[1] |
Li Ainong, Yin Gaofei, Jin Huaan, et al.Principles and methods for the retrieval of biophysical variables in mountainous area[J].Remote Sensing Technology and Application, 2016, 31(1): 1-11.
|
|
[李爱农, 尹高飞, 靳华安, 等. 山地地表生态参量遥感反演的理论、方法与问题[J]. 遥感技术与应用, 2016, 3(1): 1-11.]
doi: 10.11873/j.issn.1004-0323.2016.1.0001
URL
|
[2] |
Li Ainong, Bian Jinhu, Jin Huaan, et al.Mountain Remote Sensing[M]. Beijing: Science Press,2016.
|
|
[李爱农, 边金虎, 靳华安, 等. 山地遥感[M].北京: 科学出版社,2016.]
|
[3] |
Van Wie P, Stein M.A landsat digital image rectification system[J]. IEEE Transactions on Geoscience Electronics, 1977, 15(3): 130-137.
doi: 10.1109/TGE.1977.6498970
URL
|
[4] |
Holben B N, Justice C O.The topographic effect on spectral response from nadir-pointing sensors[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(9):1 191-1 200.
doi: 10.1016/0031-8663(80)90017-4
URL
|
[5] |
Schaaf C B, Li X, Strahler A H.Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(6): 1 186-1 193.
doi: 10.1109/36.338367
URL
|
[6] |
Emery W J, Ikeda M.A comparison of geometric correction methods for AVHRR imagery[J]. Canadian Journal of Remote Sensing, 1984, 10(1): 46-56.
doi: 10.1080/07038992.1984.10855056
URL
|
[7] |
Tucker C J, Grant D M, Dykstra J D.NASA’s global orthorectified landsat data set[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(3): 313-322.
doi: 10.14358/PERS.70.3.313
URL
|
[8] |
Teillet P M, Guindon B, Goodenough D G.On the slope-aspect correction of multispectral scanner data[J]. Canadian Journal of Remote Sensing, 1982, 8(2): 84-106.
doi: 10.1080/07038992.1982.10855028
URL
|
[9] |
Gu D, Gillespie A.Topographic normalization of landsat TM images of forest based on subpixel Sun-canopy-sensor geometry[J]. Remote Sensing of Environment, 1998, 64(2): 166-175.
doi: 10.1016/S0034-4257(97)00177-6
URL
|
[10] |
Zhou Wancun.The application of digital image processing for remote sensing to mountain research[J]. Mountain Research, 1985, 3(3): 189-192.
|
|
[周万村. 遥感数字图象处理在山地研究中的应用[J]. 山地研究, 1985, 3(3): 189-192.]
|
[11] |
Chen Yu, Cheng Dijiu, Song Yukang.The development of mountain remote sensing and cartography[J]. Mountain Research, 1986, 4(1): 92-95.
|
|
[陈昱, 程地玖, 宋玉康. 山地遥感与地理制图的发展[J]. 山地研究, 1986, 4(1): 92-95]
|
[12] |
Liang Shunlin.Quantitative Remote Sensing[M]. Beijing:Science Press,2009.
|
|
[梁顺林. 定量遥感[M].北京: 科学出版社,2009.]
|
[13] |
Fan W, Chen J M, Ju W, et al.GOST: A geometric-optical model for sloping terrains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5 469-5 482.
doi: 10.1109/TGRS.2013.2289852
URL
|
[14] |
Yin G, Li A, Zhao W, et al.Modeling canopy reflectance over sloping terrain based on path length correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(8): 4 597-4 609.
doi: 10.1109/TGRS.2017.2694483
URL
|
[15] |
Soenen S A, Peddle D R, Hall R J, et al.Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain[J]. Remote Sensing of Environment, 2010, 114(7): 1 325-1 337.
doi: 10.1016/j.rse.2009.12.012
URL
|
[16] |
Govind A, Chen J M, Margolis H, et al.A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America[J]. Journal of Hydrology, 2009, 367(3/4): 200-216.
doi: 10.1016/j.jhydrol.2009.01.006
URL
|
[17] |
Guo Huadong.Digital Earth: Ten years’ development and prospect[J]. Advances in Earth Science, 2009, 24(9): 955-962.
|
|
[郭华东. 数字地球:10 年发展与前瞻[J]. 地球科学进展, 2009, 24(9): 955-962.]
|
[18] |
Fu Bojie, Leng Shuying, Song Changqing.The characteristics and tasks of geography in the new era[J]. Scientia Geographica Sinica, 2016, 35(8):939-945.
|
|
[傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务[J]. 地理科学, 2016, 35(8):939-945.]
|
[19] |
Leng Shuying, Zheng Yuanming, Wang Li, et al.An analysis of projects managed by division of geography, Department of Earth Sciences, National Nautral Science Foundation of China in 2016[J]. Advances in Earth Science, 2016, 31(12): 1 255-1 266.
|
|
[冷疏影, 郑袁明, 王力, 等. 2016年度地理学基金项目评审与成果分析[J]. 地球科学进展, 2016, 31(12): 1 255-1 266.]
|
[20] |
Leng Shuying.The Three Decades of Geography Science: From Classic to Cutting-Edge[M]. Beijing: Commercial Press,2016.
|
|
[冷疏影. 地理科学三十年: 从经典到前沿[M]. 北京: 商务印书馆,2016.]
|
[21] |
Song Changqing, Leng Shuying.Characteristics and trend of modern geography and progresses of geographical research in China[J]. Advances in Earth Science, 2005, 20(6): 595-599.
|
|
[宋长青, 冷疏影. 当代地理学特征、发展趋势及中国地理学研究进展[J]. 地球科学进展, 2005, 20(6): 595-599.]
doi: 10.3321/j.issn:1001-8166.2005.06.001
|
[22] |
Liu Qinhuo, Cao Biao, Zeng Yelu, et al.Recent progresses on the remote sensing radiative transfer modeling over heterogeneous vegetation canopy[J]. Journal of Remote Sensing, 2016, 20(5):933-945.
|
|
[柳钦火, 曹彪, 曾也鲁, 等. 植被遥感辐射传输建模中的异质性研究进展[J]. 遥感学报, 2016, 20(5):933-945.]
doi: 10.11834/jrs.20166280
URL
|
[23] |
Li Xiaowen.Retrospect, prospect and innovation in quantitative remote sensing[J]. Journal of Henan University, 2006, 35(4): 49-56.
|
|
[李小文. 定量遥感的发展与创新[J]. 河南大学学报: 自然科学版, 2006, 35(4): 49-56.]
doi: 10.3969/j.issn.1003-4978.2005.04.012
URL
|
[24] |
Chen Jingming.An important shortcoming and improvement in remote sensing evapotranspiration model[J]. Chinese Science Bulletin, 1988, 33(6): 454-457.
|
|
[陈镜明. 现用遥感蒸散模式中的一个重要缺点及改进[J]. 科学通报, 1988, 33(6):454-457.]
|
[25] |
Li X, Cheng G, Liu S, et al.Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013, 94(8):1 145-1 160.
doi: 10.1175/BAMS-D-12-00154.1
URL
|
[26] |
Tian X, Li Z, Chen E, et al.The Complicate Observations and Multi-Parameter Land Information Constructions on Allied Telemetry experiment (COMPLICATE)[J]. PLoS ONE, 2015, 10(9).DOI:10.1376/Journal.pone.0137545.
doi: 10.1371/journal.pone.0137545
URL
pmid: 4557998
|
[27] |
Gong Peng.Some frontier problems in remote sensing science and technology[J]. Journal of Remote Sensing, 2009, 13(1): 13-23.
|
|
[宫鹏. 遥感科学与技术中的一些前沿问题[J]. 遥感学报, 2009,13(1): 13-23.]
doi: 10.3321/j.issn:1007-4619.2009.01.001
URL
|
[28] |
Li Zhaoliang, Zhang Renhua.A physical algorithm for inversion of land surface emissivity from medium infrared and thermal infrared data[J]. Science in China (Series E), 2000, 30(Suppl.1): 18-26.
|
|
[李召良, 张仁华. 一种从中红外和热红外数据中反演地表比辐射率的物理算法[J]. 中国科学:E辑, 2000, 30(增刊1): 18-26.]
|
[29] |
Ju Weimin, Fang Hongliang, Tian Xiangjun, et al.Study on the global carbon assimilation system based on multisource remote sensing data[J]. Advances in Earth Science, 2016, 31(11): 1 105-1 110.
|
|
[居为民, 方红亮, 田向军, 等. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展, 2016, 31(11): 1 105-1 110.]
|
[30] |
Shi Jiancheng, Du Yang, Du Jinyang,et al.Progresses on microwave remote sensing of land surface parameters[J]. Science in China(Series D), 2012, 55(7): 1 052-1 078.
|
|
[施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: D辑, 2012, 42(6):814-842.]
URL
|
[31] |
Li Xiaobing, Shi Peijun. Research on regulation of NDVI change of Chinese primary vegetation types based on NOAA/AVHRR data[J]. Acta Botanica Sinica, 1999,41(3): 88-91,94-98
|
|
[李晓兵, 史培军. 基于NOAA/AVHRR数据的中国主要植被类型NDVI变化规律研究[J]. 植物学报, 1999, 41(3):88-91,94-98.]
|
[32] |
Liu Liangyun, Wang Jihua, Huang Wenjiang,et al.Improving winter wheat yield prediction by novel spectral index[J]. Transactions of the CSAE, 2004, 1(1): 172-175.
|
|
[刘良云, 王纪华, 黄文江, 等. 利用新型光谱指数改善冬小麦估产精度[J]. 农业工程学报, 2004, 1(1): 172-175.]
doi: 10.3321/j.issn:1002-6819.2004.01.041
URL
|
[33] |
Zhu Gaolong, Liu Yibo, Ju Weimin,et al.Evaluation of topographic effects on four commonly used vegetation indices[J]. Journal of Remote Sensing, 2013, 17(1): 210-234.
|
|
[朱高龙, 柳艺博, 居为民, 等. 4种常用植被指数的地形效应评估[J]. 遥感学报, 2013,17(1): 210-234.]
doi: 10.11834/jrs.20131380
URL
|
[34] |
Jacquemoud S, Verhoef W, Baret F, et al.PROSPECT plus SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113:S56-S66.
doi: 10.1016/j.rse.2008.01.026
URL
|
[35] |
Li X W, Strahler A H.Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy—Effect of crown shape and mutual shadowing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 276-292.
doi: 10.1109/36.134078
URL
|
[36] |
Li X, Strahler A H, Woodcock C E.A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2):466-480.
doi: 10.1109/36.377947
URL
|
[37] |
Huang H, Qin W, Liu Q.RAPID: A radiosity applicable to porous individual objects for directional reflectance over complex vegetated scenes[J]. Remote Sensing of Environment, 2013, 132:221-237.
doi: 10.1016/j.rse.2013.01.013
URL
|
[38] |
Verrelst J, Muñoz J, Alonso L, et al.Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3[J]. Remote Sensing of Environment, 2012, 118:127-139.
doi: 10.1016/j.rse.2011.11.002
URL
|
[39] |
Ma H, Song J, Wang J, et al.Improvement of spatially continuous forest LAI retrieval by integration of discrete airborne LiDAR and remote sensing multi-angle optical data[J]. Agricultural and Forest Meteorology, 2014, 189:60-70.
doi: 10.1016/j.agrformet.2014.01.009
URL
|
[40] |
Mousivand A, Menenti M, Gorte B, et al.Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral-directional radiometric data[J]. Remote Sensing of Environment, 2015, 158:311-330.
doi: 10.1016/j.rse.2014.10.030
URL
|
[41] |
Quan X, He B, Li X.A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6 507-6 517.
doi: 10.1109/TGRS.2015.2442999
URL
|
[42] |
Wang Jindi, Yan Guangjian, Wang Changzuo.Amathematical approach on uncertain information process in remote sensing inversion[J]. Journal of Remote Sensing, 2004, 8(3): 214-219.
|
|
[王锦地, 阎广建, 王昌佐. 遥感反演中不确定性信息处理的一种数学方法[J]. 遥感学报, 2004, 8(3): 214-219.]
doi: 10.3321/j.issn:1007-4619.2004.03.004
URL
|
[43] |
Kimes D S, Knyazikhin Y, Privette J L, et al.Inversion methods for physically-based models[J]. Remote Sensing Reviews, 2000, 18(2/4): 381-439.
doi: 10.1080/02757250009532396
URL
|
[44] |
Jin H, Li A, Wang J, et al.Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data[J]. European Journal of Agronomy, 2016, 78:1-12.
doi: 10.1016/j.eja.2016.04.007
URL
|
[45] |
Huang J, Sedano F, Huang Y, et al.Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation[J]. Agricultural and Forest Meteorology, 2016, 216:188-202.
doi: 10.1016/j.agrformet.2015.10.013
URL
|
[46] |
Quaife T, Lewis P, De Kauwe M, et al.Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter[J]. Remote Sensing of Environment, 2008, 112(4): 1 347-1 364.
doi: 10.1016/j.rse.2007.05.020
URL
|
[47] |
Li Ainong, Bian Jinhu, Zhang Zhengjian,et al.Progresses, opportunities, and challenges of mountain remote sensing research[J]. Journal of Remote Sensing, 2016, 20(5): 1 993-2 002.
|
|
[李爱农, 边金虎, 张正健, 等. 山地遥感主要研究进展、发展机遇与挑战[J]. 遥感学报, 2016, 20(5): 1 993-2 002.]
|
[48] |
Soenen S A, Peddle D R, Coburn C A.SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9):2 148-2 159.
doi: 10.1109/TGRS.2005.852480
URL
|
[49] |
Li A, Wang Q, Bian J, et al.An improved physics-based model for topographic correction of Landsat TM images[J]. Remote Sensing, 2015, 7(5):6 296-6 319.
doi: 10.3390/rs70506296
URL
|
[50] |
Huang W, Zhang L, Furumi S, et al.Topographic effects on estimating net primary productivity of green coniferous forest in complex terrain using Landsat data: A case study of Yoshino Mountain, Japan[J]. International Journal of Remote Sensing, 2010, 31(11):2 941-2 957.
doi: 10.1080/01431160903140829
URL
|
[51] |
Wen Jianguang, Liu Qinhuo, Xiao Qing, et al.Modeling the land surface reflectance for optical remote sensing data in rugged terrain[J]. Science in China(Series D), 2008,38(11): 1 419-1 427.
|
|
[闻建光, 柳钦火, 肖青, 等. 复杂山区光学遥感反射率计算模型[J]. 中国科学:D辑, 2008,38(11): 1 419-1 427.]
|
[52] |
Li Xiaowen, Wang Jindi.Vegetation Optical Remote Sensing Model and Vegetation Structure Parameters[M]. Beijing: Science Press,1995.
|
|
[李小文, 王锦地. 植被光学遥感模型与植被结构参数[M]. 北京: 科学出版社,1995.]
|
[53] |
Griffiths P, van der Linden S, Kuemmerle T, et al. A pixel-based Landsat compositing algorithm for large area land cover mapping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5):2 088-2 101.
doi: 10.1109/JSTARS.2012.2228167
URL
|
[54] |
Bian J, Li A, Wang Q, et al.Development of dense time series 30-m image products from the Chinese HJ-1A/B Constellation: A case study in Zoige Plateau, China[J]. Remote Sensing, 2015, 7(12):16 647-16 671.
doi: 10.3390/rs71215846
URL
|
[55] |
Bian J, Li A, Zhang Z, et al.Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model[J]. Remote Sensing of Environment, 2017, 197:98-114.
doi: 10.1016/j.rse.2017.05.031
URL
|
[56] |
Gao F, Masek J, Schwaller M, et al.On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8):2 207-2 218.
doi: 10.1109/TGRS.2006.872081
URL
|
[57] |
Wang Q, Blackburn G A, Onojeghuo A O, et al.Fusion of Landsat 8 OLI and Sentinel-2 MSI data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3 885-3 899.
doi: 10.1109/TGRS.2017.2683444
URL
|
[58] |
Vanonckelen S, Lhermitte S, Van Rompaey A.The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 35:320-328.
doi: 10.1016/j.jag.2014.10.006
URL
|
[59] |
Yin G, Li J, Liu Q, et al.Regional Leaf Area Index retrieval based on remote sensing: The role of radiative transfer model selection[J]. Remote Sensing, 2015, 7(4):4 604-4 625.
doi: 10.3390/rs70404604
URL
|
[60] |
Gonsamo A, Chen J M.Improved LAI algorithm implementation to MODIS data by incorporating background, topography, and foliage clumping information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1 076-1 088.
doi: 10.1109/TGRS.2013.2247405
URL
|
[61] |
Zhang Renhua, Tian Jing, Li Zhaoliang, et al.Principles and methods for the validation of quantitative remote sensing products[J]. Science in China (Series D),2010, 40(2): 211-222.
|
|
[张仁华, 田静, 李召良, 等. 定量遥感产品真实性检验的基础与方法[J]. 中国科学:D辑, 2010, 40(2): 211-222.]
|
[62] |
Morisette J T, Privette J L, Justice C O.A framework for the validation of MODIS Land products[J]. Remote Sensing of Environment, 2002, 83(1/2):77-96.
doi: 10.1016/S0034-4257(02)00088-3
URL
|
[63] |
Jonckheere I, Fleck S, Nackaerts K, et al.Review of methods for in situ leaf area index determination—Part I. Theories, sensors and hemispherical photography[J]. Agricultural and Forest Meteorology, 2004, 121(1/2):19-35.
doi: 10.1016/j.agrformet.2003.08.027
URL
|
[64] |
Fang H, Wei S, Liang S.Validation of MODIS and CYCLOPES LAI products using global field measurement data[J]. Remote Sensing of Environment, 2012, 119:43-54.
doi: 10.1016/j.rse.2011.12.006
URL
|
[65] |
Li Xin, Liu Shaomin, Ma Mingguo, et al.HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498.
|
|
[李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.]
doi: 10.11867/j.issn.1001-8166.2012.05.0481
URL
|
[66] |
Jin Rui, Li Xin, Ma Mingguo, et al.Key methods and experiment verification for the validation of quantitative remote sensing products[J]. Advances in Earth Science, 2017, 32(6): 630-642.
|
|
[晋锐, 李新, 马明国, 等. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.]
doi: 10.11867/j.issn.1001-8166.2017.06.0630
URL
|
[67] |
Garrigues S, Lacaze R, Baret F, et al.Validation and intercomparison of global Leaf Area Index products derived from remote sensing data[J]. Journal of Geophysical Research—Biogeosciences, 2008, 113(G2).DOI:10.1029/2007JG000635.
doi: 10.1029/2007JG000635
URL
|
[68] |
Pisek J, Chen J M.Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America[J]. Remote Sensing of Environment, 2007, 109(1):81-94.
doi: 10.1016/j.rse.2006.12.004
URL
|
[69] |
Yang W, Tan B, Huang D, et al.MODIS leaf area index products: From validation to algorithm improvement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7):1 885-1 898.
doi: 10.1109/TGRS.2006.871215
URL
|
[70] |
Xiao Z, Liang S, Wang J, et al.Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):209-223.
doi: 10.1109/TGRS.2013.2237780
URL
|
[71] |
Ganguly S, Samanta A, Schull M A, et al.Generating vegetation leaf area index Earth system data record from multiple sensors. Part 2: Implementation, analysis and validation[J]. Remote Sensing of Environment, 2008, 112(12):4 318-4 332.
doi: 10.1016/j.rse.2008.07.013
URL
|
[72] |
Fensholt R, Sandholt I, Rasmussen M S.Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements[J]. Remote Sensing of Environment, 2004, 91(3/4):490-507.
doi: 10.1016/j.rse.2004.04.009
URL
|
[73] |
Heiskanen J, Rautiainen M, Stenberg P, et al.Seasonal variation in MODIS LAI for a boreal forest area in Finland[J]. Remote Sensing of Environment, 2012, 126:104-115.
doi: 10.1016/j.rse.2012.08.001
URL
|
[74] |
Jin H, Li A, Bian J, et al.Intercomparison and validation of MODIS and GLASS Leaf Area Index (LAI) products over mountain areas: A case study in southwestern China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 55: 52-67.
doi: 10.1016/j.jag.2016.10.008
URL
|
[75] |
Tian Y, Woodcock C E, Wang Y, et al.Multiscale analysis and validation of the MODIS LAI product-II. Sampling strategy[J]. Remote Sensing of Environment, 2002, 83(3):431-441.
doi: 10.1016/S0034-4257(02)00047-0
URL
|
[76] |
Xu B, Li J, Liu Q, et al.A methodology to estimate representativeness of LAI station observation for validation: A case study with Chinese Ecosystem Research Network (CERN) in situ data[C]∥Land Surface Remote Sensing II. International Society for Optics and Photonics, 2014, 9260: 926023.
|
[77] |
Yin G, Li A, Jin H, et al.Derivation of temporally continuous LAI reference maps through combining the LAINet observation system with CACAO[J]. Agricultural and Forest Meteorology, 2017, 233:209-221.
doi: 10.1016/j.agrformet.2016.11.267
URL
|
[78] |
Yin G, Li A, Zeng Y, et al.A cost-constrained sampling strategy in support of LAI product validation in mountainous areas[J]. Remote Sensing, 2016, 8(9):704.
doi: 10.3390/rs8090704
URL
|
[79] |
Chen X F, Chen J M, An S Q, et al.Effects of topography on simulated net primary productivity at landscape scale[J]. Journal of Environmental Management, 2007, 85(3): 585-596.
doi: 10.1016/j.jenvman.2006.04.026
URL
pmid: 17187920
|
[80] |
Govind A, Chen J M, Margolis H, et al.A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America[J]. Journal of Hydrology, 2009, 367(3/4): 200-216.
doi: 10.1016/j.jhydrol.2009.01.006
URL
|