地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 141 -151. doi: 10.11867/j.issn.1001-8166.2018.02.0141

综述与评述 上一篇    下一篇

山地典型生态参量遥感反演建模及其时空表征能力研究
李爱农( ), 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌   
  1. 数字山地与遥感应用研究中心,中国科学院·水利部成都山地灾害与环境研究所,四川 成都 610041
  • 收稿日期:2017-11-07 修回日期:2018-01-10 出版日期:2018-02-20
  • 基金资助:
    国家自然科学基金重点项目“山地典型生态参量遥感反演建模及其时空表征能力研究”(编号:41631180)资助

Study on Retrieving Key Ecological Parameters in Mountainous Regions by Remote Sensing Methods and Evaluating Their Spatio-temporal Representativeness

Ainong Li( ), Jinhu Bian, Gaofei Yin, Huaan Jin, Wei Zhao, Zhengjian Zhang, Xi Nan, Guangbin Lei   

  1. Research Center for Digital Mountain & Remote Sensing Application, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2017-11-07 Revised:2018-01-10 Online:2018-02-20 Published:2018-04-02
  • About author:

    First author:Li Ainong (1974-), male, Lujiang County, Anhui Province, Professor. Research areas include mountain remote sensing and its integrated application.E-mail:ainongli@imde.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “A study on retrieving key ecological parameters in mountainous regions by remote sensing methods and evaluating their spatio-temporal representativeness”(No.41631180)

围绕国家自然科学基金重点项目“山地典型生态参量遥感反演建模及其时空表征能力研究”,介绍了项目的立项背景、研究目标、研究现状和发展趋势、拟解决的关键科学问题、主要研究内容、研究总体方案及预期成果。项目选取不同地形梯度和植被背景为主要研究对象,开展山地叶面积指数(LAI)和净初级生产力(NPP)陆表典型生态参量遥感反演建模及其时空表征能力研究,发展遥感定量反演模型和方法,分析山地复杂地形对遥感信号及遥感反演产品的影响,力争能在山地陆表生态参量遥感反演建模理论与方法上取得突破。

Focusing on the Key Project of National Natural Science Foundation of China “A study on retrieving key ecological parameters in mountainous regions by remote sensing methods and evaluating their spatio-temporal representativeness”, this paper introduced the project background, objectives, research status, the key scientific questions, main contents of the research, the overall methodology and the deliverables. Choosing different topographic gradient and vegetation background, this project will conduct researches on retrieving key ecological parameters such as LAI and NPP in mountainous areas, evaluating their spatio-temporal representativeness, analyzing the influence of complex terrain on remote sensing signals and the remote sensing products, and finally trying to make a breakthrough in the theory and methodology of ecological parameters retrieving in mountains area.

中图分类号: 

图1 项目总体实施方案
Fig.1 Project overall implementation plan
图1 项目总体实施方案
Fig.1 Project overall implementation plan
[1] Li Ainong, Yin Gaofei, Jin Huaan, et al.Principles and methods for the retrieval of biophysical variables in mountainous area[J].Remote Sensing Technology and Application, 2016, 31(1): 1-11.
[李爱农, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 3(1): 1-11.]
doi: 10.11873/j.issn.1004-0323.2016.1.0001     URL    
[2] Li Ainong, Bian Jinhu, Jin Huaan, et al.Mountain Remote Sensing[M]. Beijing: Science Press,2016.
[李爱农, 边金虎, 靳华安, 等. 山地遥感[M].北京: 科学出版社,2016.]
[3] Van Wie P, Stein M.A landsat digital image rectification system[J]. IEEE Transactions on Geoscience Electronics, 1977, 15(3): 130-137.
doi: 10.1109/TGE.1977.6498970     URL    
[4] Holben B N, Justice C O.The topographic effect on spectral response from nadir-pointing sensors[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(9):1 191-1 200.
doi: 10.1016/0031-8663(80)90017-4     URL    
[5] Schaaf C B, Li X, Strahler A H.Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(6): 1 186-1 193.
doi: 10.1109/36.338367     URL    
[6] Emery W J, Ikeda M.A comparison of geometric correction methods for AVHRR imagery[J]. Canadian Journal of Remote Sensing, 1984, 10(1): 46-56.
doi: 10.1080/07038992.1984.10855056     URL    
[7] Tucker C J, Grant D M, Dykstra J D.NASA’s global orthorectified landsat data set[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(3): 313-322.
doi: 10.14358/PERS.70.3.313     URL    
[8] Teillet P M, Guindon B, Goodenough D G.On the slope-aspect correction of multispectral scanner data[J]. Canadian Journal of Remote Sensing, 1982, 8(2): 84-106.
doi: 10.1080/07038992.1982.10855028     URL    
[9] Gu D, Gillespie A.Topographic normalization of landsat TM images of forest based on subpixel Sun-canopy-sensor geometry[J]. Remote Sensing of Environment, 1998, 64(2): 166-175.
doi: 10.1016/S0034-4257(97)00177-6     URL    
[10] Zhou Wancun.The application of digital image processing for remote sensing to mountain research[J]. Mountain Research, 1985, 3(3): 189-192.
[周万村. 遥感数字图象处理在山地研究中的应用[J]. 山地研究, 1985, 3(3): 189-192.]
[11] Chen Yu, Cheng Dijiu, Song Yukang.The development of mountain remote sensing and cartography[J]. Mountain Research, 1986, 4(1): 92-95.
[陈昱, 程地玖, 宋玉康. 山地遥感与地理制图的发展[J]. 山地研究, 1986, 4(1): 92-95]
[12] Liang Shunlin.Quantitative Remote Sensing[M]. Beijing:Science Press,2009.
[梁顺林. 定量遥感[M].北京: 科学出版社,2009.]
[13] Fan W, Chen J M, Ju W, et al.GOST: A geometric-optical model for sloping terrains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5 469-5 482.
doi: 10.1109/TGRS.2013.2289852     URL    
[14] Yin G, Li A, Zhao W, et al.Modeling canopy reflectance over sloping terrain based on path length correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(8): 4 597-4 609.
doi: 10.1109/TGRS.2017.2694483     URL    
[15] Soenen S A, Peddle D R, Hall R J, et al.Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain[J]. Remote Sensing of Environment, 2010, 114(7): 1 325-1 337.
doi: 10.1016/j.rse.2009.12.012     URL    
[16] Govind A, Chen J M, Margolis H, et al.A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America[J]. Journal of Hydrology, 2009, 367(3/4): 200-216.
doi: 10.1016/j.jhydrol.2009.01.006     URL    
[17] Guo Huadong.Digital Earth: Ten years’ development and prospect[J]. Advances in Earth Science, 2009, 24(9): 955-962.
[郭华东. 数字地球:10 年发展与前瞻[J]. 地球科学进展, 2009, 24(9): 955-962.]
[18] Fu Bojie, Leng Shuying, Song Changqing.The characteristics and tasks of geography in the new era[J]. Scientia Geographica Sinica, 2016, 35(8):939-945.
[傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务[J]. 地理科学, 2016, 35(8):939-945.]
[19] Leng Shuying, Zheng Yuanming, Wang Li, et al.An analysis of projects managed by division of geography, Department of Earth Sciences, National Nautral Science Foundation of China in 2016[J]. Advances in Earth Science, 2016, 31(12): 1 255-1 266.
[冷疏影, 郑袁明, 王力, 等. 2016年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2016, 31(12): 1 255-1 266.]
[20] Leng Shuying.The Three Decades of Geography Science: From Classic to Cutting-Edge[M]. Beijing: Commercial Press,2016.
[冷疏影. 地理科学三十年: 从经典到前沿[M]. 北京: 商务印书馆,2016.]
[21] Song Changqing, Leng Shuying.Characteristics and trend of modern geography and progresses of geographical research in China[J]. Advances in Earth Science, 2005, 20(6): 595-599.
[宋长青, 冷疏影. 当代地理学特征、发展趋势及中国地理学研究进展[J]. 地球科学进展, 2005, 20(6): 595-599.]
doi: 10.3321/j.issn:1001-8166.2005.06.001    
[22] Liu Qinhuo, Cao Biao, Zeng Yelu, et al.Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. Journal of Remote Sensing, 2016, 20(5):933-945.
[柳钦火, 曹彪, 曾也鲁, 等. 植被遥感辐射传输建模中的异质性研究进展[J]. 遥感学报, 2016, 20(5):933-945.]
doi: 10.11834/jrs.20166280     URL    
[23] Li Xiaowen.Retrospect, prospect and innovation in quantitative remote sensing[J]. Journal of Henan University, 2006, 35(4): 49-56.
[李小文. 定量遥感的发展与创新[J]. 河南大学学报: 自然科学版, 2006, 35(4): 49-56.]
doi: 10.3969/j.issn.1003-4978.2005.04.012     URL    
[24] Chen Jingming.An important shortcoming and improvement in remote sensing evapotranspiration model[J]. Chinese Science Bulletin, 1988, 33(6): 454-457.
[陈镜明. 现用遥感蒸散模式中的一个重要缺点及改进[J]. 科学通报, 1988, 33(6):454-457.]
[25] Li X, Cheng G, Liu S, et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8):1 145-1 160.
doi: 10.1175/BAMS-D-12-00154.1     URL    
[26] Tian X, Li Z, Chen E, et al.The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry experiment (COMPLICATE)[J]. PLoS ONE, 2015, 10(9).DOI:10.1376/Journal.pone.0137545.
doi: 10.1371/journal.pone.0137545     URL     pmid: 4557998
[27] Gong Peng.Some frontier problems in remote sensing science and technology[J]. Journal of Remote Sensing, 2009, 13(1): 13-23.
[宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报, 2009,13(1): 13-23.]
doi: 10.3321/j.issn:1007-4619.2009.01.001     URL    
[28] Li Zhaoliang, Zhang Renhua.A physical algorithm for inversion of land surface emissivity from medium infrared and thermal infrared data[J]. Science in China (Series E), 2000, 30(Suppl.1): 18-26.
[李召良, 张仁华. 一种从中红外和热红外数据中反演地表比辐射率的物理算法[J]. 中国科学:E辑, 2000, 30(增刊1): 18-26.]
[29] Ju Weimin, Fang Hongliang, Tian Xiangjun, et al.Study on the global carbon assimilation system based on multisource remote sensing data[J]. Advances in Earth Science, 2016, 31(11): 1 105-1 110.
[居为民, 方红亮, 田向军, 等. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1 105-1 110.]
[30] Shi Jiancheng, Du Yang, Du Jinyang,et al.Progresses on microwave remote sensing of land surface parameters[J]. Science in China(Series D), 2012, 55(7): 1 052-1 078.
[施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: D辑, 2012, 42(6):814-842.]
URL    
[31] Li Xiaobing, Shi Peijun. Research on regulation of NDVI change of Chinese primary vegetation types based on NOAA/AVHRR data[J]. Acta Botanica Sinica, 1999,41(3): 88-91,94-98
[李晓兵, 史培军. 基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究[J]. 植物学报, 1999, 41(3):88-91,94-98.]
[32] Liu Liangyun, Wang Jihua, Huang Wenjiang,et al.Improving winter wheat yield prediction by novel spectral index[J]. Transactions of the CSAE, 2004, 1(1): 172-175.
[刘良云, 王纪华, 黄文江, 等. 利用新型光谱指数改善冬小麦估产精度[J]. 农业工程学报, 2004, 1(1): 172-175.]
doi: 10.3321/j.issn:1002-6819.2004.01.041     URL    
[33] Zhu Gaolong, Liu Yibo, Ju Weimin,et al.Evaluation of topographic effects on four commonly used vegetation indices[J]. Journal of Remote Sensing, 2013, 17(1): 210-234.
[朱高龙, 柳艺博, 居为民, 等. 4种常用植被指数的地形效应评估[J]. 遥感学报, 2013,17(1): 210-234.]
doi: 10.11834/jrs.20131380     URL    
[34] Jacquemoud S, Verhoef W, Baret F, et al.PROSPECT plus SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113:S56-S66.
doi: 10.1016/j.rse.2008.01.026     URL    
[35] Li X W, Strahler A H.Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy—Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 276-292.
doi: 10.1109/36.134078     URL    
[36] Li X, Strahler A H, Woodcock C E.A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):466-480.
doi: 10.1109/36.377947     URL    
[37] Huang H, Qin W, Liu Q.RAPID: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132:221-237.
doi: 10.1016/j.rse.2013.01.013     URL    
[38] Verrelst J, Muñoz J, Alonso L, et al.Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3[J]. Remote Sensing of Environment, 2012, 118:127-139.
doi: 10.1016/j.rse.2011.11.002     URL    
[39] Ma H, Song J, Wang J, et al.Improvement of spatially continuous forest LAI retrieval by integration of discrete airborne LiDAR and remote sensing multi-angle optical data[J]. Agricultural and Forest Meteorology, 2014, 189:60-70.
doi: 10.1016/j.agrformet.2014.01.009     URL    
[40] Mousivand A, Menenti M, Gorte B, et al.Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral-directional radiometric data[J]. Remote Sensing of Environment, 2015, 158:311-330.
doi: 10.1016/j.rse.2014.10.030     URL    
[41] Quan X, He B, Li X.A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6 507-6 517.
doi: 10.1109/TGRS.2015.2442999     URL    
[42] Wang Jindi, Yan Guangjian, Wang Changzuo.Amathematical approach on uncertain information process in remote sensing inversion[J]. Journal of Remote Sensing, 2004, 8(3): 214-219.
[王锦地, 阎广建, 王昌佐. 遥感反演中不确定性信息处理的一种数学方法[J]. 遥感学报, 2004, 8(3): 214-219.]
doi: 10.3321/j.issn:1007-4619.2004.03.004     URL    
[43] Kimes D S, Knyazikhin Y, Privette J L, et al.Inversion methods for physically-based models[J]. Remote Sensing Reviews, 2000, 18(2/4): 381-439.
doi: 10.1080/02757250009532396     URL    
[44] Jin H, Li A, Wang J, et al.Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy, 2016, 78:1-12.
doi: 10.1016/j.eja.2016.04.007     URL    
[45] Huang J, Sedano F, Huang Y, et al.Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology, 2016, 216:188-202.
doi: 10.1016/j.agrformet.2015.10.013     URL    
[46] Quaife T, Lewis P, De Kauwe M, et al.Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter[J]. Remote Sensing of Environment, 2008, 112(4): 1 347-1 364.
doi: 10.1016/j.rse.2007.05.020     URL    
[47] Li Ainong, Bian Jinhu, Zhang Zhengjian,et al.Progresses, opportunities, and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016, 20(5): 1 993-2 002.
[李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5): 1 993-2 002.]
[48] Soenen S A, Peddle D R, Coburn C A.SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9):2 148-2 159.
doi: 10.1109/TGRS.2005.852480     URL    
[49] Li A, Wang Q, Bian J, et al.An improved physics-based model for topographic correction of Landsat TM images[J]. Remote Sensing, 2015, 7(5):6 296-6 319.
doi: 10.3390/rs70506296     URL    
[50] Huang W, Zhang L, Furumi S, et al.Topographic effects on estimating net primary productivity of green coniferous forest in complex terrain using Landsat data: A case study of Yoshino Mountain, Japan[J]. International Journal of Remote Sensing, 2010, 31(11):2 941-2 957.
doi: 10.1080/01431160903140829     URL    
[51] Wen Jianguang, Liu Qinhuo, Xiao Qing, et al.Modeling the land surface reflectance for optical remote sensing data in rugged terrain[J]. Science in China(Series D), 2008,38(11): 1 419-1 427.
[闻建光, 柳钦火, 肖青, 等. 复杂山区光学遥感反射率计算模型[J]. 中国科学:D辑, 2008,38(11): 1 419-1 427.]
[52] Li Xiaowen, Wang Jindi.Vegetation Optical Remote Sensing Model and Vegetation Structure Parameters[M]. Beijing: Science Press,1995.
[李小文, 王锦地. 植被光学遥感模型与植被结构参数[M]. 北京: 科学出版社,1995.]
[53] Griffiths P, van der Linden S, Kuemmerle T, et al. A pixel-based Landsat compositing algorithm for large area land cover mapping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2 088-2 101.
doi: 10.1109/JSTARS.2012.2228167     URL    
[54] Bian J, Li A, Wang Q, et al.Development of dense time series 30-m image products from the Chinese HJ-1A/B Constellation: A case study in Zoige Plateau, China[J]. Remote Sensing, 2015, 7(12):16 647-16 671.
doi: 10.3390/rs71215846     URL    
[55] Bian J, Li A, Zhang Z, et al.Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model[J]. Remote Sensing of Environment, 2017, 197:98-114.
doi: 10.1016/j.rse.2017.05.031     URL    
[56] Gao F, Masek J, Schwaller M, et al.On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2 207-2 218.
doi: 10.1109/TGRS.2006.872081     URL    
[57] Wang Q, Blackburn G A, Onojeghuo A O, et al.Fusion of Landsat 8 OLI and Sentinel-2 MSI data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3 885-3 899.
doi: 10.1109/TGRS.2017.2683444     URL    
[58] Vanonckelen S, Lhermitte S, Van Rompaey A.The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35:320-328.
doi: 10.1016/j.jag.2014.10.006     URL    
[59] Yin G, Li J, Liu Q, et al.Regional Leaf Area Index retrieval based on remote sensing: The role of radiative transfer model selection[J]. Remote Sensing, 2015, 7(4):4 604-4 625.
doi: 10.3390/rs70404604     URL    
[60] Gonsamo A, Chen J M.Improved LAI algorithm implementation to MODIS data by incorporating background, topography, and foliage clumping information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1 076-1 088.
doi: 10.1109/TGRS.2013.2247405     URL    
[61] Zhang Renhua, Tian Jing, Li Zhaoliang, et al.Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D),2010, 40(2): 211-222.
[张仁华, 田静, 李召良, 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:D辑, 2010, 40(2): 211-222.]
[62] Morisette J T, Privette J L, Justice C O.A framework for the validation of MODIS Land products[J]. Remote Sensing of Environment, 2002, 83(1/2):77-96.
doi: 10.1016/S0034-4257(02)00088-3     URL    
[63] Jonckheere I, Fleck S, Nackaerts K, et al.Review of methods for in situ leaf area index determination—Part I. Theories, sensors and hemispherical photography[J]. Agricultural and Forest Meteorology, 2004, 121(1/2):19-35.
doi: 10.1016/j.agrformet.2003.08.027     URL    
[64] Fang H, Wei S, Liang S.Validation of MODIS and CYCLOPES LAI products using global field measurement data[J]. Remote Sensing of Environment, 2012, 119:43-54.
doi: 10.1016/j.rse.2011.12.006     URL    
[65] Li Xin, Liu Shaomin, Ma Mingguo, et al.HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498.
[李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
doi: 10.11867/j.issn.1001-8166.2012.05.0481     URL    
[66] Jin Rui, Li Xin, Ma Mingguo, et al.Key methods and experiment verification for the validation of quantitative remote sensing products[J]. Advances in Earth Science, 2017, 32(6): 630-642.
[晋锐, 李新, 马明国, 等. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.]
doi: 10.11867/j.issn.1001-8166.2017.06.0630     URL    
[67] Garrigues S, Lacaze R, Baret F, et al.Validation and intercomparison of global Leaf Area Index products derived from remote sensing data[J]. Journal of Geophysical Research—Biogeosciences, 2008, 113(G2).DOI:10.1029/2007JG000635.
doi: 10.1029/2007JG000635     URL    
[68] Pisek J, Chen J M.Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America[J]. Remote Sensing of Environment, 2007, 109(1):81-94.
doi: 10.1016/j.rse.2006.12.004     URL    
[69] Yang W, Tan B, Huang D, et al.MODIS leaf area index products: From validation to algorithm improvement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7):1 885-1 898.
doi: 10.1109/TGRS.2006.871215     URL    
[70] Xiao Z, Liang S, Wang J, et al.Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):209-223.
doi: 10.1109/TGRS.2013.2237780     URL    
[71] Ganguly S, Samanta A, Schull M A, et al.Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation[J]. Remote Sensing of Environment, 2008, 112(12):4 318-4 332.
doi: 10.1016/j.rse.2008.07.013     URL    
[72] Fensholt R, Sandholt I, Rasmussen M S.Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. Remote Sensing of Environment, 2004, 91(3/4):490-507.
doi: 10.1016/j.rse.2004.04.009     URL    
[73] Heiskanen J, Rautiainen M, Stenberg P, et al.Seasonal variation in MODIS LAI for a boreal forest area in Finland[J]. Remote Sensing of Environment, 2012, 126:104-115.
doi: 10.1016/j.rse.2012.08.001     URL    
[74] Jin H, Li A, Bian J, et al.Intercomparison and validation of MODIS and GLASS Leaf Area Index (LAI) products over mountain areas: A case study in southwestern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 55: 52-67.
doi: 10.1016/j.jag.2016.10.008     URL    
[75] Tian Y, Woodcock C E, Wang Y, et al.Multiscale analysis and validation of the MODIS LAI product-II. Sampling strategy[J]. Remote Sensing of Environment, 2002, 83(3):431-441.
doi: 10.1016/S0034-4257(02)00047-0     URL    
[76] Xu B, Li J, Liu Q, et al.A methodology to estimate representativeness of LAI station observation for validation: A case study with Chinese Ecosystem Research Network (CERN) in situ data[C]∥Land Surface Remote Sensing II. International Society for Optics and Photonics, 2014, 9260: 926023.
[77] Yin G, Li A, Jin H, et al.Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO[J]. Agricultural and Forest Meteorology, 2017, 233:209-221.
doi: 10.1016/j.agrformet.2016.11.267     URL    
[78] Yin G, Li A, Zeng Y, et al.A cost-constrained sampling strategy in support of LAI product validation in mountainous areas[J]. Remote Sensing, 2016, 8(9):704.
doi: 10.3390/rs8090704     URL    
[79] Chen X F, Chen J M, An S Q, et al.Effects of topography on simulated net primary productivity at landscape scale[J]. Journal of Environmental Management, 2007, 85(3): 585-596.
doi: 10.1016/j.jenvman.2006.04.026     URL     pmid: 17187920
[80] Govind A, Chen J M, Margolis H, et al.A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America[J]. Journal of Hydrology, 2009, 367(3/4): 200-216.
doi: 10.1016/j.jhydrol.2009.01.006     URL    
[1] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[2] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[3] 居为民, 方红亮, 田向军, 江飞, 占文凤, 刘洋, 王正兴, 何剑锋, 王绍强, 彭书时, 张永光, 周艳莲, 贾炳浩, 杨东旭, 符瑜, 李荣, 柳竟先, 王海鲲, 李贵才, 陈卓奇. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1105-1110.
[4] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[5] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[6] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[7] 张劲松,孟平,郑宁,黄辉,高峻. 大孔径闪烁仪法测算低丘山地人工混交林显热通量的可行性分析[J]. 地球科学进展, 2010, 25(11): 1283-1290.
[8] 吴江华,赵鹏祥,Nigel Roulet,Jonathan Seaquist,Peng Changhui. 空间尺度转换与跨尺度信息链接:区域生态水文模拟研究空间尺度转换方法综述[J]. 地球科学进展, 2008, 23(2): 129-141.
[9] 王宇,张贵. 滇东岩溶石山地区石漠化特征及成因[J]. 地球科学进展, 2003, 18(6): 933-938.
[10] 江 源,M. Meurer.

效应温度及其在山地植被景观研究中的应用展望[J]. 地球科学进展, 2000, 15(6): 644-648.

[11] 蔡运龙. 中国西南岩溶石山贫困地区的生态重建[J]. 地球科学进展, 1996, 11(6): 602-606.
[12] 邓孝. 矿山地热研究的回顾与展望[J]. 地球科学进展, 1992, 7(3): 20-.
阅读次数
全文


摘要