[1] |
Jiang G B, Shi J B, Feng X B.Mercury pollution in China[J]. Environmental Science & Technology, 2006, 40(12):3 672-3 678.
|
[2] |
Krabbenhoft D P, Sunderland E M.Environmental science. Global change and mercury[J]. Science, 2013, 341(6 153):1 457-1 458.
|
[3] |
Liu Zhu, Li Zhongqin.Factors affecting the variation of glacier surface runoff-coefficient—A case study of Urumqi No. 1 Glacier[J]. Advances in Earth Science, 2016, 31(1): 103-112.
|
|
[刘铸, 李忠勤. 近期冰川表面径流系数变化的影响因素——以天山乌鲁木齐河源1号冰川为例[J]. 地球科学进展,2016,31(1):103-112.]
|
[4] |
Wu Shanshan, Yao Zhijun, Jiang Liguang, et al.Method review of modern glacier volume change[J]. Advances in Earth Science, 2015, 30(2): 237-246.
|
|
[吴珊珊,姚治君,姜丽光,等. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2):237-246.]
|
[5] |
Kang Shichang, Huang Jie, Zhang Qianggong.Progress in the study of mercury in snow and ice[J]. Advances in Earth Science, 2010,25(8): 783-793.
|
|
[康世昌, 黄杰, 张强弓. 雪冰中汞的研究进展[J].地球科学进展, 2010, 25(8):783-793.]
|
[6] |
Brooks S B, Saiz-Lopez A, Skov H, et al.The mass balance of mercury in the springtime arctic environment[J]. Geophysical Research Letters, 2006, 33(13),doi:10.1029/2005GL025525.
|
[7] |
Schroeder W, Anlauf K, Barrie L, et al.Arctic springtime depletion of mercury[J]. Nature, 1998, 394(6 691):331-332.
|
[8] |
Ariya P A, Dastoor A P, Amyot M, et al.The arctic: A sink for mercury[J].Tellus B, 2004, 56(5):397-403.
|
[9] |
United Nations Environment Programme Chemicals. Global Mercury Assessment[M]. Geneva, Switzerland: UNEP Chemicals, 2002.
|
[10] |
Zhang Q G, Huang J, Wang F Y, et al.Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science & Technology, 2012, 46(10):5 404-5 413.
|
[11] |
Huang J, Kang S, Zhang Q, et al.Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes[J]. Atmospheric Environment, 2012, 62:540-550.
|
[12] |
Dommergue A.The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters, 2003, 30(12),doi:10.1029/2003GL017308.
|
[13] |
Durnford D, Dastoor A.The behavior of mercury in the cryosphere: A review of what we know from observations[J]. Journal of Geophysical Research, 2011,116(D6),doi:10.1029/2010jd014809.
|
[14] |
Fisher J A, Jacob D J, Soerensen A L, et al.Riverine source of arctic ocean mercury inferred from atmospheric observations[J]. Nature Geoscience, 2012, 5(7):499-504.
|
[15] |
Sondergaard J, Tamstorf M, Elberling B, et al.Mercury exports from a high-arctic river basin in northeast greenland (74°N) largely controlled by glacial lake outburst floods[J]. Science of the Total Environment, 2015, 514:83-91.
|
[16] |
Loseto L L, Lean D R, Siciliano S D.Snowmelt sources of methylmercury to high arctic ecosystems[J]. Environmental Science & Technology, 2004, 38(11):3 004-3 010.
|
[17] |
Søndergaard J, Rigét F, Tamstorf M P, et al.Mercury transport in a low-arctic river in kobbefjord, west greenland (64°N)[J]. Water, Air, & Soil Pollution, 2012, 223(7):4 333-4 342.
|
[18] |
Nagorski S A, Engstrom D R, Hudson J P, et al.Spatial distribution of mercury in southeastern alaskan streams influenced by glaciers, wetlands, and salmon[J]. Environmental Pollution, 2014, 184:62-72.
|
[19] |
Beniston M.Climatic change in mountain regions: A review of possible impacts[M]∥Diaz H F, ed. Climate Variability and Change in High Elevation Regions: Past, Present & Future. Netherlands:Springer Netherlands, 2003, 59(1): 5-31.
|
[20] |
Douglas T A, Loseto L L, Macdonald R W, et al.The fate of mercury in arctic terrestrial and aquatic ecosystems, a review[J]. Environmental Chemistry, 2012, 9(4): 321-355.
|
[21] |
Zhu Wei, Feng Xinbin, Qiu Guangle, et al.Atmospheric Mercury Depletion Events (AMDEs) in the polar regions: A review[J]. Chinese Journal of Ecology, 2011, 30(5): 857-864.
|
|
[朱伟, 冯新斌, 仇广乐,等. 极地大气汞亏损研究进展[J]. 生态学杂志, 2011, 30(5):857-864.]
|
[22] |
Stern G A, Macdonald R W, Outridge P M,et al.How does climate change influence arctic mercury?[J]. Science of the Total Environment, 2012, 414:22-42.
|
[23] |
Steffen A, Douglas T, Amyot M, et al.A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow[J]. Atmospheric Chemistry and Physics, 2008, 8(6):1 445-1 482.
|
[24] |
Lin C J,Pongprueksa P, Lindberg S E, et al.Scientific uncertainties in atmospheric mercury models I: Model science evaluation[J]. Atmospheric Environment, 2006, 40(16):2 911-2 928.
|
[25] |
Durnford D, Dastoor A, Ryzhkov A, et al.How relevant is the deposition of mercury onto snowpacks? Part 2: A modeling study[J]. Atmospheric Chemistry and Physics, 2012, 12(19):9 251-9 274.
|
[26] |
Cobbett F D, Steffen A, Lawson G, et al.Gem fluxes and atmospheric mercury concentrations (gem, rgm and hgp) in the Canadian arctic at alert, Nunavut, Canada (February-June 2005)[J]. Atmospheric Environment, 2007, 41(31):6 527-6 543.
|
[27] |
Huang J, Kang S, Guo J, et al.Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqentanglha, southern Tibetan Plateau[J]. Science of the Total Environment, 2012, 429:223-230.
|
[28] |
Loewen M, Kang S, Armstrong D, et al.Atmospheric transport of mercury to the Tibetan Plateau[J]. Environmental Science & Technology, 2007, 41(22):7 632-7 638.
|
[29] |
Carrico C M, Bergin M H, Shrestha A B, et al.The importance of carbon and mineral dust to seasonal aerosol properties in the nepal himalaya[J]. Atmospheric Environment, 2003, 37(20):2 811-2 824.
|
[30] |
Zhang Q, Kang S.Comment on "ice core perspective on mercury pollution during the past 600 years"[J]. Environmental Science & Technology, 2016, 50(2):1 065-1 067.
|
[31] |
Schuster P F, Krabbenhoft D P, Naftz D L, et al.Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources[J]. Environmental Science & Technology, 2002, 36(11):2 303-2 310.
|
[32] |
Beal S A, Osterberg E C, Zdanowicz C M, et al.Ice core perspective on mercury pollution during the past 600 years[J]. Environmental Science & Technology, 2015, 49(13):7 641-7 647.
|
[33] |
Ferrari C P, Padova C, Faïn X, et al.Atmospheric mercury depletion event study in ny-alesund(svalbard) in spring 2005. Deposition and transformation of hg in surface snow during springtime[J]. Science of the Total Environment, 2008, 397(1):167-177.
|
[34] |
Poulain A J, Roy V, Amyot M.Influence of temperate mixed and deciduous tree covers on hg concentrations and photoredox transformations in snow[J]. Geochimica et Cosmochimica Acta, 2007, 71(10):2 448-2 462.
|
[35] |
Sherman L S, Blum J D, Johnson K P, et al.Mass-independent fractionation of mercury isotopes in arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3(3):173-177.
|
[36] |
Mann E, Mallory M, Ziegler S, et al.Mercury in arctic snow: Quantifying the kinetics of photochemical oxidation and reduction[J]. Science of the Total Environment, 2015, 509:115-132.
|
[37] |
Brooks S, Arimoto R, Lindberg S, et al.Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial[J]. Atmospheric Environment, 2008, 42(12):2 877-2 884.
|
[38] |
Bales R C, Sommerfeld R A, Kebler D G.Ionic tracer movement through a wyoming snowpack[J]. Atmospheric Environment (Part A. General Topics), 1990, 24(11):2 749-2 758.
|
[39] |
Huang J, Kang S, Guo J, et al.Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau[J]. Atmospheric Environment, 2014, 96:27-36.
|
[40] |
Dommergue A, Ferrari C P, Gauchard P A, et al.The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters, 2003, 30(12),doi:10.1029/2003GL017308.
|
[41] |
Conway H, Gades A, Raymond C.Albedo of dirty snow during conditions of melt[J]. Water Resources Research, 1996, 32(6):1 713-1 718.
|
[42] |
Meyer T, Lei Y D, Wania F.Measuring the release of organic contaminants from melting snow under controlled conditions[J]. Environmental Science & Technology, 2006, 40(10):3 320-3 326.
|
[43] |
Simpson W, Glasow R V, Riedel K, et al.Halogens and their role in polar boundary-layer ozone depletion[J]. Atmospheric Chemistry and Physics, 2007, 7(16):4 375-4 418.
|
[44] |
Soerensen A L, Skov H, Jacob D J, et al.Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer[J]. Environmental Science & Technology, 2010, 44(19):7 425-7 430.
|
[45] |
Sutinen R, Äikää O, Piekkari M, et al.Snowmelt infiltration through partially frozen soil in finnish lapland[J]. Geophysica, 2009, 45(1/2):27-39.
|
[46] |
Lalonde J D, Amyot M, Doyon M R, et al.Photo-induced Hg (ii) reduction in snow from the remote and temperate experimental lakes area (Ontario, Canada)[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2003, 108(D6),doi:10.1029/200/JD001534.
|
[47] |
Aspmo K, Temme C, Berg T, et al.Mercury in the atmosphere, snow and melt water ponds in the north atlantic ocean during arctic summer[J]. Environmental Science & Technology, 2006, 40(13):4 083-4 089.
|
[48] |
Sun Xuejun, Wang Kang, Guo Junming, et al.Mercury transport from glacier to runoff in typical inland glacial area in the Tibetan Plateau[J]. Environmental Science,2016, 37(2): 482-489.
|
|
[孙学军, 王康, 郭军明,等. 青藏高原内陆典型冰川区“冰川—径流”汞传输过程[J]. 环境科学, 2016, 37(2): 482-489.]
|
[49] |
Yao T, Wang Y, Liu S, et al.Recent glacial retreat in high Asia in China and its impact on water resource in northwest China[J]. Science in China (Series D), 2004, 47(12):1 065-1 075.
|
[50] |
Kang S, Wang F, Morgenstern U, et al.Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records[J]. Cryosphere, 2015, 9(3):1 213-1 222.
|
[51] |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al.The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16.
|
|
[刘时银, 姚晓军, 郭万钦,等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1):3-16.]
|
[52] |
Blais J M, Schindler D W, Muir D C, et al.Melting glaciers: A major source of persistent organochlorines to subalpine bow lake in banff national park, Canada[J]. AMBIO: A Journal of the Human Environment, 2001,30(7):410-415.
|
[53] |
Zhang Yinsheng, Yao Tandong, Pu Jianchen, et al.The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass,Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 1997, 19(3):214-222.
|
|
[张寅生, 姚檀栋, 蒲健辰,等. 青藏高原唐古拉山冬克玛底河流域水文过程特征分析[J]. 冰川冻土, 1997, 19(3):214-222.]
|
[54] |
He Xiaobo, Ding Yongjian, Liu Shiyin, et al.Obsevation and analyses of hydrological process of the Kaltamak glacier in Muztag Ata[J]. Journal of Glaciology and Geocryology, 2005, 27(2):262-268.
|
|
[何晓波, 丁永建, 刘时银,等. 慕士塔格卡尔塔马克冰川水文观测与特征分析[J]. 冰川冻土, 2005, 27(2):262-268.]
|
[55] |
Gao Tanguang, Kang Shichang, Zhou Shijiao, et al.A study of the summer hydrological features of glaciers in the Qugaqie River, Nam Co Basin[J]. Journal of Glaciology and Geocryology, 2009, 31(4): 725-731.
|
|
[高坛光, 康世昌, 周石矫,等. 纳木错曲嘎切流域夏季冰川水文特征初步研究[J]. 冰川冻土, 2009,31(4):725-731.]
|
[56] |
Zhang Fei, Liu Jingshi, Gong Tongliang, et al.Hydrological regime of the Karuxung watershed in north Himalayas[J]. Acta Geographica Sinica, 2006, 61(11):1 141-1 148.
|
|
[张菲, 刘景时, 巩同梁,等. 喜马拉雅山北坡卡鲁雄曲径流与气候变化[J]. 地理学报, 2006, 61(11):1 141-1 148.]
|
[57] |
Rees H G, Collins D N.Regional differences in response of flow in glacier-fed Himalayan Rivers to climatic warming[J]. Hydrological Processes, 2006, 20(10):2 157-2 169.
|
[58] |
Diaz H F, Grosjean M, Graumlich L.Climate variability and change in high elevation regions: Past, present and future[J]. Climatic Change, 2003, 59(1): 1-4.
|
[59] |
Marín V H, Tironi A, Paredes M A, et al.Modeling suspended solids in a northern chilean patagonia glacier-fed fjord: Glof scenarios under climate change conditions[J]. Ecological Modelling, 2013, 264:7-16.
|
[60] |
Dommergue A, Larose C, Faïn X, et al.Deposition of mercury species in the Ny-lesund area (79°N) and their transfer during snowmelt[J]. Environmental Science & Technology, 2009, 44(3):901-907.
|
[61] |
Mitchell C P, Branfireun B A, Kolka R K.Total mercury and methylmercury dynamics in upland-peatland watersheds during snowmelt[J]. Biogeochemistry, 2008, 90(3):225-241.
|
[62] |
Faïn X, Grangeon S, Bahlmann E, et al.Diurnal production of gaseous mercury in the alpine snowpack before snowmelt[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2007, 112(D21),doi:10.1029/2007JD008520.
|
[63] |
Sørmo E G.Mercury in A Remote Glacier-fed Alpine Catchment in China[D].Norwegion:University of Oslo,2014.
|
[64] |
Sun X, Wang K, Kang S, et al.The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau[J]. Environmental Pollution, 2017, 220:936-945.
|
[65] |
Li B, Yu Z, Liang Z, et al.Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau[J]. Global and Planetary Change, 2014, 118:69-84.
|
[66] |
Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the asian water towers[J]. Science, 2010, 328(5 984):1 382-1 385.
|
[67] |
Mao L, Dell’Agnese A, Huincache C, et al. Bedload hysteresis in a glacier-fed mountain river[J]. Earth Surface Processes and Landforms, 2014, 39(7):964-976.
|
[68] |
Brigham M E, Wentz D A, Aiken G R, et al.Mercury cycling in stream ecosystems. 1. Water column chemistry and transport[J]. Environmental Science & Technology, 2009, 43(8):2 720-2 725.
|
[69] |
Schuster P F, Striegl R G, Aiken G R, et al.Mercury export from the Yukon River Basin and potential response to a changing climate[J]. Environmental Science & Technology, 2011, 45(21):9 262-9 267.
|
[70] |
Emmerton C A, Graydon J A, Gareis J A, et al.Mercury export to the arctic ocean from the Mackenzie River, Canada[J]. Environmental Science & Technology, 2013, 47(14):7 644-7 654.
|
[71] |
Sun S, Kang S, Huang J, et al.Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China[J]. Journal of Environmental Sciences, 2016, 44:213-223.
|
[72] |
Mei Lu, Wang Xun, Feng Xinbin, et al.Spatial distribution and source/sink characteristic of mercury in the water samples from the Mt. Gongga area in the Tibetan Plateau[J]. Environmental Chemistry, 2016, 35(8): 1 549-1 556.
|
|
[梅露, 王训, 冯新斌,等. 青藏高原贡嘎山冰川区水体中 Hg 的空间分布及其源汇特征[J]. 环境化学, 2016, 35(8):1 549-1 556.]
|
[73] |
Rudd J W.Sources of methyl mercury to freshwater ecosystems: A review[J]. Water, Air, and Soil Pollution, 1995, 80(1/4):697-713.
|
[74] |
Selin N E.Global biogeochemical cycling of mercury: A review[J]. Annual Review of Environment and Resources, 2009, 34(1):43-63.
|
[75] |
Chasar L C, Scudder B C, Stewart A R, et al.Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation[J]. Environmental Science & Technology, 2009, 43(8):2 733-2 739.
|
[76] |
Warner K A, Bonzongo J C, Roden E E, et al.Effect of watershed parameters on mercury distribution in different environmental compartments in the mobile Alabama River Basin, USA[J]. Science of the Total Environment, 2005, 347(1/3):187-207.
|
[77] |
Pickhardt P C, Fisher N S.Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies[J]. Environmental Science & Technology, 2007, 41(1):125-131.
|
[78] |
Mason R P, Reinfelder J R, Morel F M.Uptake, toxicity, and trophic transfer of mercury in a coastal diatom[J]. Environmental Science & Technology, 1996, 30(6):1 835-1 845.
|
[79] |
Zhang Q, Pan K, Kang S, et al.Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau[J]. Environmental Science & Technology, 2014, 48(9):5 220-5 228.
|
[80] |
Yang H.Lake sediments may not faithfully record decline of atmospheric pollutant deposition[J]. Environmental Science & Technology, 2015, 49(21):12 607-12 608.
|
[81] |
Zemp M, Frey H, Gärtner-Roer I, et al . Historically unprecedented global glacier decline in the early 21st century[J]. Journal of Glaciology, 2015, 61(228):745-762.
|