地球科学进展 ›› 2004, Vol. 19 ›› Issue (2): 275 -282. doi: 10.11867/j.issn.1001-8166.2004.02.0275

综述与评述 上一篇    下一篇

南极冰盖 NO - 3 浓度记录研究进展
张明军 1,2;任贾文 2;孙俊英 2;效存德 2;李忠勤 2;秦大河 2;康建成 3   
  1. 西北师范大学地理与环境科学学院,甘肃 兰州 730070;中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;中国极地研究所,上海 200129
  • 收稿日期:2003-01-06 修回日期:2003-05-16 出版日期:2004-12-20
  • 通讯作者: 张明军(1975-),男,甘肃宁县人,副教授,主要从事冰川与环境方面的研究工作. E-mail:E-mail:zhangmj@ns.lzb.ac.cn
  • 基金资助:

    科技部国际合作重点项目“国际合作南极冰盖内陆考察和冰芯研究”(编号:2001CB711003);科技部社会公益项目“南极地区地球环境监测与关键过程研究” (编号:2001DIA50040);西北师范大学知识与科技创新工程项目“西北地区对全球变化的影响及生态恢复重建研究”(编号:NWNU-CJCXGC-02-20)资助


ZHANG Mingjun 1,2, REN Jiawen 2, SUN Junying 2, XIAO Cunde 2, LI Zhongqin 2, QIN Dahe 2,KANG Jiancheng 3   

  1. 1. Geography and Environment College of North West Normal University, Lanzhou 730070,China; 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou  730000, China; 3. Chinese Institute of Polar Research, Shanghai 200129, China
  • Received:2003-01-06 Revised:2003-05-16 Online:2004-12-20 Published:2004-04-01

综述了近年来南极冰盖雪冰中NO- 3浓度的影响因素、NO- 3的来源、沉积后变化及其浓度的时空变化特征的最新研究进展。尽管质子事件、超新星活动、陨石事件、火山喷发和核试验等各种突发事件都可能对南极雪冰中NO- 3浓度产生影响,但综述和模拟结果表明中低纬度对流层闪电和极地平流层来源可能是南极雪冰中NO- 3浓度本底的主要来源。综合研究表明,南极冰盖雪冰中记录的NO- 3浓度可能是其来源、传输路径、沉积过程以及沉积后变化等的综合反映。

In recent years, much attention has  focused on the atmospheric nitrogen cycle, the second major biogenic cycle. The study of the remote polar atmospheres may provide new and valuable data for the study of global atmospheric chemistry. Moreover, the chemical analysis of polar snow and ice has proved to be a very powerful tool in investigating polar atmospheric chemistry, In this paper, the latest progress of the possible causes of shortterm Antarctic NO-3variations, the possible sources, the postdepositional changes and the time and spatial changes of concentrations of NO-3 in the firn and ice of Antarctic ice sheet have been reviewed. The review indicates that although some solar proton events, galactic supernovae, Tunguska metor, volcanic eruptions and nuclear tests may influence the NO-3 concentrations in the firn and ice of Antarctic ice sheet, the lightening in the troposphere and the oxidation of N2O in the stratosphere are the main sources of the background of NO-3 in Antarctic ice sheet. The comprehensive research shows that the NO-3 concentrations recorded in the Antarctic ice sheet may be the results of the sources, transmission paths, depositional processes and postdepositional processes of NO-3 in Antarctic ice sheet. Therefore, in order to reveal the environmental meaning of NO-3 recorded in Antarctic ice sheet, great attentions should be given to a synthetical study of the sources, transmission paths, depositional processes and postdepositional processes of NO-3in Antarctic ice sheet.  


[1]Legrand M R, Delmas R J. Relative contribution of tropospheric and stratospheric sources to nitrate in Antarctic snow[J]. Tellus, 1986, 38B: 236-249.
[2]Legrand M R, Kirchner S. Origins and variations of nitrate in south polar precipitation[J]. Journal of Geophysical Research, 1990, 95 (D4): 3 493-3 507.
[3]Mayewski P A, Lyons W B, Spencer M J, et al. Sulfate and nitrate concentrations from a south Greenland ice core[J].Science, 1986, 232: 975-977.
[4]Mayewski P A, Lyons W B, Spencer M J, et al. An ice-core record of atmospheric response to anthropogenic sulphate and nitrate[J]. Nature, 1990, 346: 554-556.
[5]Laird C M, Zeller E J, Armstrong T P, et al. Solar activity and nitrate deposition in South Pole snow[J]. Geophysical Research Letter, 1982, 9: 1 195-1 198.
[6]Zeller E J, Parker B C. Nitrate ion in Antarctic firn as a marker for solar activity[J]. [WT6BX]Geophysical Research Letter[WT6BZ], 1981, 8: 895-898.
[7]Qin D H, Zeller E J, Dreschhoff G A M. The distribution of nitrate content in the surface snow of the Antarctic ice sheet along the route of the 1990 international TransAntarctica expedition[J]. Journal of Geophysical Research, 1992, 97 (A5): 6 277-6 284.
[8]Rood R T, Sarazin C L, Zeller E J, et al. X or-rays from supernovae in glacial ice[J]. Nature, 1979, 282: 701-703.
[9]Holdsworth. Evidence for a link between atmospheric thermonuclear detonations and nitric acid[J]. Nature, 1986, 324: 551-553.
[10]McElory M B.Studies of polar ice: Insights for atmospheric chemistry[A]. In: Oeschger H, Langway C C Jr, eds. The Environmental Record in Glaciers and Ice Sheets[C]. Chilchester:1989. 363-377.
[11]Palmer A S. Ice-core evidence for a small solar-source of atmospheric nitrate[J]. Geophysical Research Letters, 2001, 28 (10): 1 953-1 956.
[12]Lee D S, Kohler I, Grobler E, et al. Estimations of global NOx emissions and their uncertainties[J]. Atmospheric Environment, 1997, 31 (12): 1 735-1 749.
[13]Dreschhoff G A M, Zeller E J, Parker B C. Past solar activity variation reflected in nitrate concentrations in Antarctic ice[A]. In: Cormac B M Mc, ed. Weather and Climate Response to Solar Variations [C]. Boulder: Colorado associated University Press, 1983. 225-236. 
[14]Zeller E J, Dreschhoff G A M, Laird C M. Nitrate flux on the Ross Ice Shelf, Antarctica, and its relation to solar cosmic rays[J]. Geophysical Research Letter, 1986, 13: 1 264-1 267.
[15]Dreschhoff G A M, Zeller E J, Qin D, et al. Major solar flares and longterm variability in Antarctic ice cores[J]. Advance in Space Research, 1993, 13 (9): 443-446.
[16]Watanbe K, Satow K, Kamiyama K, et al. Nonseasalt sulfate and nitrate variations in the 25S core, near the coastal region, East Antarctica[J]. Polar Meteorology and Glaciology, 1999, 13: 64-74.
[17]Legrand M R, Stordal F, Isaksen I S A, et al.A model study of the stratospheric budget of odd nitrogen, including effects of solar cycle variations[J]. Tellus, 1989, 41B: 413-426.
[18]Zhang Mingjun(张明军), Ren Jiawen(任贾文), Li Zhongqin(李忠勤), et al. Studies on the variation features of nitrate in a firn core recovered from Princess Elizabeth Land, Antarctica[J]. Progress in Natural Science(自然科学进展), 2003, 13 (6): 72-76(in Chinese).
[19]Legrand M R, Mayewski P A. Glaciochemistry of polar ice cores: A review [J]. Review Geophysics, 1997, 35 (3): 219-243.
[20]Mayewski P A, Legrand M R. Recent increase in nitrate concentration of Antarctic snow [J]. Nature, 1990, 346: 258-260.
[21]Dibb J E, Whitlow S I. Recent climate anomalies and their impact on snow chemistry at South Pole, 1987-1994 [J]. Geophysical Research Letter, 1996, 23: 1 115-1 118.
[22]Solomon S. Progress towards a quantitative understanding of Antarctic ozone depletion [J]. Nature, 1990, 347: 347.
[23]Fahey D W, Kelly K K, Kawa S R, et al. Observation of denitrification and dehydration in the winter polar stratospheres[J]. Nature, 1990, 344: 321-324.
[24]Salawitch R J, Gobbi G P, Wofsy S C, et al. Denitrification in the Antarctic stratosphere [J]. Nature, 1989, 339: 525-527.
[25]Wagenbach D, Legrand M, Fischer H, et al. Atmospheric near-surface nitrate at coastal Antarctic sites[J]. Journal of Geophysical Research, 1998, 103 (D9): 11 007-11 020.
[26]Cole-Dai J H, Mosley-Thompson E, Thompson L G. Quantifying the Pinatubo volcanic signal in south polar snow[J]. Geophysical Research Letter, 1997, 24: 2 679-2 682.
[27]Zhang Mingjun, Li Zhongqin, Qin Dahe, et al. A continuous 250-year record of volcanic activity from Princess Elizabeth Land, Antarctica[J]. Antarctic Science, 2002, 14 (1): 55-60.
[28]Zanolini F, Delmas R J, Legrand M R. Sulfuric and nitric acid concentrations and spikes along a 200m deep ice core at D57 (Terre Adelie, Antarctica)[J]. Annals of Glaciology, 1985, 7: 70-75.
[29]Risbo T, Clausen H B, Rasmussen K L. Supernovae and nitrate in the Greenland ice sheet [J]. Nature, 1981, 294: 637639.
[30]Kyle P, Palais J, Delmas R. The volcanic record of Antarctic ice cores: Preliminary results and potential for future investigations[J]. Annals of Glaciology, 1982, 3: 172-177.
[31]Legrand M, Lorius C, Barkov N I. Vostok (Antarctica) ice core: Atmospheric chemistry change over the last climatic cycle  (160, 000 years)[J]. Atmospheric Environment, 1988, 22 (2): 317-331.
[32]Hanson D R, Ravishankara A R. The reaction probabilities of ClONO2 and N2O5 on 40 to 75% sulfuric acid solutions[J].Journal of Geophysical Research, 1991, 96: 17 307-17 314.
[33]Rodriguez J M, Ko M K W, Sze N D. Role of heterogeneous conversion of N2O5 on sulfate aerosols in global ozone losses[J]. Nature, 1991, 352: 134-137.
[34]Arnold F, Buhrke T, Qiu S. Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon [J]. Nature, 1990, 348: 49-50.
[35]Wolff. Nitrate in ice cores [A]. In: Delmas R, ed. Ice Core Studies of Global Biogeochemical Cycles[C]. NATO ASI Series I, volume 30, New York: Springer-Verlag,  1995. 195-224.
[36]Rothlisberger R, Hutterli M A, Sommer S. Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core[J]. Journal of Geophysical Research, 2000, 105: 20 565-20 572.
[37]Gilmore F R. The production of nitrogen oxides by low altitude nuclear explosions [J]. Journal of Geophysical Research, 1975, 80: 4 553-4 554.
[38]Cadle R D, Kiang C S, Louis J F. The global scale dispersion of the eruption clouds from major volcanic eruptions[J]. Journal of Geophysical Research, 1976, 81: 3 125-3 132.
[39]ColeDai J H, Mosley-Thompson E. The Pinatubo eruption in South Pole snow and its potential value to ice-core paleovolcanic records [J]. Annals of Glaciology, 1999, 29: 99-105.
[40]Borucki W J, Chameides W L. Lightning : Estimates of the rates of energy dissipation and nitrogen fixation [J]. Review of Geophysics and Space Physics, 1984, 22: 363-372.
[41]Garcia R R, Solomon S, Roble R G, et al. A numerical response of the middle atmosphere to the 11-year solar cycle [J]. Planet Space Science, 1984, 32: 411-423.
[42]Neubauer J, Heumann K G. Nitrate trace determinations in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica [J]. Atmospheric Environment, 1988, 22 (3): 537-545.
[43]Legrand M, Leopold A, Domine F. Acidic gases (HCl, HF, HNO3, HCOOH and CH3OOH): A review of ice core data and some preliminary discussion on their airsnow relationships [A]. In: Wolff E, Bales R, eds. Chemical Exchange Between the Atmosphere and Polar Snow [C]. NATO ASI Series I, volume 43,  New York:Springer-Verlag,1996. 19-43.
[44]Wagnon P, Delmas R J, Legrand M. Loss of volatile acid species from upper firn layers at Vostok, Antarctica[J]. Journal of Geophysical Research, 1999, 104 (D3): 3 423-3 431.
[45]Clausen H B, Langway Jr C C. The ionic deposits in polar ice cores [A]. In: Oeschger H, Langway Jr C C, eds. The Environment Record in Glaciers and Ice Sheets, Dahlem Workshop Reports [C]. New York,USA: John Wiley and Sons, 1989. 225-248.
[46]Mulvaney R, Wolff E W. Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores [J]. Journal of Geophysical Research, 1993, 98: 5 213-5 220.
[47]Wagenbach D, Graf W, Minikin A,et al. Reconnaissance of chemical and isotopic firn properties on top of Berker Island, Antarctica [J]. Annals of Glaciology, 1994, 20: 307-312.
[48]Curran M A J, Van Ommen T D, Morgan V. Seasonal characteristics of the major ions in the high accumulation Dome Summit South ice core, Law Dome, Antarctica[J].Journal of Glaciology, 1998, 27: 385-390.
[49]Li Zhongqin, Zhang Mingjun, Qin Dahe, et al.Primary research on the seasonal variations of δ18O,Cl-,NO-3,Na+ and Ca 2+in the snow and firn recovered from Princess Elizabeth Land, Antarctica[J]. Chinese Science Bulletin, 1999, 44 (24): 2 270-2 274.
[50]Mulvaney R, Wagenbach D, Wolff E W. Postdepositional change in snowpack nitrate from observation of year-round near-surface snow in coastal Antarctica[J]. Journal of Geophysical Research, 1998, 103 (D9): 11 021-11 031.
[51]Isaksson E, Karlén W, Mayewski P, et al. A high-altitude snow chemistry records from Amundsenisen, Droning Maud Land, Antarctica [J]. Journal of Glaciology, 2001, 47 (158): 489-496.
[52]Palais J M, Legrand M. Soluble impurities in the Byrd Station ice core, Antarctica: Their orgin and sources[J]. Journal of Geophysical Research, 1985, 90: 1 143-1 154.
[53]Legrand M R, Delmas R J. Soluble impurities in four Antarctic ice cores over the last 30 000 years[J]. Annals of Glaciology, 1988, 10: 116-120.
[54]Mulvaney R, Wolff E W. Spatial variability of the major chemistry of the Antarctic ice sheet[J]. Annals Glaciology, 1994, 20: 440-447.
[55]Herron M M. Impurity sources of F-, Cl- , NO-3 and SO2-4 in Greenland and Antarctic precipitation[J]. Journal of Geophysical Research, 1982, 87: 3 052-3 060.
[56]Graf W, Reinwarth O, Moser H, et al. Isotopic and chemical investigations of 10m firn cores from eastern part of the Ronne Ice Shelf, Antarctica[J]. FRISP Report, 1991, 5: 45-53.
[57]Dibb J E, Talbot R W, Munger J W, et al. Air-snow exchange of HNO3 and NOy at Summit, Greenland[J]. Journal of Geophysical Research, 1998, 103 (D3): 3 475-3 486.
[58]Jones A E, Weller R, Minikin A, et al. Oxidized nitrogen chemistry and speciation in the Antarctic troposphere[J]. Journal of Geophysical Research, 1999, 104 (D17): 21 355-21 366.
[59]Chen Liqi(陈立奇). Review on the Antarctic researches[J]. Advance in Earth Sciences(地球科学进展), 1997, 12 (2): 127-133(in Chinese).
[60]Chen Liqi(陈立奇). A perspective of the integrated studies on role of the Antarctic in the global change[J]. Advance in Earth Sciences(地球科学进展), 2003, 18 (1): 133-137(in Chinese).

[1] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[2] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[3] 柳本立,牛百成,屈建军. 多组复合指纹示踪法及其应用[J]. 地球科学进展, 2019, 34(10): 1092-1098.
[4] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[5] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[6] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[7] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[8] 于宗仁, 王彦武, 王小伟, 赵林毅, 郭青林, 王旭东. 壁画盐害水汽来源研究——以隆兴寺为例[J]. 地球科学进展, 2017, 32(6): 668-676.
[9] 陈京华, 贾文雄 , 赵珍, 张禹舜, 刘亚荣. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
[10] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[11] 王萍, 郑晓静. 非平稳风沙运动研究进展[J]. 地球科学进展, 2014, 29(7): 786-794.
[12] 胡玥, 刘传琨, 卢粤晗, 刘杰, 郑春苗. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10): 1158-1166.
[13] 王春连,刘成林,王立成,张林兵. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976-987.
[14] 翟盘茂, 倪允琪, 陈阳. 我国持续性重大天气异常成因与预报方法研究回顾与未来展望[J]. 地球科学进展, 2013, 28(11): 1177-1188.
[15] 谢永坤, 刘玉芝, 黄建平, 王国印. 雪冰反馈对北半球经向温度梯度的影响[J]. 地球科学进展, 2013, 28(11): 1276-1282.