Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (6): 589-598    DOI: 10.11867/j.issn.1001-8166.2017.06.0589
综述与评述     
山地冰川消融过程中汞的行为及环境效应综述
孙学军1, 4, 康世昌2, 3, 张强弓1, 3, *, 丛志远1, 3
1.中国科学院青藏高原研究所青藏高原地表过程与环境变化重点实验室,北京 100101;#br# 2.中国科学院西北生态环境资源研究院冰冻圈科学国家重点实验室,甘肃 兰州 730000;#br# 3.中国科学院青藏高原地球科学卓越创新中心,北京 100101;#br# 4.中国科学院大学,北京 100049
Behavior and Environmental Effects of Mercury Relevant to the Melt of Alpine Glacier:A Review
Sun Xuejun1, 4, Kang Shichang2, 3, Zhang Qianggong1, 3, *, Cong Zhiyuan1, 3
1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China;
2. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
3.Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China;
4.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(2319 KB)   HTML
摘要:

汞是一种全球性污染物,雪冰是冰冻圈汞的生物地球化学循环中最主要的介质之一,汞在雪冰消融过程中的行为受到众多学者关注。除两极地区外,高海拔地区分布着大量山地冰川,其对气候响应更加敏感,距离人类居住区更近,可直接影响水资源和水质安全等。因此,研究山地冰川消融过程中汞的行为及环境效应对全面理解汞的生物地球化学具有显著的科学价值,同时对指导人类适应气候环境变化也具有很强的实际意义。概述了山地冰川区汞的沉降与贮存,总结了雪冰消融过程中汞的迁移转化以及冰川径流汞传输的特征,认为山地冰川消融是潜在的汞释放源,汞在冰川径流补给生态系统中的归宿和生态环境效应值得关注。最后,对山地冰川消融释汞过程和冰川径流汞传输研究的热点问题进行了展望。

关键词: 山地冰川消融冰川径流环境效应    
Abstract:

Mercury (Hg) is a global pollutant. As one of the significant cryospheric environmental matrix, snow-ice plays a unique role in Hg biogeochemical cycling, which has drawn a wide attention of scientists. Besides polar regions, a large aggregate of glaciers are distributed in the high elevation of mid-high latitude areas. These alpine glaciers are proximate to human residence and are sensitive to the climate change, which would readily impact the human society, water resource security and water quality. Consequently, investigating the behavior and environmental effects of Hg relevant to the melt of alpine glaciers represents significant scientific and social importance. The deposition and storage of Hg in alpine glacier areas were outlined and the removal characteristics and transformation of Hg during glacier melt process and transport of Hg in glacier-fed river were summarized. Based on this study, we suggested that glacier be one of the potential sources of Hg to the downstream areas. Moreover, it was worth concerning the fate and environmental effects of Hg in the ecosystem fed by the glacier runoff. Eventually, we proposed prospects of the process of Hg release during glacier melt and the hot issues of Hg transport in glacier runoff.

Key words: Mercury    Alpine glacier    Ablation    Glacier runoff    Environmental effect.
收稿日期: 2017-01-13 出版日期: 2017-06-10
:  P343.6  
基金资助:

国家自然科学基金面上项目“青藏高原典型山地冰川融水径流中汞的迁移过程及环境效应”(编号:41671074); 国家自然科学基金重点项目“南亚大气污染物跨境传输及其对青藏高原冰冻圈环境的影响”(编号:41630754)资助

通讯作者: 张强弓(1982-),男,河南南阳人,副研究员,主要从事青藏高原冰冻圈与大气环境研究.E-mail:zhang@itpcas.ac.cn    
作者简介: 孙学军(1990-),男,山东滨州人,硕士研究生,主要从事青藏高原环境地球化学研究.E-mail:sunxuejun@itpcas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张强弓
丛志远
孙学军
康世昌

引用本文:

孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.

Sun Xuejun, Kang Shichang, Zhang Qianggong, Cong Zhiyuan. Behavior and Environmental Effects of Mercury Relevant to the Melt of Alpine Glacier:A Review. Advances in Earth Science, 2017, 32(6): 589-598.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.06.0589        http://www.adearth.ac.cn/CN/Y2017/V32/I6/589

[1] Jiang G B, Shi J B, Feng X B. Mercury pollution in China[J]. Environmental Science & Technology , 2006, 40(12):3 672-3 678.
[2] Krabbenhoft D P, Sunderland E M. Environmental science. Global change and mercury[J]. Science , 2013, 341(6 153):1 457-1 458.
[3] Liu Zhu, Li Zhongqin. Factors affecting the variation of glacier surface runoff-coefficient—A case study of Urumqi No. 1 Glacier[J]. Advances in Earth Science , 2016, 31(1): 103-112.
. 地球科学进展,2016,31(1):103-112.]
[4] Wu Shanshan, Yao Zhijun, Jiang Liguang, et al . Method review of modern glacier volume change[J]. Advances in Earth Science , 2015, 30(2): 237-246.
. 地球科学进展, 2015, 30(2):237-246.]
[5] Kang Shichang, Huang Jie, Zhang Qianggong. Progress in the study of mercury in snow and ice[J]. Advances in Earth Science , 2010,25(8): 783-793.
.地球科学进展, 2010, 25(8):783-793.]
[6] Brooks S B, Saiz-Lopez A, Skov H, et al . The mass balance of mercury in the springtime arctic environment[J]. Geophysical Research Letters , 2006, 33(13),doi:10.1029/2005GL025525.
[7] Schroeder W, Anlauf K, Barrie L, et al . Arctic springtime depletion of mercury[J]. Nature , 1998, 394(6 691):331-332.
[8] Ariya P A, Dastoor A P, Amyot M, et al . The arctic: A sink for mercury[J]. Tellus B , 2004, 56(5):397-403.
[9] United Nations Environment Programme Chemicals. Global Mercury Assessment[M]. Geneva, Switzerland: UNEP Chemicals, 2002.
[10] Zhang Q G, Huang J, Wang F Y, et al . Mercury distribution and deposition in glacier snow over western China[J]. Environmental Science & Technology , 2012, 46(10):5 404-5 413.
[11] Huang J, Kang S, Zhang Q, et al . Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes[J]. Atmospheric Environment , 2012, 62:540-550.
[12] Dommergue A. The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters , 2003, 30(12),doi:10.1029/2003GL017308.
[13] Durnford D, Dastoor A. The behavior of mercury in the cryosphere: A review of what we know from observations[J]. Journal of Geophysical Research , 2011,116(D6),doi:10.1029/2010jd014809.
[14] Fisher J A, Jacob D J, Soerensen A L, et al . Riverine source of arctic ocean mercury inferred from atmospheric observations[J]. Nature Geoscience , 2012, 5(7):499-504.
[15] Sondergaard J, Tamstorf M, Elberling B, et al . Mercury exports from a high-arctic river basin in northeast greenland (74°N) largely controlled by glacial lake outburst floods[J]. Science of the Total Environment , 2015, 514:83-91.
[16] Loseto L L, Lean D R, Siciliano S D. Snowmelt sources of methylmercury to high arctic ecosystems[J]. Environmental Science & Technology , 2004, 38(11):3 004-3 010.
[17] Søndergaard J, Rigét F, Tamstorf M P, et al . Mercury transport in a low-arctic river in kobbefjord, west greenland (64°N)[J]. Water , Air , & Soil Pollution , 2012, 223(7):4 333-4 342.
[18] Nagorski S A, Engstrom D R, Hudson J P, et al . Spatial distribution of mercury in southeastern alaskan streams influenced by glaciers, wetlands, and salmon[J]. Environmental Pollution , 2014, 184:62-72.
[19] Beniston M. Climatic change in mountain regions: A review of possible impacts[M]∥Diaz H F, ed. Climate Variability and Change in High Elevation Regions: Past, Present & Future. Netherlands:Springer Netherlands, 2003, 59(1): 5-31.
[20] Douglas T A, Loseto L L, Macdonald R W, et al . The fate of mercury in arctic terrestrial and aquatic ecosystems, a review[J]. Environmental Chemistry , 2012, 9(4): 321-355.
[21] Zhu Wei, Feng Xinbin, Qiu Guangle, et al . Atmospheric Mercury Depletion Events (AMDEs) in the polar regions: A review[J]. Chinese Journal of Ecology , 2011, 30(5): 857-864.
. 生态学杂志, 2011, 30(5):857-864.]
[22] Stern G A, Macdonald R W, Outridge P M, et al . How does climate change influence arctic mercury?[J]. Science of the Total Environment , 2012, 414:22-42.
[23] Steffen A, Douglas T, Amyot M, et al . A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow[J]. Atmospheric Chemistry and Physics , 2008, 8(6):1 445-1 482.
[24] Lin C J,Pongprueksa P, Lindberg S E, et al . Scientific uncertainties in atmospheric mercury models I: Model science evaluation[J]. Atmospheric Environment , 2006, 40(16):2 911-2 928.
[25] Durnford D, Dastoor A, Ryzhkov A, et al . How relevant is the deposition of mercury onto snowpacks? Part 2: A modeling study[J]. Atmospheric Chemistry and Physics , 2012, 12(19):9 251-9 274.
[26] Cobbett F D, Steffen A, Lawson G, et al . Gem fluxes and atmospheric mercury concentrations (gem, rgm and hgp) in the Canadian arctic at alert, Nunavut, Canada (February-June 2005)[J]. Atmospheric Environment , 2007, 41(31):6 527-6 543.
[27] Huang J, Kang S, Guo J, et al . Seasonal variations, speciation and possible sources of mercury in the snowpack of Zhadang glacier, Mt. Nyainqentanglha, southern Tibetan Plateau[J]. Science of the Total Environment , 2012, 429:223-230.
[28] Loewen M, Kang S, Armstrong D, et al . Atmospheric transport of mercury to the Tibetan Plateau[J]. Environmental Science & Technology , 2007, 41(22):7 632-7 638.
[29] Carrico C M, Bergin M H, Shrestha A B, et al . The importance of carbon and mineral dust to seasonal aerosol properties in the nepal himalaya[J]. Atmospheric Environment , 2003, 37(20):2 811-2 824.
[30] Zhang Q, Kang S. Comment on "ice core perspective on mercury pollution during the past 600 years"[J]. Environmental Science & Technology , 2016, 50(2):1 065-1 067.
[31] Schuster P F, Krabbenhoft D P, Naftz D L, et al . Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources[J]. Environmental Science & Technology , 2002, 36(11):2 303-2 310.
[32] Beal S A, Osterberg E C, Zdanowicz C M, et al . Ice core perspective on mercury pollution during the past 600 years[J]. Environmental Science & Technology , 2015, 49(13):7 641-7 647.
[33] Ferrari C P, Padova C, Faïn X, et al . Atmospheric mercury depletion event study in ny-alesund(svalbard) in spring 2005. Deposition and transformation of hg in surface snow during springtime[J]. Science of the Total Environment , 2008, 397(1):167-177.
[34] Poulain A J, Roy V, Amyot M. Influence of temperate mixed and deciduous tree covers on hg concentrations and photoredox transformations in snow[J]. Geochimica et Cosmochimica Acta , 2007, 71(10):2 448-2 462.
[35] Sherman L S, Blum J D, Johnson K P, et al . Mass-independent fractionation of mercury isotopes in arctic snow driven by sunlight[J]. Nature Geoscience , 2010, 3(3):173-177.
[36] Mann E, Mallory M, Ziegler S, et al . Mercury in arctic snow: Quantifying the kinetics of photochemical oxidation and reduction[J]. Science of the Total Environment , 2015, 509:115-132.
[37] Brooks S, Arimoto R, Lindberg S, et al . Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial[J]. Atmospheric Environment , 2008, 42(12):2 877-2 884.
[38] Bales R C, Sommerfeld R A, Kebler D G. Ionic tracer movement through a wyoming snowpack[J]. Atmospheric Environment ( Part A. General Topics ), 1990, 24(11):2 749-2 758.
[39] Huang J, Kang S, Guo J, et al . Mercury distribution and variation on a high-elevation mountain glacier on the northern boundary of the Tibetan Plateau[J]. Atmospheric Environmen t, 2014, 96:27-36.
[40] Dommergue A, Ferrari C P, Gauchard P A, et al . The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters , 2003, 30(12),doi:10.1029/2003GL017308.
[41] Conway H, Gades A, Raymond C. Albedo of dirty snow during conditions of melt[J]. Water Resources Research , 1996, 32(6):1 713-1 718.
[42] Meyer T, Lei Y D, Wania F. Measuring the release of organic contaminants from melting snow under controlled conditions[J]. Environmental Science & Technology , 2006, 40(10):3 320-3 326.
[43] Simpson W, Glasow R V, Riedel K, et al . Halogens and their role in polar boundary-layer ozone depletion[J]. Atmospheric Chemistry and Physics , 2007, 7(16):4 375-4 418.
[44] Soerensen A L, Skov H, Jacob D J, et al . Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer[J]. Environmental Science & Technology , 2010, 44(19):7 425-7 430.
[45] Sutinen R, Äikää O, Piekkari M, et al . Snowmelt infiltration through partially frozen soil in finnish lapland[J]. Geophysica , 2009, 45(1/2):27-39.
[46] Lalonde J D, Amyot M, Doyon M R, et al . Photo-induced Hg (ii) reduction in snow from the remote and temperate experimental lakes area (Ontario, Canada)[J]. Journal of Geophysical Research : Atmospheres (1984-2012), 2003, 108(D6),doi:10.1029/200/JD001534.
[47] Aspmo K, Temme C, Berg T, et al . Mercury in the atmosphere, snow and melt water ponds in the north atlantic ocean during arctic summer[J]. Environmental Science & Technology , 2006, 40(13):4 083-4 089.
[48] Sun Xuejun, Wang Kang, Guo Junming, et al . Mercury transport from glacier to runoff in typical inland glacial area in the Tibetan Plateau[J]. Environmental Science ,2016, 37(2): 482-489.
. 环境科学, 2016, 37(2): 482-489.]
[49] Yao T, Wang Y, Liu S, et al . Recent glacial retreat in high Asia in China and its impact on water resource in northwest China[J]. Science in China ( Series D ), 2004, 47(12):1 065-1 075.
[50] Kang S, Wang F, Morgenstern U, et al . Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records[J]. Cryosphere , 2015, 9(3):1 213-1 222.
[51] Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al . The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica , 2015, 70(1):3-16.
. 地理学报, 2015, 70(1):3-16.]
[52] Blais J M, Schindler D W, Muir D C, et al . Melting glaciers: A major source of persistent organochlorines to subalpine bow lake in banff national park, Canada[J]. AMBIO : A Journal of the Human Environment , 2001,30(7):410-415.
[53] Zhang Yinsheng, Yao Tandong, Pu Jianchen, et al . The features of hydrological processes in the Dongkemadi River Basin, Tanggula Pass,Tibetan Plateau[J]. Journal of Glaciology and Geocryology , 1997, 19(3):214-222.
. 冰川冻土, 1997, 19(3):214-222.]
[54] He Xiaobo, Ding Yongjian, Liu Shiyin, et al . Obsevation and analyses of hydrological process of the Kaltamak glacier in Muztag Ata[J]. Journal of Glaciology and Geocryology , 2005, 27(2):262-268.
. 冰川冻土, 2005, 27(2):262-268.]
[55] Gao Tanguang, Kang Shichang, Zhou Shijiao, et al . A study of the summer hydrological features of glaciers in the Qugaqie River, Nam Co Basin[J]. Journal of Glaciology and Geocryology , 2009, 31(4): 725-731.
. 冰川冻土, 2009,31(4):725-731.]
[56] Zhang Fei, Liu Jingshi, Gong Tongliang, et al . Hydrological regime of the Karuxung watershed in north Himalayas[J]. Acta Geographica Sinica , 2006, 61(11):1 141-1 148.
. 地理学报, 2006, 61(11):1 141-1 148.]
[57] Rees H G, Collins D N. Regional differences in response of flow in glacier-fed Himalayan Rivers to climatic warming[J]. Hydrological Processes , 2006, 20(10):2 157-2 169.
[58] Diaz H F, Grosjean M, Graumlich L. Climate variability and change in high elevation regions: Past, present and future[J]. Climatic Change , 2003, 59(1): 1-4.
[59] Marín V H, Tironi A, Paredes M A, et al . Modeling suspended solids in a northern chilean patagonia glacier-fed fjord: Glof scenarios under climate change conditions[J]. Ecological Modelling , 2013, 264:7-16.
[60] Dommergue A, Larose C, Faïn X, et al . Deposition of mercury species in the Ny-lesund area (79°N) and their transfer during snowmelt[J]. Environmental Science & Technology , 2009, 44(3):901-907.
[61] Mitchell C P, Branfireun B A, Kolka R K. Total mercury and methylmercury dynamics in upland-peatland watersheds during snowmelt[J]. Biogeochemistry , 2008, 90(3):225-241.
[62] Faïn X, Grangeon S, Bahlmann E, et al . Diurnal production of gaseous mercury in the alpine snowpack before snowmelt[J]. Journal of Geophysical Research : Atmospheres (1984 - 2012), 2007, 112(D21),doi:10.1029/2007JD008520.
[63] Sørmo E G. Mercury in A Remote Glacier-fed Alpine Catchment in China[D].Norwegion:University of Oslo,2014.
[64] Sun X, Wang K, Kang S, et al . The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau[J]. Environmental Pollution , 2017, 220:936-945.
[65] Li B, Yu Z, Liang Z, et al . Hydrologic response of a high altitude glacierized basin in the central Tibetan Plateau[J]. Global and Planetary Change , 2014, 118:69-84.
[66] Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the asian water towers[J]. Science , 2010, 328(5 984):1 382-1 385.
[67] Mao L, Dell’Agnese A, Huincache C, et al . Bedload hysteresis in a glacier-fed mountain river[J]. Earth Surface Processes and Landforms , 2014, 39(7):964-976.
[68] Brigham M E, Wentz D A, Aiken G R, et al . Mercury cycling in stream ecosystems. 1. Water column chemistry and transport[J]. Environmental Science & Technology , 2009, 43(8):2 720-2 725.
[69] Schuster P F, Striegl R G, Aiken G R, et al . Mercury export from the Yukon River Basin and potential response to a changing climate[J]. Environmental Science & Technology , 2011, 45(21):9 262-9 267.
[70] Emmerton C A, Graydon J A, Gareis J A, et al . Mercury export to the arctic ocean from the Mackenzie River, Canada[J]. Environmental Science & Technology , 2013, 47(14):7 644-7 654.
[71] Sun S, Kang S, Huang J, et al . Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China[J]. Journal of Environmental Sciences , 2016, 44:213-223.
[72] Mei Lu, Wang Xun, Feng Xinbin, et al . Spatial distribution and source/sink characteristic of mercury in the water samples from the Mt. Gongga area in the Tibetan Plateau[J]. Environmental Chemistry , 2016, 35(8): 1 549-1 556.
. 环境化学, 2016, 35(8):1 549-1 556.]
[73] Rudd J W. Sources of methyl mercury to freshwater ecosystems: A review[J]. Water , Air , and Soil Pollution , 1995, 80(1/4):697-713.
[74] Selin N E. Global biogeochemical cycling of mercury: A review[J]. A nnual Review of Environment and Resources , 2009, 34(1):43-63.
[75] Chasar L C, Scudder B C, Stewart A R, et al . Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation[J]. Environmental Science & Technology , 2009, 43(8):2 733-2 739.
[76] Warner K A, Bonzongo J C, Roden E E, et al . Effect of watershed parameters on mercury distribution in different environmental compartments in the mobile Alabama River Basin, USA[J]. Science of the Total Environment , 2005, 347(1/3):187-207.
[77] Pickhardt P C, Fisher N S. Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies[J]. Environmental Science & Technology , 2007, 41(1):125-131.
[78] Mason R P, Reinfelder J R, Morel F M. Uptake, toxicity, and trophic transfer of mercury in a coastal diatom[J]. Environmental Science & Technology , 1996, 30(6):1 835-1 845.
[79] Zhang Q, Pan K, Kang S, et al . Mercury in wild fish from high-altitude aquatic ecosystems in the Tibetan Plateau[J]. Environmental Science & Technology , 2014, 48(9):5 220-5 228.
[80] Yang H. Lake sediments may not faithfully record decline of atmospheric pollutant deposition[J]. Environmental Science & Technology , 2015, 49(21):12 607-12 608.
[81] Zemp M, Frey H, Gärtner-Roer I, et al . Historically unprecedented global glacier decline in the early 21 st century[J]. Journal of Glaciology , 2015, 61(228):745-762.

[1] 龙花楼, 曲艺, 屠爽爽, 李裕瑞, 戈大专, 张英男, 马历, 王文杰, 王婧. 城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望[J]. 地球科学进展, 2018, 33(5): 455-463.
[2] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[3] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[4] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[5] 卿文武,陈仁升,刘时银,韩海东,王建. 两类度日模型在天山科其喀尔巴西冰川消融估算中的应用[J]. 地球科学进展, 2011, 26(4): 409-416.
[6] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[7] 吴丰昌,郑建,潘响亮,黎文,邓秋静,莫昌琍,朱静,刘碧君,劭树勋,郭建阳. 锑的环境生物地球化学循环与效应研究展望[J]. 地球科学进展, 2008, 23(4): 350-356.
[8] 杨志峰,崔保山,黄国和,白军红,孙涛,李晓文,刘新会. 黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J]. 地球科学进展, 2006, 21(11): 1119-1126.
[9] 汪明启;任萍;严光生. 美国矿床环境研究动态及建议[J]. 地球科学进展, 2004, 19(4): 636-641.
[10] 周志芳;朱海生. 城市地质灾害中的地下水环境效应[J]. 地球科学进展, 2004, 19(3): 467-471.
[11] 王起超,刘汝海,吕宪国,李志博. 湿地汞环境过程研究进展[J]. 地球科学进展, 2002, 17(6): 881-885.
[12] 党志,刘丛强,尚爱安. 矿区土壤中重金属活动性评估方法的研究进展[J]. 地球科学进展, 2001, 16(1): 86-92.