地球科学进展 ›› 2015, Vol. 30 ›› Issue (5): 579 -588. doi: 10.11867/j.issn.1001-8166.2015.05.0579

上一篇    下一篇

全球海潮模型研究进展
张胜凯 1( ), 雷锦韬 1, *( ), 李斐 1, 2   
  1. 1.中国南极测绘研究中心,武汉大学, 湖北 武汉 430079
    2.测绘遥感信息工程国家重点实验室,武汉大学, 湖北 武汉 430079
  • 出版日期:2015-06-09
  • 通讯作者: 雷锦韬 E-mail:zskai@whu.edu.cn;jintao.lei@whu.edu.cn
  • 基金资助:
    国家重大科学研究计划项目“近百年极地冰层和全球及典型区域海平面变化机理精密定量研究”(编号:2012CB957701);国家自然科学基金项目“利用CryoSat-2和GPS进行东南极冰盖/冰架变化研究”(编号:41176173)资助

Advances in Global Ocean Tide Models

Shengkai Zhang 1, Jintao Lei 1, Fei Li 1, 2   

  1. 1. Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Hubei 430079, China
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Online:2015-06-09 Published:2015-05-06

阐述潮汐分析方法和建模方法,归纳总结了FES,CSR,GOT,NAO,TPXO,EOT,DTU,HAMTIDE及OSU系列全球海潮模型的建立机构、使用数据及构建方法等。对比分析2010年后出现的几种新的海潮模型(FES2012,EOT11a,DTU10和HAMTIDE11a)在南大洋的M2振幅,发现模型间差异主要集中在浅水及极地地区,其中极地地区高精度卫星测高数据的缺少及海冰的季节性变化,是导致建模精度较差的主要原因。最后对海潮模型的发展方向提出一些建议。

The theories of tidal analysis and methods of ocean tide modeling are presented at first,and a series of global ocean tide models (FES,CSR,GOT,NAO,TPXO,EOT,DTU,HAMTIDE and OSU) are summarized, including their affiliations, data, and methods of modeling. The amplitude differences of M2 constituent of four new models (FES2012,EOT11a,DTU10,HAMTIDE11a) which released after 2010 are provided to show that shallow-water and polar sea are the main different regions. The main reasons leading to a poor accuracy in polar sea tidal modeling are the lack of highly accurate altimetry data and the presence of sea ices. Some suggestions are proposed for the future study of ocean tide modeling.

中图分类号: 

表1 测高卫星汇总
Table.1 Summary of Altimetry Satellites
表2 全球海潮模型
Table.2 Global ocean tide models
名称 时间 参考文献 国家 机构 数据 分辨率
构建方法
测高卫星 验潮站
Schw80 1980 6 美国 NSWC 1 流体动力学模型
FES94.1 1994 10 法国 FTG 0.5 流体动力学模型
FES95.2 1995 10 法国 FTG T/P 0.5 同化模型
FES98 1998 10 法国 FTG 0.25 同化模型
FES99 1999 11 法国 FTG T/P 0.25 同化模型
FES2004 2004 12 法国 FTG T/P,ERS-2 0.125 同化模型
FES2012 2012 13 法国 FTG T/P,ERS-1/2,Jason-1/2,Envisat 未加入 0.0625 同化模型
(完善中)
CSR3.0 1994 14 美国 CSR T/P 1 经验模型
CSR4.0 1999 15 美国 CSR T/P 0.5 经验模型
GOT99.2b 1999 16 美国 GSFC T/P 0.5 经验模型
GOT00.2 2000 16 美国 GSFC T/P,ERS-1/2 0.5 经验模型
GOT4.7 2008 17 美国 GSFC T/P,ERS-1/2,GFO 0.5 经验模型
GOT4.8 2011 17 美国 GSFC T/P,ERS-1/2,GFO 0.5 经验模型
GOT4.9 2011 17 美国 GSFC T/P,ERS-1/2,GFO 0.5 经验模型
GOT4.10 2011 17 美国 GSFC ERS-1/2,GFO,Jason-1/2 0.5 经验模型
NAO.99b 2000 18 日本 NAO T/P 0.5 同化模型
TPXO5 2000 19 美国 OregonSU T/P,ERS-2 0.5 同化模型
TPXO6.2 2005 19 美国 OregonSU T/P 0.25 同化模型
TPXO7 2008 19 美国 OregonSU T/P,ERS-2,Jason-1 0.25 同化模型
TPXO8 2011 19 美国 OregonSU T/P,ERS-2,Jason-1/2,ERS-1/2,Envisat 0.25 同化模型
EOT08a 2008 21 德国 DGFI T/P,ERS-1/2,GFO,Jason-1,Envisat 0.125 经验模型
EOT10a 2010 22 德国 DGFI T/P,ERS-2,Jason-1/2,Envisat 0.125 经验模型
EOT11a 2011 23 德国 DGFI T/P,ERS-2,Jason-1/2,Envisat 0.125 经验模型
AGO06a 2006 25 丹麦 DTU T/P,ERS-1/2,GFO,Jason-1,Envisat 0.25 经验模型
DTU10 2010 24 丹麦 DTU T/P,ERS-2,GFO,Jason-1/2,Envisat 0.125 经验模型
HAMTIDE11a 2011 26 德国 UH T/P,Jason-1 0.125 同化模型
OSU12 2012 27 美国 OSU T/P,GFO,Jason-1,Envisat 0.25 经验模型
表3 两极地区4个主要分潮的模型预测振幅与验潮站测量振幅比较(cm)
Table.3 RMS and RSS between the tidal amplitudes from model outputs and tide gauge measurements for the four major tidal constituents in the Arctic and Antarctic, Respectively(cm) (from Stammer)
图1 南大洋上4个全球海潮模型的M2振幅分布图
Fig.1 Amplitude of M2 Constituent of the four ocean tide models in the Southern Ocean A:EOT11a,B:FES2012,C:HAMTIDE11,D:OSU12
图2 四个海潮模型 M2分潮的振幅差异(cm)
Fig.2 Amplitude difference (cm) of M2 constituent of four ocean tide models A:EOT-HAM,B:EOT-OSU,C:EOT-FES,D:FES-HAM,E:FES-OSU,F:HAM-OSU
[1] Gu Zhennian, Jin Wenjing, Wang Baowei.The comparison among ocean tide models and the ocean tide effect on the Earth rotation[J]. Progress in Astronomy, 1999, 17(2): 126-135.
[顾震年, 金文敬,王保卫. 海潮模型的比较及海潮对地球自转变化的影响[J]. 天文学进展, 1999, 17(2): 126-135.]
[2] Sun Heping, Zhou Jiangcun, Peng Bibo.Effect of ocean tide loading on satellite gravity determination[J]. Advances in Earth Science, 2006, 21(5):482-486.
[孙和平, 周江存, 彭碧波. 确定卫星重力场中的海潮负荷影响问题[J]. 地球科学进展, 2006, 21(5): 482-486.]
[3] Zhou Jiangcun, Sun Heping.Loading effect on high precision GPS observations[J]. Advances in Earth Science, 2007, 22(10): 1 036-1 040.
[周江存, 孙和平. 高精度GPS 观测中的负荷效应[J]. 地球科学进展, 2007, 22(10): 1 036-1 040.]
[4] Shi Xianwu, Tan Jun, Guo Zhixing, et al.A review of risk assessment of storm surge disaster[J]. Advances in Earth Science, 2013, 28(8): 866-874.
[石先武, 谭骏, 国志兴, 等. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866-874.]
[5] Chen Zongyong.Tidology[M]. Beijing: Science Press,1980.
[陈宗镛. 潮汐学[M]. 北京:科学出版社, 1980.]
[6] Schwiderski E W.On charting global ocean tides[J]. Reviews of Geophysics, 1980, 18(1): 243-268.
[7] Wang Hui, Liu Na, Li Benxia, et al.An overview of ocean predictability and ocean ensemble forecast[J]. Advances in Earth Science, 2014, 29(11): 1 212-1 225.
[王辉, 刘娜, 李本霞, 等. 海洋可预报性和集合预报研究综述[J]. 地球科学进展, 2014, 29(11): 1 212-1 225.]
[8] Bao Jingyang, Xu Jun.Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model[M].Beijing: Surveying and Mapping Press, 2013.
[暴景阳, 许军. 卫星测高数据的潮汐提取与建模应用[M]. 北京: 测绘出版社, 2013.]
[9] Li Dawei, Li Jiancheng, Jin Taoyong, et al.Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 106-110.
[李大炜, 李建成, 金涛勇, 等. 利用验潮站资料评估全球海潮模型的精度[J]. 大地测量与地球动力学, 2012, 32(4): 106-110.]
[10] Le Provost C, Genco M L, Lyard F, et al.Spectroscopy of the world ocean tides from a finite element hydrodynamic model[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994, 99(C12): 24 777-24 797.
[11] Lefevre F, Lyard F H, Le Provost C, et al.FES99: A global tide finite element solution assimilating tide gauge and altimetric information[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(9): 1 345-1 356.
[12] Lyard F, Lefevre F, Letellier T, et al.Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5/6): 394-415.
[13] Carrère L, Lyard F, Cancet M, et al.FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry[C]∥The Symposium 20 Years of Progress in Rodar Altimetry. Venice, 2012:20.
[14] Eanes R J, Bettadpur S.The CSR 3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from Topex/Poseidon altimetry[R]∥Technical Report CRS-TM-95-05, Centre for Space Research. Texas: University of Texas, 1996.
[15] Eanes R J, Schuler A.An improved global ocean tide model from TOPEX/Poseidon altimetry: CSR4. 0[C]∥EGS, 24th General Assembly.The Hagae, the Netherlands,1999: 19-23.
[16] Ray R D.A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99. 2[R]∥NASA TM-1999-209478, National Aeronautics and Space Administration. Maryland: Goddard Space Flight Center,1999.
[17] Ray R D.Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4 570-4 584.
[18] Matsumoto K, Takanezawa T, Ooe M.Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567-581.
[19] Egbert G D, Erofeeva S Y.Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183-204.
[20] Egbert G D, Ray R D.Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data[J]. Nature,2000, 405(6 788): 775-778.
[21] Savcenko R, Bosch W.EOT08a—A new global tide model from multi-mission altimetry[R]∥Report No. 81 Deutsches Geod-tisches Forschungsinstitut (DGFI). München, Germany, 2008.
[22] Savcenko R, Bosch W.EOT10a—A new global tide model from multi-mission altimetry[C]∥EGU General Assembly Conference Abstracts, 2010, 12: 9 624.
[23] Savcenko R, Bosch W.EOT11a—Empirical ocean tide model from multi-mission satellite altimetry[R]∥Report No. 89 Deutsches Geodtisches Forschungsinstitut (DGFI). München, Germany, 2012.
[24] Cheng Y, Andersen O B.Multimission empirical ocean tide modeling for shallow waters and polar seas[J]. Journal of Geophysical Research: Oceans (1978-2012), 2011, 116(C11),doi:10.1029/2011JCD07172.
[25] Andersen O B, Egbert G, Erofeeva L, et al.Non-linear tides in shallow water regions from multi-mission satellite altimetry & the Andersen 06 Global Ocean Tide Model[C]∥AGU WPGM Meeting. Beijing, 2006.
[26] Taguchi E, Stammer D, Zahel W.Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 573-4 592.
[27] Fok H S.Ocean Tides Modeling Using Satellite Altimetry[D]. Columbus: The Ohio State University, 2012.
[28] Wang Yihang, Fang Guohong, Wei Zexun, et al.Accuracy assessment of global ocean tide models base on satelite altimetry[J]. Advances in Earth Science, 2010, 25(4): 353-362.
[汪一航, 方国洪, 魏泽勋, 等. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353-362.]
[29] King M A, Penna N T, Clarke P J, et al.Validation of ocean tide models around Antarctica using onshore GPS and gravity data[J]. Journal of Geophysical Research: Solid Earth(1978-2012), 2005, 110(B8),doi:10.1029/2004JB003390.
[30] Han S C, Ray R D, Luthcke S B.Ocean tidal solutions in Antarctica from GRACE inter-satellite tracking data[J]. Geophysical Research Letters, 2007, 34(21),doi:10.1029/2007GLO31540.
[31] Ray R D, Luthcke S B, Boy J P.Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data[J]. Journal of Geophysical Research: Oceans (1978-2012), 2009, 114(C9),doi:10.1029/2009JC005362.
[32] Wang Weibo, Zhao Jinping.Accumulation sea ice concentration and its action on understanding arctic sea ice dramatic change[J]. Advances in Earth Science, 2014, 29(6):712-722.
[王维波, 赵进平. 累积海冰密集度及其在认识北极海冰快速变化的作用[J]. 地球科学进展, 2014, 29(6):712-722.]
[33] Stammer D, Ray R D, Andersen O B, et al.Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243-282.
[1] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 吴晨曦, 刘世杰, 田一翔, 童小华. 基于多源遥感数据的南极三大冰架前端变化分析[J]. 地球科学进展, 2016, 31(2): 206-212.
[3] 胡毅, 王立明, 钟贵才, 房旭东, 许江, 何慧优. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1231-1238.
[4] 马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展, 2012, 27(4): 398-412.
[5] 康世昌, 黄杰,张强弓. 雪冰中汞的研究进展[J]. 地球科学进展, 2010, 25(8): 783-793.
[6] 姜苏,李院生,马红梅,安春雷. 环境中高氯酸盐的来源、污染现状及其分析方法[J]. 地球科学进展, 2010, 25(6): 617-624.
[7] 汪一航,方国洪,魏泽勋,王永刚,王新怡. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353-362.
[8] 崔祥斌,孙波,田钢,蒋芸芸,张向培,郭井学,唐学远. 冰雷达探测研究南极冰盖的进展与展望[J]. 地球科学进展, 2009, 24(4): 392-402.
[9] 唐学远,孙波,李院生,崔祥斌,李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.
[10] 鄂栋臣,张胜凯,周春霞. 中国极地大地测量学十年回顾:1996—2006年[J]. 地球科学进展, 2007, 22(8): 784-790.
[11] 凌晓良,LEEBelbin,张洁,朱建钢,张侠,汪大立. 澳大利亚南极科学数据管理综述[J]. 地球科学进展, 2007, 22(5): 532-539.
[12] 康建成;唐述林;刘雷保. 南极海冰与气候[J]. 地球科学进展, 2005, 20(7): 786-793.
[13] 崔树红;谢志仁;钟鹤翔;信忠保. 利用T/P海面高度数据校验验潮站地面升降的初步研究[J]. 地球科学进展, 2005, 20(6): 643-648.
[14] 周琴;赵进平;何宜军. 南极绕极波研究综述[J]. 地球科学进展, 2004, 19(5): 761-766.
[15] 张明军;任贾文;孙俊英;效存德;李忠勤;秦大河;康建成. 南极冰盖 NO - 3 浓度记录研究进展[J]. 地球科学进展, 2004, 19(2): 275-282.
阅读次数
全文


摘要