Please wait a minute...
img img
高级检索
地球科学进展  2014, Vol. 29 Issue (7): 774-785    DOI: 10.11867/j.issn.1001-8166.2014.07.0774
综述与评述     
海底地下水排泄的研究进展
刘花台1, 郭占荣2
1.厦门大学环境与生态学院,福建 厦门361102; 2.厦门大学海洋与地球学院,福建 厦门 361102
A Review on Submarine Groundwater Discharge
Liu Huatai1, Guo Zhanrong2
1.College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; 2.College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
 全文: PDF(1203 KB)   HTML
摘要:

海底地下水排泄(SGD)是全球水循环的一个重要组成部分,是陆—海相互作用的研究热点。首先分析了海底地下水排泄的组成和驱动力,总结了海底地下水排泄的主要评价方法及其优缺点;其次阐述了海底地下水排泄向海洋输送溶解物质的重要作用及其对海洋生态环境的影响,并通过剖析咸淡水混合带的地球化学过程,指出地下河口在研究海底地下水排泄中的重要地位;最后给出未来海底地下水排泄的研究方向。

关键词: 地下河口陆源地下水循环海水通量    
Abstract:

Submarine Groundwater Discharge(SGD), an important part of global water cycle, is recently recognized as a research highlight on the landocean interaction in the coastal zone. Firstly, This paper analyzes the components and driving force of SGD, and summarizes the main estimating methods of SGD and its individual strengths and weaknesses. Secondly, the paper describes the important role of SGD in transporting dissolved mass into the costal ocean and significant impacts on the ecological environment of costal ocean, and through analyzing the biogeochemical process in the mixing zone of freshsalt water, indicates the important position of subterranean estuary in studying submarine groundwater discharge. Finally, the paper points out the major problems currently existing in SGD research, then presents the future research direction.

Key words: Terrestrial fresh groundwater    Recirculated saline seawater    Mass fluxes.    Subterranean estuary
出版日期: 2014-07-10
:  P641  
基金资助:

国家自然科学基金面上项目“海底地下水排泄(SGD)的地球化学过程、物质输送及其对海洋的贡献和影响”(编号:41372242)资助

作者简介: 作者简介:刘花台(1967年生),女,河北石家庄人,副教授,主要从事海岸带水文地质学和环境科学研究.E-mail:lht@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘花台
郭占荣

引用本文:

刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.

Liu Huatai, Guo Zhanrong. A Review on Submarine Groundwater Discharge. Advances in Earth Science, 2014, 29(7): 774-785.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2014.07.0774        http://www.adearth.ac.cn/CN/Y2014/V29/I7/774

[1] F A. Submarine springs: A neglected phenomenon of coastal hydrology[J]. Hydrology, 1966, 26:391-413.
[2] R E. The ecological significance of the submarine discharge of ground water[J]. Marine Ecology Progress Series, 1980, 3:365-373.
[3] H J. Groundwater seepage into Great South Bay, New York[J]. Estuarine and Coastal Marine Science, 1980,10:504-508.
[4] W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380:612-614.
[5] Wei, Zhang Guangxin, Li Ranran. Review of groundwater-surface water interaction in wetland[J]. Advances in Earth Science, 2012, 27(4):413-423.[范伟, 章光新, 李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展,2012, 27(4):413-423.]
[6] Hailong, Wan Li, Jiao Jiujiu. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science, 2011, 26(7):685-694.[李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展,2011, 26(7):685-694.]
[7] W C. Offshore springs and seeps are focus of working group[J]. EOS, American Geophysical Union, 1999, 80: 13-15.
[8] B P, Huettel M, Froster S, et al. Permeable marine sediments: Overturning an old paradigm[J]. EOS, American Geophysical Union, 2001, 82: 133-136.
[9] M J, Burnett W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66: 55-73.
[10] W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods [J]. Science of the Total Environment, 2006, 367: 498-543.
[11] P P, Bokuniewicz H, Burnett W C, et al. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA-UNESCO SGD project [J]. Journal of Environmental Radioactivity, 2008, 99:1 596-1 610.
[12] H, Buddemeier R, Maxwell B, et al. The typological approach to Submarine Groundwater Discharge (SGD)[J]. Biogeochemistry, 2003, 66:145-158.
[13] M, Burnett W C, Cable J E, et al. Investigation of submarine groundwater discharge[J]. Hydrological Processes, 2002, 16: 2 115-2 129.
[14] J, Mandal A K. Linkages between submarine groundwater systems and the environment[J]. Current Opinion in Environmental Sustainability, 2012, 4:219-226.
[15] R N, Burnett W C, Taniguchi M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China[J]. Journal of Geophysical Research: Oceans (1978-2012), 2008, 113:C09021(C9),doi:10.1029/2008JC004776.
[16] H Q, Moore W S, Zhang L, et al. Using radium isotopes to estimate the residence time and the contribution of Submarine Groundwater Discharge (SGD) in the Changjiang effluent plume, East China Sea[J]. Continental Shelf Research, 2012, 35: 95-107.
[17] Q, Dai M, Chen W, et al. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system[J]. Biogeosciences,2012, 9:1 777-1 795.
[18] Zhanrong, Ma Zhiyong, Zhang Bin, et al. Tracing submarine groundwater discharge and associated nutrient fluxes into Jiaozhou Bay by continuous 222Rn measurements[J]. Earth Science—Journal of China University of Geosciences,2013, 38(5):1 073-1 080. [郭占荣, 马志勇, 章斌, 等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J]. 地球科学——中国地质大学学报,2013, 38(5):1 073-1 080.]
[19] Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1):118-125.[郭占荣,黄磊,袁晓婕,等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1):118-125.]
[20] Huatai, Guo Zhanrong, Yuan Xiaojie, et al. Utility of radium isotopes for evaluating residence time and submarine groundwater discharge to Wuyuan Bay[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(3):599-606.[刘花台,郭占荣,袁晓婕,等. 用镭同位素评价海水滞留时间及海底地下水排泄[J].地球科学——中国地质大学学报, 2013, 38(3):599-606.]
[21] K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008,111(3/4):160-170.
[22] N, Du J Z, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra[J]. Science of the Total Environment, 2011, 409:3 909-3 918.
[23] Bin, Guo Zhanrong, Gao Aiguo, et al. Estimating groundwater discharge into Minjiang River estuary based on stable isotopes deuterium and oxygen-18[J]. Advances in Water Science, 2012, 23(4):539-548.[章斌,郭占荣,高爱国,等.用氢氧稳定同位素评价闽江河口区的地下水输入[J].水科学进展, 2012, 23(4):539-548.]
[24] I S, Ivanov V A, Meskheteli A V. The problem of direct groundwater discharge to the seas[J]. Journal of Hydrology, 1973, 20:1-36.
[25] H J. Groundwater seepage into Great South Bay, New York[J]. Estuarine and Coastal Marine Science, 1980, 10:504-508.
[26] W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66: 3-33.
[27] W S. The effect of submarine groundwater discharge on the ocean[J]. The Annual Review of Marine Science, 2010, 2:59-88.
[28] I R, Eyre B D, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: A review[J]. Estuarine, Coastal and Shelf Science, 2012, 98 :1-15.
[29] Hailong, Jiao Jiujiu. Quantifying tidal contribution to submarine groundwater discharges: A review[J]. Chinese Science Bulletin, 2013, doi:10.1007/s11434-013-5951-7.
[30] J C, Poag C W, Valentine P C, et al. U.S. geological survey core drilling on the Atlantic Shelf[J]. Science, 1979, 206:515-525.
[31] Zhenyu. The offshore freshwater exploration in Chengsi, Zhejiang Province[J].Shanghai Geology, 2005, 59(3):16-21.[王振宇. 浙江嵊泗海域海底淡水资源初探[J]. 上海地质, 2005, 59(3):16-21.]
[32] C, Li L, Barry D A. Effect of tidal forcing on a subterranean estuary[J]. Advances in Water Resources, 2007, 30:851-865.
[33] R G, Safronova T I. On estimating chemical discharge into the world ocean with groundwater[J]. Water Resources, 2002, 29(6): 626-631.
[34] D R. A device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22: 140-147.
[35] M, Burnett W C, Smith C F, et al. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico[J]. Biogeochemistry, 2003, 66: 35-53.
[36] R J, Smith C F, O’Rourke D, et al. Development and evaluation of an ultrasonic ground water seepage meter[J]. Ground Water,2001, 39:904-911.
[37] E, Herbold C, Charette M. An automated dye-dilution based seepage meter for the time-series measurement of submarine groundwater discharge[J]. Limnology and Oceanography, 2003, 1:16-28.
[38] J E, Burnett W C, Chanton J P, et al. Field evaluation of seepage meters in the coastal marine environment[J]. Estuarine, Coastal and Shelf Science, 1997, 45: 367-375.
[39] A M. Fresh and saline groundwater discharge to the ocean: A regional perspective[J]. Water Resources Research, 2005, 41, doi:10.1029/2004wr003399.
[40] J A. Hydrogeologic modeling of submarine groundwater discharge: Comparison to other quantitative methods[J]. Biogeochemistry, 2003, 66: 159-169.
[41] I S, Everett L G, Dzhamalov R G. Submarine Groundwater[C]. Boca Raton, FL: CRC Press,2007.
[42] F U T, Herrera-Silveira J A, Aguirre-Macedo M L. Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatan Peninsula[J]. Estuarine, Coastal and Shelf Science, 2008, 76:418-430.
[43] W S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes[J]. Biogeochemistry, 2003, 66:75-93.
[44] W C, Taniguchi M, Oberdorfer J. Measurement and significance of the direct discharge of groundwater into the coastal zone[J]. Journal of Sea Research, 2001, 46:109-116.
[45] W S. Determining coastal mixing rates using radium isotopes[J]. Continent, Shelf Research, 2000,20:1 993-2 007.
[46] W S. Ages of continental shelf waters determined from Ra-223 and Ra-224[J]. Journal of Geophysics Research, 2000,105:22 117-22 122.
[47] J E, Burnett W C, Chanton J P, et al. Estimating groundwater discharge into the north-eastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144:591-604.
[48] M, Burnett W C, Dulaiova H, et al. Groundwater discharge as an important land-sea pathway into Manila Bay, Philippines[J]. Journal of Coastal Research, 2008, 24:15-24.
[49] M A, Moore W S, Burnett W C. Uranium- and thorium-series nuclides as tracers of submarine groundwater discharge[C]∥Krishnaswami S, Cochran J K, eds. U-Th Series Nuclides in Aquatic Systems. Amsterdam: Elsevier, 2008:155-192.
[50] W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1:309-311.
[51] R G, Safronova T I. On estimating chemical discharge into the world ocean with groundwater[J]. Water Resources, 2002, 29(6): 626-631.
[52] A M, Moore W S. Nutrient and radium fluxes from submarine groundwater discharge to Port Royal Sound, South Carolina[J]. Aquatic Geochemistry, 2003, 9:191-208.
[53] G H, Glenn C R. Measurement of submarine groundwater discharge in Kahana Bay, O‘ahu, Hawai‘i[J]. Limnology and Oceanography, 2003, 48(2):920-928.
[54] M A, Buesseler K O. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River)[J]. Limnology and Oceanography, 2004, 49:376-385.
[55] W S. The effects of groundwater input at the mouth of the Ganges-Brahmaputra Rivers on barium and radium fluxes to the Bay of Bengal[J]. Earth and Planetary Science Letters, 1997, 150:141-150.
[56] T J, Moore W, Kloepfer J, et al. The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge[J]. Geochimica et Cosmochimica Acta, 1998, 62:3 047-3 054.
[57] A R, Jacobsen S B, Poreda R J, et al. Large groundwater strontium flux to the oceans from the Bengal basin and the marine strontium isotope record[J]. Science, 2001, 293:1 470-1 473.
[58] I T, Wang C H, You C F, et al. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan[J]. Marine Chemistry, 2010,122:51-58.
[59] T, Shaw T J. The mobility of rare earth elements and redox sensitive elements in the ground-water/seawater mixing zone of a shallow coastal aquifer[J]. Aquatic Geochemistry, 2003, 9:233-255.
[60] S E, Charette M A, Lamborg C H, et al. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?[J]. Environmental Science & Technology, 2007, 41:3 090-3 095.
[61] J H, Fitzwater S. Iron deficiency limits phytolankton growth in the northeast Pacific subarctic[J]. Nature, 1988,331:341-343.
[62] R A, Tindale N W. Atmosheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 1991, 36:1 715-1 726.
[63] H L, Moore W S, Niencheski L F H, et al. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean[J]. Marine Chemistry, 2006, 102:252-266.
[64] J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state[J]. Global Biogeochemistry Cycles, 1993, 7:927-957.
[65] K H, Burdige D J. Balancing the global oceanic neodymium budget: Evaluating the role of groundwater[J]. Earth and Planetary Science Letters, 2007,253:129-142.
[66] W J, Wang Y C, Krest J, et al. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean[J]. Geochimica et Cosmochimica Acta, 2003, 67:631-639.
[67] M A, Gardner L R. Seasonal dynamics in dissolved organic carbon concentrations in a coastal water-table aquifer at the forest-marsh interface[J]. Aquatic Geochemistry, 2003, 9:209-232.
[68] W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111, doi:10.1029/2005jc003041.
[69] I R, Burnett W C, Dittmar T, et al. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary[J]. Geochimica et Cosmochimica Acta, 2009,73:1 325-1 339.
[70] M, Yin Z, Meng F, et al. Spatial distribution of riverine DOC inputs to the ocean[J]. Current Opinion in Environmental Sustainability, 2012, 4: 170-178.
[71] F A. The flow of fresh water and salt water in the Biscayne Bay Aquifer of the Miami area, Florida[C]∥Seawater in Coastal Aquifers, U.S. Geological Survey, Water Supply Paper. 161G-C, Washington, DC, 1964:12-32.
[72] F A, Kolipinski M C. Biological zonation related to groundwater discharge along the shore of Biscayne Bay, Miami, Florida[C]. Estuaries, Jekyll Island, GA,1967.
[73] J A. Terrestrial inputs of nitrogen and phosphates on fringing reefs on Guam[C]∥Proceedings of Third International Coral Reef Symposium. Miami, Florida, 1977.
[74] C F, Webb K L, Porter J W. Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: A sig-nificant source of N to local reefs?[J].Bulletin of Materials Science, 1981, 31:903-910.
[75] A, Shellenbarger G G, Street J H, et al. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems[J]. Limnology and Oceanography,2006,51:343-348.
[76] B E, O’connell J D. Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem[J]. Estuarine, Coastal and Shelf Science,1989, 28:347-360.
[77] J, Nuzzi R,Waters R, et al. Brown tide blooms in Long Island’s coastal waters linked to interannual variability in groundwater flow[J].Global Change Biology, 1997,3:397-341.
[78] Y W, Kim G. Linking groundwater borne nutrients and dinoflagellate red tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71: 309-317.
[79] Y W, Kim G, Lim W A, et al. A relationship between submarine groundwater-borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea [J]. Limnology and Oceanography, 2010, 55:1-10.
[80] C P, Van Cappellen P. Nutrient inputs to the coastal ocean through submarine groundwater discharge: Controls and potential impact[J]. Journal of Hydrology,2004, 295:64-86.
[81] W S. The subterranean estuary: A reaction zone of groundwater and sea water[J]. Marine Chemistry, 1999, 65: 111-125.
[82] I S, Burnett W C, Misra S, et al. Uranium and barium cycling in a salt wedge subterranean estuary: The influence of tidal pumping[J]. Chemical Geology, 2011, 287:114-123.
[83] A E, Evans R L, Lizarralde D. The role of paleochannels in groundwater/seawater exchange[J]. Journal of Hydrology, 2007, 335:313-329.
[84] H, Walter R C, Grant D R. The coastal oasis: Ice age springs on emerged continental shelves[J]. Global and Planeary Change, 2002, 33:47-56.
[85] B B, Back W. A geochemical hypothesis for dolomitization by groundwater[J]. Environmental Geology, 1971,66:710-724.
[86] W, Hanshaw B B, Pyler T E, et al. Geochemical significance of groundwater discharge in Caleta Xel Ha, Quintana Roo, Mexico[J]. Water Resources Research, 1979, 15:1 521-1 535.
[87] P A, Kastner M. Constraints on the formation of sedimentary dolomite[J]. Science, 1981, 213:214-216.
[88] C J, Santos I R, Barcellos R, et al. Elevated concentrations of dissolved Ba, Fe and Mn in a mangrove subterranean estuary[J]. Continental Shelf Research, 2012, 43:86-94.
[89] S, Suzumura M, Sumi E. Denitrification in a seashore sandy deposit influenced by groundwater discharge[J]. Biogeochemistry, 2003, 63:187-205.
[90] M A, Sholkovitz E R, Hansell C M. Trace element cycling in a subterranean estuary: Part 1. Geochemistry of the permeable sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69:2 095-2 109.
[91] M A, Shokovitz E R. Trace element cycling in a subterranean eastury: Part 2. Geochemistry of the pore water[J]. Geochimica et Cosmochimica Acta, 2006, 70:811-826.
[92] A J, Tsukamoto Y, Tovar-Sanchez A. Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes[J]. Applied Geochemistry, 2007, 22:477-490.
[93] C, Slomp C P, Charette M A, et al. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2008, 72:3 398-3 412.
[94] M E, Morris P J. New perspectives on radium behavior within a subterranean estuary[J]. Marine Chemistry, 2008, 109: 250-267.
[95] I R, Burnett W C, Chanton J, et al. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean[J]. Limnology and Oceanography, 2008, 53(2):705-718.
[96] M A, Sholkovitz E R. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29, doi:10.1029/2001GL014512.
[97] H, Niencheski F. Biogeochemical processes in a freshwater-seawater mixing zone in permeable sediments along the coast of Southern Brazil[J]. Marine Chemistry, 2003, 81:121-130.
[98] S J, Currie B, Bakun A, et al. Hydrogen sulfide eruptions in the Atlantic Ocean off southern Africa: Implications of a new view based on Sea WiFS satellite imagery[J]. Deep-Sea Research, 2004, 51:153-172.
[99] J B, Hartl K M, Corbett D R, et al. A multi-level pore-water sampler for permeable sediments[J]. Journal of Sedimentary Research, 2003, 73(1):128-132.
[100] G A. Editor’ s message: Submarine groundwater discharge studies and the absence of hydrogeologists[J]. Hydrogeology Journal, 2008, 16: 201-204.
[1] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[2] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[3] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[4] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[5] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[6] 李玉红, 詹力扬, 陈立奇. 北冰洋CH4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[7] 刘泽栋, 万修全, 刘福凯. 海底地热通量对海洋深层温度和环流的长期影响[J]. 地球科学进展, 2014, 29(10): 1167-1174.
[8] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[9] 张麋鸣,陈立奇,汪建君. 南大洋二甲基硫海—气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015-1024.
[10] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[11] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[12] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[13] 朱明佳, 赵谦益, 刘绍民, 徐同仁. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013, 28(12): 1313-1325.
[14] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[15] 周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125.