[1]Stocker T F, Raible C C. Climate change water cycle shifts gear[J]. Nature, 2005, 434:830-833. [2]Houghton J T, Jenkins G J, Ephrayms J J. Climate Change: The IPCC Scientific Assessment[M]. Cambridge: Cambridge University Press, 1990. [3]Yu G R, Wen X F, Sun X M, et al. Overview of China FLUX and evaluation of its eddy covariance measurement[J]. Agricultural and Forest Meteorology, 2006, 137:125-137. [4]Yunusa I A M, Walker R R, Lu P. Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia[J]. Agricultural and Forest Meteorology,2004, 127: 93-107. [5]Nizinski J, Morand D, Fournier C. Actual evapotranspiration of a thorn scrub with Acacia tortilis and Balanites aegyptiaca (North Senegal)[J]. Agricultural and Forest Meteorology,1994, 72: 93-111. [6]Omar M H, Mehanna A M. Measurements and estimates of potential evapotranspiration over Egypt[J]. Agricultural and Forest Meteorology, 1984, 31: 117-129. [7]Teixeira A H de C, Bastiaanssen W G M, Ahmad M D, et al. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River Basin, Brazil Part B: Application to the regional scale[J]. Agricultural and Forest Meteorology, 2009, 149: 477-490. [8]Dobrowski S Z, Abatzoglou J T, Greenberg J A, et al. How much influence does landscape-scale physiography have on air temperature in a mountain environment?[J].Agricultural and Forest Meteorology,2009, 149(10): 1 751-1 758. [9]Alton P B, North P. Interpreting shallow, vertical nitrogen profiles in tree crowns: A three-dimensional, radiative-transfer simulation accounting for diffuse sunlight[J].Agricultural and Forest Meteorology,2007, 145:110-124. [10]Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J].Agricultural and Forest Meteorology,2008, 148: 1 034-1 044. [11]Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J].Nature,2010, 467: 951-954. [12]Si Jianhua, Feng Qi, Zhang Xiaoyou, et al. Research progress on surveying and calculation of evapotranspiration of plants and its prospects[J]. Advances in Water Science,2005, 16(3): 450-459.[司建华, 冯起, 张小由, 等. 植物蒸散耗水量测定方法研究进展[J]. 水科学进展, 2005, 16(3): 450-459.] [13]Xin Xiaozhou, Tian Guoliang, Liu Qinhuo. A review of researches on remote sensing of land surface evapotranspiration[J].Journal of Remote Sensing,2003, 7(3): 233-240.[辛晓洲, 田国良, 柳钦火. 地表蒸散定量遥感的研究进展[J].遥感学报, 2003, 7(3): 233-240.] [14]Guo Xiaoyin, Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research[J]. Advances in Earth Science, 2004, 19(1): 107-114.[郭晓寅, 程国栋. 遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004, 19(1): 107-114.] [15]Deng Fangping, Liu Chuang, Su Gaoli. A review of remote sensing of regional evapotranspiration[J]. Bulletin of Science and Technology, 2008, 24(4): 465-472.[邓芳萍, 刘闯, 苏高利. 区域蒸散的遥感研究进展[J]. 科技通报, 2008, 24(4): 465-472.] [16]Li Z L, Tang R, Wan Z, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors,2009, 9(5): 3 801-3 853. [17]Dorigo W, Zuritamilla R, Dewit A, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(2): 165-193. [18]Drexler J Z, Snyder R L, Spano D, et al. A review of models and micrometeorological methods used to estimate wetland evapotranspiration[J]. Hydrological Processes, 2004, 18(11): 2 071-2 101. [19]Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J]. Progress in Natural Science, 2007, 17(2): 163-173.[李新, 黄春林, 车涛, 等.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.] [20]Todd R W, Evett S R, Howell T A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment[J]. Agricultural and Forest Meteorology,2000, 103:335-348. [21]Wu Jiabing, Guan Dexin, Zhang Mi, et al. Comparison of eddy covariance and BREB methods in determining forest evapotranspiration—Case study on broad-leaved Korean pine forest in Changbai Mountain[J]. Chinese Journal of Ecology, 2005, 24 (10) : 1 245-1 249.[吴家兵, 关德新, 张弥, 等.涡动相关法与波文比—能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例[J]. 生态学杂志, 2005, 25(10): 1 245-1 249.] [22]Coops N, Black T, Jassal R, et al. Comparison of MODIS, eddy covariance determined and physiologically modelled Gross Primary Production (GPP) in a Douglas-fir forest stand[J].Remote Sensing of Environment,2007, 107(3):385-401. [23]Friedl M A, Davis F W, Michaelsen J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables an analysis using a scene simulation model and data from FIFE[J]. Remote Sensing of Environment, 1995, 54: 233-246. [24]Pamela L N, James C, Edward G, et al. Predicting riparian evapotranspiration from MODIS vegetation indeces and meteorological data[J]. Remote Sensing of Environment, 2005, 94: 17-30. [25]Zhang J, Hu Y, Xiao X, et al. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J]. Agricultural and Forest Meteorology,2009, 149: 976-984. [26]Zhang Y, Wegehenkel M. Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration[J].Remote Sensing of Environment,2006, 104(4): 393-408. [27]Liu Feng, Li Cunjun, Li Rui, et al. Method for the establishment of the land data assimilation system and its application in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(Suppl.2): 347-352.[刘峰, 李存军, 黎锐, 等. 陆面数据同化系统构建方法及其农业应用[J]. 农业工程学报, 2008, 24(增刊2): 347-352.] [28]Yi Yonghong, Yang Dawen, Liu Yu, et al. Review of study on regional evapotranspiration modeling based on remote sensing[J]. Journal of Hydraulic Engineering,2008, 39(9): 1 118-1 124.[易永红, 杨大文, 刘钰, 等. 区域蒸散发遥感模型研究的进展[J]. 水利学报, 2008, 39(9): 1 118-1 124.] [29]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements[J].Water Resources Research,1977, 13: 651-656. [30]Neimain R R, Running S W. Estimation of regional surface resistance to evaportranspriation from NDVI and thermal-IR AVHRR data[J].Journal of Applied Meteorology,1989, 28: 276-284. [31]Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing,1990, 28: 940-948. [32]Moran M S, Clarke T R, Inoue Y. Estimationg crop water deficit using the relation between surface air temperature and spectural vegetation index[J]. Remote Sensing of Environment, 1994, 49: 246-263. [33]Ptihofko L, Goward S N. Estimating of air temperature from remote sensed surface observations[J]. Remote Sensing of Environment, 1997, 60: 335-346. [34]Boegh E, Soegaard H, Hanan N, et al. A remote sensing study of the NDVI-Ts relationship and transpiration from sparse vegetation in the Sahel based on high-resolution satellite data[J]. Remote Sensing of Environment, 1999, 69: 224-240. [35]Jiang L,Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J].Geophysical Research Letters, 1999, 26: 2 773-2 776. [36]Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation[J].Journal of Geophysical Research,2003, 108(D9): 4 270. [37]Han Lijuan, Wang Pengxin, Wang Jindi, et al. A study of characterspatial of vegetation index-land surface temperature[J].Science in China (Series D),2005, 35(4) : 371-377.[韩丽娟,王鹏新,王锦地,等.植被指数—地表温度构成的特征空间研究[J]. 中国科学:D辑, 2005, 35(4): 371-377.] [38]Chávez J L, Gowda P H, Howell T A, et al. Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery[J].Irrigation Science,2009, 28(1): 79-91. [39]Chen Y H,Li X, Li J, et al. Estimation of daily evapotranspiration using a twolayer remote sensing model[J].International Journal of Remote Sensing,2005, 26: 1 755-1 762. [40]Li F, Kustas W P, Prueger J H, et al. Utility of remote sensing-based two-source energy balance model under low-and high-vegetation cover conditions[J].Journal of Hydrometeorlogy,2005, 6(6): 878-891. [41]Norman J, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology,1995, 77:263-293. [42]Yao W, Han M, Xu S. Estimating the regional evapotranspiration in Zhalong wetland with the Two-Source Energy Balance (TSEB) model and Landsat7/ETM+ images[J].Ecological Informatics,2010, 5(5):348-358. [43]Su Hongbo, Zhang Renhua, Tang Xinzhai, et al. Thermal model for discrete vegetation and its solution on pixel scale using computer graphics[J]. Science in China(Series E), 2000, 43(Suppl.1): 48-54. [44]Zhang Renhua, Sun Xiaomin, Zhu Zhilin, et al. A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation[J]. Science in China(Series D), 2003, 46(4): 342-355. [45]Kustas W P, Norman J M. A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations[J]. Water Resources Research, 1997, 33(6): 1 495-1 508. [46]Kustas W P, Norman J M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces[J]. Agronomy Journal, 2000, 92: 847-854. [47]Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agricultural and Forest Meteorology, 1999, 94: 13-29. [48]Claussen M,Brovkin V,Ganapolski A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change[J]. Geophysical Research Letters, 2001, 28(6): 1 011-1 014. [49]Brunet Y, Nunez M, Lagouarde J P. A simple method for estimating regional evapotranspiration from infrared surface temperature[J].Photogrammetric Engineering and Remote Sensing,1991, 46: 311-327. [50]Entin J K, Robock A, Vinnikov K Y, et al. Evaluation of global soil wetness project soil moisture simulation[J].Jounal of the Meteorolgical Society of Japan,1999, 77(1B): 183-198. [51]Chapin F S. Integrated responses of plants to stress[J].Bioscience,1991, 41: 29-36. [52]Field C B, Chapin Iii F S, Matson P A. Responses of terrestrial ecosystems to the changing atmosphere-a resource-based apporach[J].Annual Review of Ecology and Systematic,1992, 23: 201-235. [53]Iwasa Roughgarden Y J. Shoot/root balance of plants: Optimal growth of a system with many vegetative organs[J].Theoretical Population Biology,1984, 25: 78-105. [54]Rastetter E B, Aber J D, Peters D P C. Turbulence statistics inside and over forest: Influence on foot print prediction[J].Boundary-Layer Meteorology, 2003, 109(2): 163-189. [55]Xie Xianhong, Zhang Dongxiao. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[J].Advances in Water Resources,2010, 33(6): 678-690. [56]Clark M P, Rupp D E, Woods R A, et al. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model[J].Advances in Water Resources,2008, 31(10): 1 309-1 324. [57]Reichle R H. Data assimilation methods in the Earth sciences[J].Advances in Water Resources,2008, 31(11): 1 411-1 418. [58]Mathieu P P, O′Neill A. Data assimilation: From photon counts to Earth System forecasts[J].Remote Sensing of Environment,2008, 112(4): 1 258-1 267. [59]Eckermann S D, Hoppel K W, Coy L, et al. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007[J].Journal of Atmospheric and Solar-Terrestrial Physics,2009, 71: 531-551. [60]Li X, Koike T, Pathmathevan M. A Very Fast Simulated re-Annealing (VFSA) approach for land data assimilation[J].Computers & Geosciences,2004, 30(3): 239-248. [61]Gu J, Li X, Huang C, et al. A simplified data assimilation method for reconstructing time-series MODIS NDVI data[J].Advances in Space Research, 2009, 44(4): 501-509. [62]Han Y, Zhang Y, Wang Y, et al. A new sequential data assimilation method[J].Science in China (Series E),2008, 52(4):1 027-1 038. [63]Bobi G, Entekhabi D C F. Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation[J].Water Resources Research,2001, 37: 1 713-1 722. [64]Pipunic R, Walker J, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study[J].Remote Sensing of Environment,2008, 112(4): 1 295-1 305. [65]Huang C, Li X, Lu L. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter[J].Remote Sensing of Environment,2008, 112(4): 1 320-1 336. [66]Immerzeel W, Droogers P. Calibration of a distributed hydrological model based on satellite evapotranspiration[J].Journal of Hydrology,2008, 349(4): 411-424. [67]Jang K, Kang S, Kim J, et al. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation[J].Remote Sensing of Environment,2010, 114(3): 657-673. [68]Li Xin, Huang Chunlin. Data assimilation: A new means for multi-source geospatial data integration[J]. Science & Technology Review,2004, 12: 13-16.[李新, 黄春林. 数据同化:一种集成多源地理空间数据的新思路[J]. 科技导报, 2004, 12: 13-16.] [69]Wang Yueshan. Data assimilation: Its origin, meaning and main methods[J].Marine Forecast,1999, 16(1): 11-20.[王跃山. 数据同化——它的缘起、含义及主要方法[J]. 海洋预报, 1999, 16(1): 11-20.] [70]Li Xin, Toshio Koike, Cheng Guodong. An algorithm for land data assimilation by using simulated annealing method[J].Advances in Earth Science, 2003, 18(4): 632-636.[李新, 小池俊雄, 程国栋. 一个基于模拟退火法的陆面数据同化算法[J]. 地球科学进展, 2003, 18(4): 632-636.] [71]Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on ensemble Kalman filter[J]. Plateau Meteorology, 2006, 25(4): 665-671.[黄春林, 李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象, 2006, 25(4): 665-671.] [72]Zhang Li, Wang Shili, He Yanbo, et al. Winter wheat growth simulation under water stress by remote sensing in North China[J]. Acta Agronomica Sinica, 2007, 33(3): 401-410.[张黎, 王石立, 何延波, 等. 遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究[J]. 作物学报, 2007, 33(3): 401-410.] [73]Tian Xiangjun, Xie Zhenghui. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J].Science in China (Series D),2008, 38(6): 741-749.[田向军, 谢正辉. 考虑次网格变异性和土壤冻融过程的土壤湿度同化方案[J].中国科学:D辑, 2008, 38(6): 741-749.] [74]Jin Rui, Li Xin. Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data[J].Science in China (Series D),2009, 39(9):1 120-1 231.[晋锐, 李新. 同化站点观测和SSM/I亮温改善冻土活动层状态变量的模拟精度[J].中国科学:D辑, 2009, 39(9):1 120-1 231.] [75]Jia Binghao, Xie Zhenghui, Tian Xiangjun,et al. A soil moisture assimilation scheme based on microwave brightness temperature and ensemble Kalman filter[J].Science in China (Series D),2010, 40(4):239-251.[贾炳浩, 谢正辉, 田向军, 等. 基于微波亮温及集合Kalman滤波的土壤湿度同化方案[J].中国科学:D辑, 2010, 40(4): 239-251.] |