地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 810 -825. doi: 10.11867/j.issn.1001-8166.2021.065

青藏高原复杂地表蒸散发及其对水塔效应影响 上一篇    下一篇

喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析
王俏懿 1( ),马耀明 1, 2, 3, 4( ),王宾宾 2, 3,左洪超 1   
  1. 1.兰州大学大气科学学院,甘肃 兰州 730000
    2.中国科学院青藏高原环境变化与地表过程重点 实验室,中国科学院青藏高原研究所,北京 100101
    3.中国科学院大学,北京 100101
    4.中国科学院青藏高原地球科学卓越创新中心,北京 100101
  • 收稿日期:2021-01-29 修回日期:2021-05-17 出版日期:2021-08-10
  • 通讯作者: 马耀明 E-mail:wangqy18@lzu.edu.cn;ymma@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金项目“泛第三极地区多圈层地气相互作用过程及其影响区域能量和水分循环的机制研究”(91837208);中国科学院战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”子课题“西风—季风断面上陆气相互作用和水热变化及其对周边的影响”(XDA20060101)

Comparative Analysis of Surface Energy Flux and Evapotranspiration over the Northern and Southern Slopes of the Himalayas

Qiaoyi WANG 1( ),Yaoming MA 1, 2, 3, 4( ),Binbin Wang 2, 3,Hongchao Zuo 1   

  1. 1.College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,China
    2.Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Chinese Academy of Sciences,Beijing 100101,China
    3.University of Chinese Academy of Sciences,Beijing 100101,China
    4.The Center for Excellence in Tibetan Plateau Earth Science,Chinese Academy of Science,Beijing 100101,China
  • Received:2021-01-29 Revised:2021-05-17 Online:2021-08-10 Published:2021-09-22
  • Contact: Yaoming MA E-mail:wangqy18@lzu.edu.cn;ymma@itpcas.ac.cn
  • About author:WANG Qiaoyi (1995-), female, Wuwei City, Gansu Province, Master student. Research areas include earth-atmosphere interaction. E-mail: wangqy18@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Study on the multi-layer earth-atmosphere interaction process and its influence mechanism on regional energy and water circulation in the Pan-Third Pole region"(91837208);The Strategic Priority Research Program of the Chinese Academy of Sciences Sub-project of "Pan-Third Pole environmental change and Green Silk Road Construction"— "land-atmosphere interaction and hydrothermal variation in the westerly-monsoon section and their influence on the surrounding area"(XDA20060101)

基于2016年喜马拉雅北坡(那曲站、珠峰站、慕士塔格站)和南坡(Kirtipur站、Simara站、Tarahara站)6个站点的观测资料,对比分析各个站点的地表热通量交换特征及其蒸散发量的差异,并利用土壤热通量的计算方法[土壤温度预报校正法(TDEC)]计算土壤热通量,在此基础上分析各站地表能量平衡闭合度。有助于深入了解喜马拉雅南北坡地区近地层的能量交换和物质输送过程的异同,为研究喜马拉雅南北坡区域气候提供参考。研究结果表明:喜马拉雅北坡地区的下垫面加热方式是感热交换占主导地位,而南坡地区以潜热交换为主;南北坡之间地表辐射平衡各分量差异明显,短波辐射北坡地区高于南坡,而长波辐射则是南坡高于北坡,冬季南坡净辐射较高,其他季节南北坡差异不大;地表反照率均呈现典型的“U”型日变化特征,北坡地区反照率达0.25~0.40,南坡地区的反照率均在0.1~0.2,北坡反照率大于南坡;那曲站、珠峰站、慕士塔格站、Kirtipur站、Simara站和Tarahara站的能量平衡闭合率分别为85.1 % 、51.2 % 、53.5 % 、64.3 % 、65.6 % 和68.2 % ,总体来看南坡地区能量闭合程度大于北坡地区;各站蒸散发有显著的季节变化特征,均表现为夏季最强,秋季和春季次之,冬季最小,北坡地区除那曲站外各站点月累计蒸散发量低于南坡。

Based on the observation data of Nagqu Station, Qomolangma Station and Muztagh Station on the northern slope,and Kirtipur Station, Simara Stationand Tarahara Station on the southern slope of the Himalayas in 2016, the characteristics of land-atmosphere interaction and evapotranspiration in the six stations were compared and analyzed. The soil temperature forecast correction method (TDEC) was used to calculate the soil heat flux, which can help to analyze the surface energy balance closure ratio of each station. This study shows thesignificance in understanding the surface layer energy exchange and material transportation in the surface layer of the northern and southern slopes of the Himalayas, which can provide a reference for the study of regional climate. The results show that the surface heating on the northern slope of the Himalayas is dominated by sensible heat flux while in the southern slope area it is dominated by the latent heat flux. The surface radiation balance components between the north and south slopes show significant difference: the shortwave radiation on the north slope is higher than that on the south slope; the long-wave radiation washigher on the southern slope than that on the northern slope; the net radiation on the southern slope ishigher in winter, and there islittle difference between the northern and southern slopes in other seasons; the surface albedo shows a typical "U"-shaped diurnal variation feature, with albedo values of 0.25~0.40 on the northern slope and 0.1~0.2 on the southern slope, and the energy balance closure rates of Nagqu Station, Qomolangma Station, Muztagh Station, Kirtipur Station, Simara Station and Tarahara Station are 85.1%, 51.2%, 53.5%, 64.3%, 65.6%, 68.2%, respectively. Generally, the energy closure ratio of each stationin the southern slope area is better than that in the northern slope area; the evapotranspiration shows significant seasonal variations, with the highest value in summer, followed by autumn and spring, and the smallest value in winter. The cumulative monthly evapotranspiration of each station in the northern slope area except Nagqu Station is less than that in the southern slope area.

中图分类号: 

图1 喜马拉雅山脉南部和北部6个站点位置及各个站点的仪器设置
Fig. 1 The locations of six stations in the south and north of the Himalayas and the installation of instruments at each station
表1 喜马拉雅山脉南部和北部 6个观测台站基本情况
Table 1 The basic information of six observatories in the southern and northern Himalayas
表2 2016年喜马拉雅北坡地区 3个站点的气温、土壤含水量( 10 cm)均值及月降水量
Table 2 Monthly average values of air temperature, soil moisture (10 cm), and monthly precipitation at three sites in the north slope region of the Himalayas in 2016
表3 2016年喜马拉雅南坡地区3个站点的气温、土壤含水量( 10 cm)均值及月降水量
Table 3 Monthly average values of air temperature, soil moisture (10 cm), and monthly precipitation at three sites in the south slope region of the Himalayas in 2016
表4 2016年喜马拉雅北坡地区 3个站点的地表热通量、净辐射以及波文比月平均值
Table 4 Monthly average values of surface heat flux, net radiance, and Bowen ratio at three sites in the north slope region of the Himalayas in 2016
表5 2016年喜马拉雅南坡地区 3个站点的地表热通量、净辐射以及波文比月平均值
Table 5 Monthly average values of surface heat flux, net radiance, and Bowen ratio at three sites in the south slope region of the Himalayas in 2016
图2 2016年喜马拉雅山脉南部和北部各站地表热通量各月平均日变化
Fig. 2 Monthly diurnal patterns of surface heat flux at each site in the southern and northern Himalayas in 2016
图3 2016年喜马拉雅山脉南部和北部各站点地表辐射平衡各分量季节变化
(a)太阳总辐射;(b)地表反射辐射;(c)大气逆辐射;(d)向上长波辐射;(e)净辐射;缺少的柱形表示数据缺失
Fig. 3 Seasonal variation of surface radiation balance components at each site in the southern and northern Himalayas in 2016
(a) Total solar radiation; (b) Surface reflected radiation; (c) Atmospheric inverse radiation;(d) Atmospheric long-wave radiation;(e) Net radiation;missing bars indicate the data gap
图4 2016年喜马拉雅山脉南部和北部各站点地表反照率月平均日变化
Fig. 4 Monthly diurnal patterns of surface albedo at each site in the southern and northern Himalayas in 2016
图5 2016年喜马拉雅山脉南部和北部各站点地表反照率总体平均的日变化特征
Fig. 5 The overall average daily change of the surfacealbedo of each site in the southern and northern Himalayas in 2016
图6 2016年喜马拉雅山脉南部和北部各站点的能量闭合度
(a)那曲站;(b)珠峰站(包括2013年数据);(c)慕士塔格站;(d)Kirtipur站;(e)Simara站;(f)Tarahara站
Fig. 6 Energy balance closure of each site in the southern and northern Himalayas in 2016
(a) Naqu station; (b) Qomolangma station (including data for 2013); (c) Muztagh station; (d) Kirtipur station; (e) Simara station; (f) Tarahara station
表6 2016年喜马拉雅山脉南部和北部各站能量平衡线性回归系数及能量闭合率
Table 6 Ordinary linear regression coefficients and energybalance ratio of energy balance closure for each site in the southern and northern Himalayas in 2016
表7 2016 年喜马拉雅山脉南部和北部各站的蒸散发月累积量 (mm)
Table 7 Monthly cumulative evapotranspiration of each site in the southern and northern Himalayas in 2016
图7 2016年喜马拉雅山脉南部和北部各站蒸散发的季节变化
间断的线表示数据缺失
Fig. 7 Seasonal patterns of evapotranspirationET of each site in the southern and northern Himalayas in 2016
incomplete lines indicate the data gap
1 LIU Hongnian, XU Yumao, ZHANG Ning, et al. Introduction to atmospheric science[M]. Nanjing: Nanjing University Press,2019.
刘红年,徐玉貌,张宁, 等. 大气科学概论[M].南京:南京大学出版社,2019.
2 DICK R E, ZUO Hongchao. Land-atmosphere interaction[J]. Atmospheric Intelligence,1996, 16(112):83-88.
DICK R E, 左洪超.陆—气相互作用[J].大气情报,1996, 16(112):83-88.
3 GENTINE P, ENTEKHABI D, HEUSINKVELD B. Systematic errors in ground heat flux estimation and their correction[J].Water Resources Research,2012: 48:1-15.
4 XU T, BATENI S M, LIANG S, et al. Estimation of surface turbulent heat fluxes via variational assimilation of sequences of land surface temperatures from geostationary operational environmental satellites[J]. Journal of Geophysical Research:Atmospheres,2014, 119:10 780-10 798.
5 SCHMID H P, CLEUGH H A, GRIMMOND C S B, et al. Spatial variability of energy fluxes in suburban terrain[J]. Bound-Layer Meteorology, 1991,54:249-276.
6 BERINGER J, TAPPER N. Surface energy exchanges and interactions with thunderstorms during the Maritime Continent Thunderstorm Experiment (MCTEX)[J]. Journal of Geophysical Research:Atmospheres,2002,107:1-13.
7 MA Yaoming,ZHONG Lei,TIAN Hui,et al. Study on the regional land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau area[J]. Journal of Remote Sensing, 2006,10(4):112-117.
马耀明,仲雷,田辉,等.青藏高原非均匀地表区域能量通量的研究[J].遥感学报,2006,10(4):112-117.
8 MA Yaoming,YAO Tandong,WANG Jiemin,et al. The study on the land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau[J]. Advances in Earth Science, 2006,21(12):6-14.
马耀明,姚檀栋,王介民,等.青藏高原复杂地表能量通量研究[J].地球科学进展,2006,21(12):6-14.
9 XU Ziwei,LIU Shaomin,GONG Lijuan,et al. A study on the data processing and quality assessment of the Eddy Covariance System[J]. Advances in Earth Science, 2008,23(4):357-370.
徐自为,刘绍民,宫丽娟,等.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展,2008,23(4):357-370.
10 YAO Tianci,LU Hongwei,YU Qing, et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546.
姚天次,卢宏玮,于庆,等.近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展,2020,35(5):534-546.
11 TAO Shiyan,CHEN Lianshou,XU Xiangde,et al. Theoretical research progress of the second Qinghai-Tibet Plateau atmospheric science experiment (1)[M]. Beijing: Meteorological Press, 1999.
陶诗言,陈联寿,徐祥德,等.第二次靑藏高原大气科学试验理论研究进展(一)[M].北京:气象出版社,1999.
12 HU Yinqiao,GAO Youxi,WANG Jiemin, et al. Some achievements in scientific research during HEIFE[J]. Plateau Meteorology,1994, 13(3): 225-236.
胡隐樵,高由禧,王介民,等.黑河试验(HEIFE)的一些研究成果[J].高原气象,1994, 13(3): 225-236.
13 WANG Jiemin. Land surface process experiments and interaction study in China—from HEIFE to imgrass and GAME TIBET/TIPEX[J]. Plateau Meteorology,1999,18(3):280-294.
王介民.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J].高原气象,1999,18(3):280-294.
14 XU X, ZHANG R, KOIKE T, et al. A new integrated observational system over the Tibetan Plateau[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1 492-1 496.
15 MA Y, KANG S, ZHU L, et al. Tibetan observation and research platform-atmosphere-land interaction over a heterogeneous landscape[J]. Bulletin of American Meteorological Society, 2008, 89: 1 487-1 492.
16 ZHAO P, XU X, CHEN F, et al. The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of American Meteorological Society, 2018, 99(4):757-776.
17 ZHONG Lei, MA Yaoming, SU Zhongbo, et al. Atmospheric turbulence and land-atmosphere energy transfer characteristics in the surface layer of the Northern Slope of Mt.Qomolangma area [J]. Advances in Earth Science, 2006,21(12):1 293-1 303.
仲雷,马耀明,苏中波,等.珠峰北坡地区近地层大气湍流与地气能量交换特征[J].地球科学进展,2006,21(12): 1 293-1 303.
18 LI Hongyi, XIAO Ziniu, ZHU Yuxiang.Variation characteristics of the surface turbulent flux and the components of radiation balance over the grassland in the southeastern Tibetan Plateau[J]. Plateau Meteorology,2018,37(4): 923-935.
李宏毅,肖子牛,朱玉祥.藏东南地区草地下垫面湍流通量和辐射平衡各分量的变化特征[J].高原气象,2018,37(4):923-935.
19 YAN Xiaoqiang, HU Zeyong, SUN Genhou. Characteristics of long-term surface heat source and its climate influence factors in Nagqu alpine meadow[J]. Plateau Meteorology,2019, 38(2):253-263.
严晓强,胡泽勇,孙根厚.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象,2019,38(2):253-263.
20 JOSHI B B,MA Y,MA W,et al. Seasonal and diurnal variations of carbon dioxide and energy fluxes over three land cover types of Nepal[J]. Theoretical and Applied Climatology,2019,139(1/2). DOI:10.1007/s00704-019-02988-7.
doi: 10.1007/s00704-019-02988-7    
21 WANG Weizhen,XU Ziwei, LIU Shaomin,et al. The characteristics of heat and water vapor fluxes over different surfaces in the Heihe River Basin [J]. Advances in Earth Science, 2009,24(7):714-723.
王维真,徐自为,刘绍民,等.黑河流域不同下垫面水热通量特征分析[J].地球科学进展,2009,24(7):714-723.
22 FOKEN T H, WICHURA B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology,1996,78(1). DOI:10.1016/0168-1923(95)02248-1.
doi: 10.1016/0168-1923(95)02248-1    
23 SCHOTANUS P, NIEUWSTADT F T M, BRUIN H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J]. Boundary-Layer Meteorology,1983,26(1). DOI:10.1007/BF00164332.
doi: 10.1007/BF00164332    
24 WILCZAK J M S P. Stage sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology,2001,99(1). DOI:10.1023/A:1018966204465.
doi: 10.1023/A:1018966204465    
25 MAUDER M, FOKEN T. Documentation and instruction manual of the eddy covariance software package TK3[Z]. Universit?t Bayreuth , Abteilung Mikrometeorologie,2011.
26 FOKEN T, G?OCKEDE M, MAUDER M, et al. Post-field data quality control [M]//Handbook of Micrometeorology. Springer, 2004: 181-208.
27 MAUDER M, CUNTZ M, DRüE C, et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements[J]. Agricultural and Forest Meteorology,2013,169:122-135.
28 YANG Kun,WANG Jiemin. A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J]. Science in China (Series D),2008,38(2):243-250.
阳坤,王介民.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学:D辑,2008,38(2):243-250.
29 YANG Jian,MA Yaoming. Soil temperature and moisture features of typical underlying surface in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2012,34(4):813-820.
杨健,马耀明.青藏高原典型下垫面的土壤温湿特征[J].冰川冻土,2012,34(4):813-820.
30 WANG Yongsheng, SHENG Peixuan, LIU Shida, et al. Atmospheric physics[M].Beijing:Meteorological Press,1987:222-223.
王永生, 盛裴轩, 刘式达, 等.大气物理学[M].北京:气象出版社,1987: 222-223.
31 BOWEN I S. The ratio of heat losses by conduction and by evaporation from any water surface[J]. Physical Review,1926,27(6):779-787.
32 CAI Fu,ZHU Qinglin,HE Honglin,et al. Estimation and spatio-temporal distribution of monthly mean surface Albedo in China[J]. Resources Science,2005,27(1):114-120.
蔡福,祝青林,何洪林,等.中国月平均地表反照率的估算及其时空分布[J].资源科学,2005,27(1):114-120.
33 SUN Jun,HU Zeyong,XUN Xueyi,et al. Albedo characteristics in different underlying surfaces in midand upper-reaches of HEIFE and its impact fator analysis[J]. Plateau Meteorology,2011,30(3):607-613.
孙俊,胡泽勇,荀学义,等.黑河中上游不同下垫面反照率特征及其影响因子分析[J].高原气象,2011,30(3):607-613.
34 MA Weiqiang,MA Yaoming,HU Zeyong, et al. Analyses on surface radiation budget in Northern Tibetan Plateau[J]. Plateau Meteorology,2004,23(3):348-352.
马伟强,马耀明,胡泽勇,等.藏北高原地面辐射收支的初步分析[J].高原气象,2004,23(3):348-352.
35 LI Guoping, XIAO Jie. Diurnal variation of surface albedo and relationship between surface albedo and meteorological factors on the western Qinghai-Tibet Plateau[J]. Science Geographica Sinica,2007,27(1):63-67.
李国平,肖杰.青藏高原西部地面反射率的日变化以及与若干气象因子的关系[J].地理科学,2007,27(1):63-67.
36 ZHOU Ganlin,LI Yaohui,SUN Xuying,et al. Characteristics of surface energy fluxes over different types of underlying surfaces in North China[J]. Arid Meteorology,2019,37(4):577-585.
周甘霖,李耀辉,孙旭映,等.我国北方不同下垫面地表能量通量的变化特征[J].干旱气象,2019,37(4):577-585.
37 ZHOU Yanzhao,LI Xin.Progress in the energy closure of eddy covariance systems[J]. Advances in Earth Science, 2018,33(9):898-913.
周彦昭,李新.涡动相关能量闭合问题的研究进展[J].地球科学进展,2018,33(9):898-913.
38 MA Yaoming, TSUKAMOTO OSAMU, WU Xiaoming, et al. Near-surface energy transport and micro-meteorological characteristics of the underlying surface of meadow in the northern Tibet Plateau[J]. Chinese Journal of Atmospheric Sciences,2000,24(5):715-722.
马耀明,塚本修,吴晓鸣,等.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学,2000,24(5):715-722.
39 LI Maoshan,DAI Youxue,MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over Mount Qomolangma region [J]. Plateau Meteorology,2006,25(5):807-813.
李茂善,戴有学,马耀明,等.珠峰地区大气边界层结构及近地层能量交换分析[J].高原气象,2006,25(5):807-813.
40 ZHONG Lei,MA Yaoming,LI Maoshan. An analysis of atmosphere turbulence and energy transfer characteristics of surface layer over Rongbu Valley in Mt.Qomolangma area[J]. Chinese Journal of Atmospheric Sciences,2007,31(1):48-56.
仲雷,马耀明,李茂善.珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J].大气科学,2007,31(1):48-56.
41 HU Yuanyuan, ZHONG Lei, MA Yaoming, et al. Model estimation and validation of the surface energy fluxes at typical underlying surfaces over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology,2018,37(6): 1 499-1 510.
胡媛媛,仲雷,马耀明,等,2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象,2018,37(6): 1 499-1 510.
42 Lü Zhao, LI Maoshan, LIU Xiaoran, et al. Characteristics of surface energy exchange in Mount Emei area on the Eastern Qinghai-Tibetan Plateau in winter[J]. Plateau Meteorology, 2020,39(3):445-458.
吕钊,李茂善,刘啸然,等.青藏高原东 缘峨眉山地区冬季地表能量交换特征研究[J].高原气象,2020,39(3):445-458.
43 LOON W K P VAN, BASTINGS H M H, MOORS E J. Calibration of soil heat flux sensors[J]. Agricultural and Forest Meteorology,1998,92(1). DOI:10.1016/s0168-1923(98)00090-2.
doi: 10.1016/s0168-1923(98)00090-2    
44 ZHANG Qiang, LI Hongyu, ZHAO Jianhua. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau[J]. Suentia Sinica Earth Sciences, 2012,42(1):42-51.
张强,李宏宇,赵建华.垂直平流输送和土壤热储存补偿对黄土高原地表能量平衡的修正[J].中国科学:地球科学,2012,42(1):42-51.
45 TIAN Hui, Wen Jun, MA Yaoming, et al. Estimation of summer evapotranspiration using satellite remote sensing data over the Heihe River Basin[J]. Advances in Water Science,2009,20(1):18-24.
田辉,文军,马耀明,等.夏季黑河流域蒸散发量卫星遥感估算研究[J].水科学进展,2009,20(1):18-24.
46 MA Yaoming, WANG Jiemin. A survey in the study of area evaporation(evapotranspiration) over the heterogeneous land surface[J]. Plateau Meteorology,1997,16(4):111-117.
马耀明,王介民.非均匀陆面上区域蒸发(散)研究概况[J].高原气象,1997,16(4):111-117.
47 ZOU Mijun. Estimation of evapotranspiration by satellite remote sensing under whole sky conditions over the Tibetan Plateau[D]. Anhui: University of Science and Technology of China,2020.
邹宓君.青藏高原全天空条件下蒸散量卫星遥感估算研究[D].安徽:中国科学技术大学,2020.
[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[3] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[4] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[5] 尹剑, 占车生, 顾洪亮, 王飞宇. 基于水文模型的蒸散发数据同化实验研究[J]. 地球科学进展, 2014, 29(9): 1075-1084.
[6] 张荣华, 杜君平, 孙睿. 区域蒸散发遥感估算方法及验证综述[J]. 地球科学进展, 2012, 27(12): 1295-1307.
[7] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[8] 鱼腾飞,冯起,司建华,席海洋,陈丽娟. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1260-1268.
[9] 刘波,翟建青,高超,姜彤,王艳君. 基于实测资料对日蒸散发估算模型的比较[J]. 地球科学进展, 2010, 25(9): 974-980.
[10] 王旭峰,马明国. 基于LPJ模型的制种玉米碳水通量模拟研究[J]. 地球科学进展, 2009, 24(7): 734-740.
阅读次数
全文


摘要