地球科学进展 ›› 2010, Vol. 25 ›› Issue (8): 783 -793. doi: 10.11867/j.issn.1001-8166.2010.08.0783

综述与评述    下一篇

雪冰中汞的研究进展
康世昌 1,2, 黄杰 1,3,张强弓 1   
  1. 1.中国科学院青藏高原研究所, 青藏高原环境变化与地表过程重点实验室,北京100085; 
    2.中国科学院冰冻圈科学国家重点实验室,甘肃 兰州 730000;
    3.中国科学院研究生院, 北京100049
  • 收稿日期:2009-12-28 修回日期:2010-04-23 出版日期:2010-08-10
  • 通讯作者: 康世昌 E-mail:shichang.kang@itpcas.ac.cn
  • 基金资助:

    国家自然科学基金项目“青藏高原纳木错流域多环境介质中大气重金属污染物记录的集成研究”(编号:40830743)和“青藏高原中部各拉丹冬冰芯中大气重金属记录研究”(编号:40771187);中国科学院冰冻圈科学国家重点实验室自主研究课题“中国冰冻圈生物地球化学循环及其环境效应”(编号:SKLCS-ZZ-2008-01);开放基金项目“青藏高原大气环境和雪冰气候环境记录研究”(编号:SKLCS09-06)资助

Progress in the Study of Mercury in Snow and Ice

Kang Shichang 1,2, Huang Jie 1,3,Zhang Qianggong 1   

  1. 1.Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China;
    2.State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2009-12-28 Revised:2010-04-23 Online:2010-08-10 Published:2010-08-10

汞是具有特殊物理化学性质的重金属元素,其较强的挥发性使之能够参与全球尺度传输,汞的高毒性又能对人类和高等生物体产生极大危害,因而汞是一种全球性污染物,在近几十年来备受科学界的关注。汞的全球生物地球化学循环演化规律是目前环境科学领域的研究热点。冰冻圈是地球系统的关键组成部分之一,是各圈层相互作用的重要环节;而雪冰是冰冻圈的主体,是环境和气候记录的良好载体之一。对南极、北极和中低纬高海拔冰川现代雪冰和冰芯中汞的季节变化、空间差异以及历史变化的研究成果进行了综述,总结了北极和亚北极地区汞的雪/气界面过程研究,归纳了汞的实验室检测手段和方法。针对该领域目前研究上的空白和热点,分别对利用冰芯高分辨率和长时间序列记录重建工业革命以来汞的变化历史(特别在青藏高原)、中低纬冰川区汞的雪/气界面过程、雪冰中汞的同位素分析等进行了展望。

Because of its high toxic property and capability of long-distance transport, mercury has been recognized as a global pollutant and is among the most concerned heavy metals within the natural environment in recent decades. The global biogeochemistry cycling of mercury has received considerable attention and has been a hot topic in environmental science for years, The cryosphere is one of the key components of the Earth System, and also is itself a key component of the climate system, therefore playing a significant role in interaction among other spheres. Snow and ice are the most important components of the cryosphere and they represent excellent archives of climatic and environmental changes. Therefore, studying behaviors of mercury in the past and present snow/ice is of significance for understanding the global biogeochemical cycling of mercury. In this paper, previous studies regarding seasonal and spatial variations of mercury concentrations in present snow/ice and the history of mercury research in ice cores over the past several decades were reviewed. Studies of snow-air exchange of mercury in Arctic and sub-Arctic environments are summerized, and progress of methods for mercury measurement was presented. We suggested that several aspects should be highlighted in the future studies on merany in snow and ice, reconstruction historical records of mercur changes using ice cores (particularly from Tibetan Plateau) are highly recommended. Additionally, studies regarding behaviors of snow-air exchange of mercury in mid-latitude and low-latitude glaciers as well as the potential application of mercury isotopes to snow/ice research are recommended.

中图分类号: 

[1] Schroeder W H, Munthe J. Atmospheric mercury-An overview[J]. Atmospheric Environment,1998, 32:809-822.
[2] Lindqvist O, Rohde H. Atmospheric mercury-A review[J].Tellus B,1985, 37:136-159.
[3] Vandal G M, Fitzgerald W F, Boutron C F, et al. Variations in mercury deposition to Antarctica over the past 34 000 years[J].Nature,1993, 362:621-623.
[4] Schuster P F, Krabbenhoft D P, Naftz D L, et al. Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources[J].Environmental Science&Technology,2002, 36:2 303-2 310.
[5] Atwell L, Hobson K A, Welch H E. Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis[J].Canadian Journal of Fisheries and Aquatic Sciences,1998, 55:1 114-1 121.
[6] Morel F M, Kraepiel A M, Amyot M. The chemical cycle and bioaccumulation of mercury[J].Annual Review of Ecology and Systematics,1998, 29:543-566.
[7] Bargagli R, Monaci F, Sanchez-Hernandez J C, et al. Biomagnification of mercury in an Antarctic marine coastal food web[J].Marine Ecology Progress Series,1998, 169:65-76.
[8] Friedli H R, Radke L F, Prescot R, et al. Mercury emissions from the August 2001 wildfires in Washington State and an agricultural waste fire in Oregon and atmospheric mercury budget estimates[J].Global Biogeochemical Cycles,2003, 17:1 039.
[9] Mason R P, Fitzgerald W F, Morel F M. The biogeochemical cycling of elemental mercury: Anthropogenic influences[J]. Geochimica et Cosmochimica Acta,1994, 58:3 191-3 198.
[10] Steffen A, Schroeder W, Bottenheim J, et al. Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000[J].Atmospheric Environment,2002, 36:2 653-2 661.
[11] Horvat M. Mercury as a global pollutant[J].Analytical and Bioanalytical Chemistry,2002, 374: 981-982.
[12] Munthe J, Ogrinc N, Kotnik J. Advancing the mercury issue-experiences from the 7th international conference on Mercury as a global pollutant[J].Science of the Total Environment,2006, 368:1-2.
[13] Chemicals U. Global Mercury Assessment[M].Geneva, Switzerland,2003:45-89.
[14] Wolff E W, Peel D A. The record of global pollution in polar snow and ice [J]. Nature,1985, 313:535-540.
[15] Thompson L G, Yao T, Davis M E, et al. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core[J].Science,1997, 276:1 821-1 825.
[16] Thompson L G, Yao T, Mosley-Thompson E,et al. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores[J].Science,2000, 289:1 916-1 920.
[17] Brosset C. Total airborne mercury and its possible origin[J]. Water, Air, & Soil Pollution,1982, 17:37-50.
[18] Wania F, Mackay D. Global distillation[J].Our Planet,1997, 8:15-16.
[19] Jitaru P, Infante H G, Ferrari C P, et al. Present century record of mercury species pollution in high altitude alpine snow and ice[J].Journal de Physique IV France,2003, 107:683-685.
[20] Loewen M, Kang S, Armstrong D, et al. Atmospheric transport of mercury to the Tibetan Plateau[J].Environmental Science & Technology,2007, 41:7 632-7 638.
[21] Wang X, Yao T, Wang P, et al. The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas[J].Science of the Total Environment,2008, 394:134-143.
[22] Murozumi M, Chow T J, Patterson C. Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata[J]. Geochimica et Cosmochimica Acta,1969, 33:1 247-1 294.
[23] Weiss H V, Koide M, Goldberg E D. Mercury in a Greenland ice sheet: Evidence of recent input by man[J].Science,1971, 174:692-694.
[24] Weiss H V, Herron M M, Langway C C. Natural enrichment of elements in snow[J].Nature,1978, 274:352-353.
[25] Appelquist H, Jensen K O, Sevel T, et al. Mercury in the Greenland ice sheet[J].Nature,1978, 273:657-659.
[26] Weiss H, Bertine K, Koide M, et al. Chemical composition of a Greenland glacier[J].Geochimica et Cosmochimica Acta,1975, 39:1-10.
[27] Carr R A, Wilkniss P E. Mercury in the Greenland ice sheet: Further data[J].Science,1973, 181:843-844.
[28] Herron M M, Langway C C, Weiss H V, et al. Vanadium and other elements in Greenland ice cores[C]//Cold Regions Research and Engineering Laboratory Research. Hanover: Newhamsphire, 1976: 98-102.
[29] Dickson E M, Patterson C C, Weiss H V, et al. Mercury and lead in the Greenland ice sheet: A reexamination of the data[J].Science,1972, 177: 536-538.
[30] Boutron C F, Vandal G M, Fitzgerald W F, et al. A forty year record of mercury in central Greenland snow[J].Geophysical Research Letters,1998, 25:3 315-3 318.
[31] Mann J L, Long S E, Shuman C A, et al. Determination of mercury content in a shallow firn core from greenland by isotope dilution inductively coupled plasma mass spectrometry[J].Water, Air, & Soil Pollution,2005, 163:19-32.
[32] Steffen A, Douglas T, Amyot M, et al. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water[J].Atmospheric Chemistry and Physics Discussions,2007, 7:10 837-10 931.
[33] Ferrari C P, Gauchard P A, Aspmo K, et al. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-lesund, Svalbard[J].Atmospheric Environment,2005, 39:7 633-7 645.
[34] Schroeder W H, Anlauf K G, Barrie L A, et al. Arctic springtime depletion of mercury[J].Nature,1998, 394:331-332.
[35] Ebinghaus R, Kock H H, Temme C, et al. Antarctic springtime depletion of atmospheric mercury[J].Environmental Science & Technology,2002, 36:1 238-1 244.
[36] Temme C, Einax J W, Ebinghaus R, et al. Measurements of atmospheric mercury species at a coastal site in the Antarctic and over the south Atlantic ocean during polar summer[J].Environmental Science & Technology,2003, 37:22-31.
[37] Berg T, Sekkester S, Steinnes E, et al. Springtime depletion of mercury in the European Arctic as observed at Svalbard[J].Science of the Total Environment,2003, 304:43-51.
[38] Poulain A J, Lalonde J D, Amyot M, et al. Redox transformations of mercury in an Arctic snowpack at springtime[J]. Atmospheric Environment,2004, 38:6 763-6 774.
[39] Lahoutifard N, Sparling M, Lean D. Total and methyl mercury patterns in Arctic snow during springtime at Resolute, Nunavut, Canada[J].Atmospheric Environment,2005, 39:7 597-7 606.
[40] Lahoutifard N, Poissant L, Scott S L. Scavenging of gaseous mercury by acidic snow at Kuujjuarapik, Northern Québec[J].Science of the Total Environment,2006, 355:118-126.
[41] Aspmo K, Gauchard P A, Steffen A, et al. Measurements of atmospheric mercury species during an international study of mercury depletion events at Ny-lesund, Svalbard, spring 2003. How reproducible are our present methods?[J].Atmospheric Environment,2005, 39:7 607-7 619.
[42] Planchon F A, Gabrielli P, Gauchard P A, et al. Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS[J].Journal of Analytical Atomic Spectrometry,2004, 19:823-830.
[43] Douglas T A, Sturm M, Simpson W R, et al. Elevated mercury measured in snow and frost flowers near Arctic sea ice leads[J].Geophysical Research Letters,2005, 32:L04502.
[44] Bargagli R, Monaci F, Bucci C. Environmental biogeochemistry of mercury in Antarctic ecosystems[J].Soil Biology and Biochemistry,2007, 39:352-360.
[45] Kirk J L. Potential sources of monomethyl mercury in Arctic and Subarctic seawater[J].Arctic,2006, 59:108-111.
[46] Kirk J L, Louis V L, Sharp M J. Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada[J]. Environmental Science & Technology, 2006, 40:7 590-7 596.
[47] Louis V L, Sharp M J, Steffen A, et al. Some sources and sinks of monomethyl and inorganic mercury on Ellesmere Island in the Canadian High Arctic[J]. Environmental Science & Technology,2005, 39:2 686-2 701.
[48] Constant P,Poissant L, Villemur R, et al. Fate of inorganic mercury and methyl mercury within the snow cover in the low arctic tundra on the shore of Hudson Bay (Québec, Canada)[J]. Journal of Geophysical Research,2007, 112:D08309.
[49] Taylor H W, Gordon A L, Molinelli E. Climatic characteristics of the Antarctic polar front zone[J].Journal of Geophysical Research,1978,83:4 572-4 578.
[50] Saigne C, Legrand M. Measurements of methanesulphonic acid in Antarctic ice[J]. Nature,1987, 330:240-242.
[51] Jitaru P, Gabrielli P, Marteel A, et al. Atmospheric depletion of mercury over Antarctica during glacial periods[J].Nature,2009, 2:505-508.
[52] Wolff E W. Signals of atmospheric pollution in polar snow and ice[J].Antarctic Science,2004, 2(3):189-205.
[53] Van de Velde K, Vallelonga P, Candelone J P, et al. Pb isotope record over one century in snow from Victoria Land, Antarctica[J].Earth and Planetary Science Letters,2005, 232:95-108.
[54] Wolff E W, Suttie E D. Antarctic snow record of southern hemisphere lead pollution[J].Geophysical Research Letters,1994, 21:781-784.
[55] Murozumi M, Nakamura S, Yoshida Y. Chemical constituents in the surface snow in Mizuho Plateau[J].Memoirs of National Institute of Polar Research, Special issue:1978,255-263.
[56] Yoshida Y, Murozumi M. Mercury profile of Mizuho ice sheet, Antarctica[J].Antarctic Record (Japan),1977, 59:26-29.
[57] Dick A L, Sheppard D S, Patterson J E. Mercury content of Antarctic surface snow: Initial results[J].Atmospheric Environment,1990, 24:973-978.
[58] Sheppard D S, Patterson J E, McAdam M K. Mercury content of Antarctic ice and snow: Further results[J].Atmospheric Environment,1991, 25:1 657-1 660.
[59] Steffen A, Douglas T, Amyot M, et al. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water[J].Atmospheric Chemistry and Physics Discussions,2007, 7:10 837-10 931.
[60] Capelli R, Minganti V, Chiarini C, et al. Mercury in snow layers from the Antarctica[J]. International Journal of Environmental Analytical Chemistry,1998, 71:289-296.
[61] Vandal G, Fitzgerald W, Boutron C, et al. Ice Core Studies of Global Biogeochemical cycles[M]. Springer-Verlag, 1995:401-415.
[62] Brooks S, Arimoto R, Lindberg S, et al. Antarctic polar plateau snow surface conversion of deposited oxidized mercury to gaseous elemental mercury with fractional long-term burial[J].Atmospheric Environment,2008, 42:2 877-2 884.
[63] Ariya P A, Dastoor A P, Amyo M T, et al. The Arctic: A sink for mercury[J]. Tellus B,2004, 56:397-403.
[64] Lalonde J D, Poulain A J, Amyot M. The role of mercury redox reactions in snow on snow-to-air mercury transfer[J]. Environmental Science & Technology,2002, 36:174-178.
[65] Fain X, Grangeon S, Balhmann E, et al. Diurnal production of gaseous mercury in the alpine snowpack before snowmelt[J].Journal of Geophysical Research,2007, 112:D21311.
[66] Dommergue A, Ferrari C, Gauchard P A, et al. The fate of mercury species in a sub-arctic snowpack during snowmelt[J]. Geophysical Research Letters,2003, 30:231-234.
[67] Dommergue A, Bahlmann E, Ebinghaus R, et al. Laboratory simulation of Hg0 emissions from a snowpack[J]. Analytical and Bioanalytical Chemistry,2007, 388:319-327.
[68] Lindberg S E, Brooks S, Lin C J, et al. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise[J]. Environmental Science & Technology, 2002, 36:1 245-1 256.
[69] Van de Velde K, Barbante C, Cozzi G, et al. Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century[J].Atmospheric Environment,2000, 34:3 117-3 127.
[70] Van de Velde K, Boutron C, Ferrari C, et al. Seasonal variations of heavy metals in the 1960s Alpine ice: Sources versus meteorological factors[J]. Earth and Planetary Science Letters,1998, 164:521-533.
[71] Van de Velde K, Boutron C F, Ferrari C P, et al. A two hundred years record of atmospheric Cadmium, Copper and Zinc concentrations in high altitude snow and ice from the French-Italian Alps[J]. Geophysical Research Letters, 2000, 27:249-252.
[72] Eyrikh S, Schwikowski M, Göggeler H W, et al. First mercury determination in snow and firn from high-mountain glaciers in the Siberian Altai by CV-ICP-MS[J]. Journal de Physique IV France,2003,107:431-434.
[73] Ferrari C P, Dommergue A, Veysseyre A, et al. Mercury speciation in the French seasonal snow cover[J]. Science of the Total Environment, 2002, 287:61-69.
[74] Susong D D, Abbott M L, Krabbenhoft D P, et al. Reconnaissance of mercury concentrations in snow from the teton and wasatch ranges to assess the atmospheric deposition of mercury from an urban area, Eos[J]. Transactions of the American geophysical union,1999, 80 :H12b-06.
[75] Zhou S, Zhang R. Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion[J]. Geophysical Research Letters,2005, 32:L18705.
[76] Bian J, Wang G, Chen H, et al. Ozone mini-hole occurring over the Tibetan Plateau in December 2003[J]. Chinese Science Bulletin,2006, 51:885-888.
[77] Bian J. Features of ozone mini-hole events over the Tibetan Plateau[J].Advances in Atmospheric Sciences, 2009, 26:305-311.[78] Balerna A, Bernieri E, Pecci M, et al. Chemical and radio-chemical composition of freshsnow samples from northern slopes of Himalayas (Cho Oyu range, Tibet)[J]. Atmospheric Environment,2003, 37:1 573-1 581.
[79] Fu S, Chu S, Xu X. Organochlorine pesticide residue in soils from Tibet, China[J]. Bulletin of Environmental Contamination and Toxicology,2001, 66:171-177.
[80] Xiao C D, Qin D H, Yao T D, et al. Spread of lead pollution over remote regions and upper troposphere: Glaciochemical evidence from Polar Regions and Tibetan Plateau[J].Bulletin of Environmental Contamination and Toxicology,2001, 66:691-698.
[81] Huang X, Sillanp M, Duo B, et al. Water quality in the Tibetan Plateau: Metal contents of four selected rivers[J].Environmental Pollution,2008, 156:270-277.
[82] Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau:A driver and amplifier of the global climatic change Ⅲ, the effects of the uplift of Qinghai-Tibetan Plateau on climatic changes[J]. Journal of Lanzhou University (Natural Sciences),1996, 32(1):103-115.[潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器: Ⅲ. 青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版, 1996, 32(1):103-115.] 
[83] Wolff E W, Peel D A.Closer to a true value for heavy metal concentrations in recent Antarctic snow by improved contamination control[J]. Annals of Glaciology,1985, 7: 61-69.
[84] Blum J D, Bergquist B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry,2007, 388:353-359.
[85] Foucher D, Hintelmann H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J].Analytical and bioanalytical chemistry,2006, 384:1 470-1 478.
[86] Bergquist B A, Blum J D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems[J].Science,2007,318:417-420.

[1] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[2] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 武丰民,李文铠,李伟. 北极放大效应原因的研究进展[J]. 地球科学进展, 2019, 34(3): 232-242.
[5] 张春灌,李想,袁炳强,宋立军. 地球磁异常( EMAG2)数据中海域资料质量评估[J]. 地球科学进展, 2019, 34(3): 288-294.
[6] 孙学军, 康世昌, 张强弓, 丛志远. 山地冰川消融过程中汞的行为及环境效应综述[J]. 地球科学进展, 2017, 32(6): 589-598.
[7] 劳齐斌, 矫立萍, 陈法锦, 陈立奇. 北极区域传统和新型POPs研究进展[J]. 地球科学进展, 2017, 32(2): 128-138.
[8] 王汝建, 肖文申, 章陶亮, 聂森艳. 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1236-1244.
[9] 吴晨曦, 刘世杰, 田一翔, 童小华. 基于多源遥感数据的南极三大冰架前端变化分析[J]. 地球科学进展, 2016, 31(2): 206-212.
[10] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[11] 张胜凯, 雷锦韬, 李斐. 全球海潮模型研究进展[J]. 地球科学进展, 2015, 30(5): 579-588.
[12] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[13] 胡毅, 王立明, 钟贵才, 房旭东, 许江, 何慧优. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1231-1238.
[14] 武丰民, 何金海, 祁莉. 北极海冰消融及其对欧亚冬季低温影响的研究进展[J]. 地球科学进展, 2014, 29(8): 913-921.
[15] 翟盘茂, 倪允琪, 陈阳. 我国持续性重大天气异常成因与预报方法研究回顾与未来展望[J]. 地球科学进展, 2013, 28(11): 1177-1188.
阅读次数
全文


摘要