 10.3390/rs71012887     URL    
[38] Wang Q, Shi W, Wang L.Allocating classes for soft-then-hard subpixel mapping algorithms in units of class[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2 940-2 959.
doi: 10.1109/TGRS.2013.2267802     URL    
[39] Wang Q, Shi W, Atkinson P M, et al.Downscaling MODIS images with area-to-point regression kriging[J]. Remote Sensing of Environment, 2015, 166: 191-204.
doi: 10.1016/j.rse.2015.06.003     URL    
[40] Wang Q, Atkinson P M, Shi W.Indicator cokriging-based subpixel mapping without prior spatial structure information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 309-323.
doi: 10.1109/TGRS.2014.2321834     URL    
[41] Wang Q, Atkinson P M, Shi W.Fast sub-pixel mapping algorithms for sub-pixel resolution change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1 692-1 706.
doi: 10.1109/TGRS.2014.2346535     URL    
[42] Shi W, Wang Q.Soft-then-hard sub-pixel mapping with multiple shifted images[J]. International Journal of Remote Sensing, 2015, 36(5): 1 329-1 348.
doi: 10.1080/01431161.2015.1009650     URL    
[43] Gao F, Masek J, Schwaller M, et al.On the Blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2 207-2 218.
doi: 10.1109/TGRS.2006.872081     URL    
[44] Zhu X L, Chen J M, Gao F, et al.An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2 610-2 623.
doi: 10.1016/j.rse.2010.05.032     URL    
[45] Huang B, Zhang H K, Song H H, et al.Unified fusion of remote sensing imagery: Generating simultaneously high-resolution synthetic spatial-temporal spectral earth observations[J]. Remote Sensing Letters, 2013, 4: 561-569.
doi: 10.1080/2150704X.2013.769283     URL    
[46] Huang B, Zhang H K.Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes[J]. International Journal of Remote Sensing, 2014, 35(16): 6 213-6 233.
doi: 10.1080/01431161.2014.951097     URL    
[47] Chen Yong, Chen Ling. Fractal Geometry (2nd)[M]. Beijing: Earthquake Press, 2005: 49-51, 95-98.
[陈颙, 陈凌. 分形几何学(第2版)[M]. 北京: 地震出版社, 2005: 49-51, 95-98.]
[48] Riccio D, Ruello G.Synthesis of fractal surfaces for remote-sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3 803-3 814.
doi: 10.1109/TGRS.2014.2384595     URL    
[49] Zhang R H, Tian J, Li Z L, et al.Spatial scaling and information fractal dimension of surface parameters used in quantitative remote sensing[J]. International Journal of Remote Sensing, 2008, 29: 5 145-5 159.
doi: 10.1080/01431160802036581     URL    
[50] Zhang R H, Tian J, Li Z L, et al.Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D), 2010, 53: 741-751.
doi: 10.1007/s11430-010-0021-3     URL    
[51] Luan Haijun, Tian Qingjiu, Gu Xingfa, et al.Establishing continuous scaling of NDVI based on fractal theory and GEOEYE-1 image[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 538-544, 549.
[栾海军, 田庆久, 顾行发, 等. 基于分形理论与GEOEYE-1影像的NDVI连续空间尺度转换模型构建及应用[J]. 红外与毫米波学报, 2013, 32(6): 538-544, 549.]
URL    
[52] Luan Haijun, Tian Qingjiu, Yu Tao, et al.Establishing continuous spatial scaling model of NDVI on fractal theory and five-index estimation system[J]. Journal of Remote Sensing, 2015, 19(1): 116-125.
[栾海军, 田庆久, 余涛, 等. 根据分形理论与五指标评价体系构建NDVI连续空间尺度转换模型[J]. 遥感学报, 2015, 19(1): 116-125.]
[53] Wu L, Qin Q, Liu X, et al.Spatial up-scaling correction for leaf area index based on the fractal theory[J]. Remote Sensing, 2016, 8(3): 197.
doi: 10.3390/rs8030197     URL    
[54] Kim G, Barros A P.Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data[J]. Remote Sensing of Environment, 2002, 83: 400-413.
doi: 10.1016/S0034-4257(02)00044-5     URL    
[55] Xie H P, Sun H Q.The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces[J]. Fractals, 1997, 5(4): 625-634.
doi: 10.1142/S0218348X97000504     URL    
[56] Wen J G, Liu Q, Liu Q H, et al.Scale effect and scale correction of land-surface albedo in rugged terrain[J]. International Journal of Remote Sensing, 2009, 30(20): 5 397-5 420.
doi: 10.1080/01431160903130903     URL    
[57] Emelyanova I V, Mcvicar T R, Van Niel T G, et al. Assessing the accuracy of blending Landsat-MODIS surface reflectance in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection[J]. Remote Sensing of Environment, 2013, 133:193-209.
doi: 10.1016/j.rse.2013.02.007     URL    
[58] Huang B, Wang J, Song H, et al.Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring[J].IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1 011-1 015.
doi: 10.1109/LGRS.2012.2227930     URL    
[59] Kim J, Hogue T S.Evaluation and sensitivity testing of a coupled Landsat-MODIS downscaling method for land surface temperature and vegetation indices in semi-arid regions[J]. Journal of Applied Remote Sensing, 2012, 6(1): 063569.
doi: 10.1117/1.JRS.6.063569     URL    
[60] Ouyang W, Hao F, Skidmore A K, et al.Integration of multi-sensor data to assess grassland dynamics in a Yellow River sub-watershed[J]. Ecological Indicators, 2012, 18(1): 163-170.
doi: 10.1016/j.ecolind.2011.11.013     URL    
[61] Zhang H K, Chen J M, Huang B, et al.Reconstructing seasonal variation of landsat vegetation index related to leaf area index by fusing with modis data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3): 950-960.
doi: 10.1109/JSTARS.2013.2284528     URL    
[62] Huang Bo, Zhao Yongquan.Research status and prospect of spatiotemporal fusion of multi-source satellite remote sensign imagery[J].Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1 492-1 499.
[黄波, 赵涌泉. 多源卫星遥感影像时空融合研究的现状及展望[J]. 测绘学报, 2017, 46(10): 1 492-1 499.]
[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[3] 李爱农, 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151.
[4] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763.
[5] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[6] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150.
[7] 张朝林,宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063.
[8] 栾海军,田庆久,余 涛,胡新礼,黄彦,刘李,杜灵通,魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664.
[9] 郭毅,赵景波. 1368—1948年陇中地区干旱灾害时间序列分形特征研究[J]. 地球科学进展, 2010, 25(6): 630-637.
[10] 顾娟,李新,黄春林. 基于时序MODIS NDVI的黑河流域土地覆盖分类研究[J]. 地球科学进展, 2010, 25(3): 317-326.
[11] 吴江华,赵鹏祥,Nigel Roulet,Jonathan Seaquist,Peng Changhui. 空间尺度转换与跨尺度信息链接:区域生态水文模拟研究空间尺度转换方法综述[J]. 地球科学进展, 2008, 23(2): 129-141.
[12] 王宝鉴,宋连春,张强,黄玉霞,杨选雄,韩兰英. 石羊河流域水资源对气候变暖的响应及对生态环境的影响[J]. 地球科学进展, 2007, 22(7): 730-737.
[13] 文战久,高 星,姚振兴. 基于“元素含量—面积”模型方法的地球化学场的多重分形模式分析[J]. 地球科学进展, 2007, 22(6): 598-604.
[14] 万丽,王庆飞. 成矿元素品位有序数据集自仿射分形方法应用性评价[J]. 地球科学进展, 2007, 22(4): 357-361.
[15] 李小文. 地球表面时空多变要素的定量遥感项目综述[J]. 地球科学进展, 2006, 21(8): 771-780.
阅读次数
全文


摘要