地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1029 -1040. doi: 10.11867/j.issn.1001-8166.2020.085

综述与评述 上一篇    下一篇

水分再循环计算模型的研究进展及其展望
李修仓 1, 2( ),姜彤 2,吴萍 1( )   
  1. 1.中国气象局 国家气候中心/气候研究开放实验室,北京 100081
    2.南京信息工程大学气象灾害 预报预警与评估协同创新中心/灾害风险管理学院/地理科学学院,江苏 南京 210044
  • 收稿日期:2020-07-30 修回日期:2020-09-22 出版日期:2020-10-10
  • 通讯作者: 吴萍 E-mail:lixiucang@cma.gov.cn;wup@cma.gov.cn
  • 基金资助:
    国家重点研发计划项目“全球气候系统能量与水循环时空演变及其成因辨识”(2017YFA0603701);第二次青藏高原综合科学考察研究专题“亚洲水塔变化及其广域效应”(2019QZKK0208)

Progress and Prospect of the Moisture Recycling Models

Xiucang Li 1, 2( ),Tong Jiang 2,Ping Wu 1( )   

  1. 1.National Climate Center/Laboratory for Climate Studies,China Meteorological Administration,Beijing 100081,China
    2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Institute for Disaster Risk Management/School of Geographical Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,China
  • Received:2020-07-30 Revised:2020-09-22 Online:2020-10-10 Published:2020-11-30
  • Contact: Ping Wu E-mail:lixiucang@cma.gov.cn;wup@cma.gov.cn
  • About author:Li Xiucang (1982-), male, Yuncheng County, Shandong Province, Senior Engineer. Research areas include climate change and water cycle. E-mail: lixiucang@cma.gov.cn
  • Supported by:
    the National Key Research and Development Program of China “Spatiotemporal evolution of energy and water cycle in global climate system”(2017YFA0603701);The Second Tibetan Plateau Scientific Expedition and Research Program “The change of Asian water tower and its wide effect”(2019QZKK0208)

水分再循环是蒸发的水汽以降水的形式再次返回本地的过程,是水文大循环的重要组成部分。回顾了水分再循环基础理论的发展过程,系统地梳理了国内外3类水分再循环研究方法,分析了不同箱式分析模型边界条件和假设条件的异同,对比了水汽追踪和物理示踪等方法的优点及局限性。当前国内外水分再循环的研究存在尺度依赖性高、全球尺度研究较少等突出问题,箱式分析再循环模型有待深入比较或优化改进,应发展相对共识的等尺度计算方案;此外,水分再循环的研究应与全球水文大循环的研究相结合,包括计算或补全全球水量平衡分量,同时还应考虑水循环的动态变化问题。

As an important part of the hydrological cycle, moisture recycling is a process in which evaporated water vapor returns to the local area again in the form of precipitation. In this paper, the development process of the basic theory of moisture recycling was reviewed. Three types of moisture recycling research methods from the domestic and foreign research were investigated systematically. The similarities and differences of the boundary conditions and assumptions of different box analysis models were analyzed. The advantages and limitations of water vapor tracer method and isotopic tracer method were compared. In the current domestic and international moisture recycling research, scale-dependence of the results and fewer studies on global scale are still outstanding problems. The box analysis recycling model needs to be optimized and improved. Relatively consensus equal-scale calculation schemes should be developed. In addition, moisture recycling studies should be combined with the studies of the global water cycle, in order to supplement relevant components of global water balance. Dynamic changes of the water cycle should also be considered the changes of moisture recycling.

中图分类号: 

图1 水分再循环示意图
Fig.1 Schematic diagram of moisture recycling
表1 水分再循环箱式分析模型
Table 1 Bulk models of moisture recycling
名称(年份) 模型 参数解释
Budyko一维模型(1974)[ 9 ] ρ = 1 - 1 β = 1 + 2 w u E l - 1 ρ为降水再循环率,β为总降水与外部水汽输送形成的降水的比例,E为蒸发量,l为一维流场距离尺度,wu为外部水汽输入(以下模型中相同字母表述含义相同)
Brubaker等二维模型(1993)[ 13 ] ρ = 1 - 1 β = 1 + 2 F + E A - 1 F+为外部水汽输入,即Budyko模型中的wuA为计算区域面积
Eltahir等二维模型(1994)[ 15 ] ρ = I m + E I m + E + I a I为格区水汽输入,下标m表示输入格区的水汽来自于研究区内,下标a表示输入格区的水汽来自于研究区外。模型采用迭代方法计算
Burde等二维模型(1996)[ 14 ] ρ = 1 - 1 β = 1 + 2 F + E A R - 1 R为流场矫正系数,其他参数同Brubaker等二维模型
伊兰等模型(1997)[ 32 ] ρ = 2 I m + E 2 I a + 2 I m + E = 2 I m + E 2 I + E ρ T = E 2 I a + E 基于Brubaker模型及Eltahir and Bras模型的综合。ρT为区域整体降水再循环率。模型采用迭代方法计算
Trenberth一维模型(1998)[ 10 ] ρ = P m P = E l E l + 2 F i n = E l P l + 2 F Fin为外部水汽输入,即Budyko模型中的wuF为输入水汽和输出水汽的平均值。该模型本质上是Budyko模型的另一种形式
Burde等解析模型(2001)[ 33 ] R = 1 - e x p - 0 x E ( x , ξ ) U ( x , ξ ) W ( x , ξ ) d x R、E、UW分别为拉格朗日坐标系下的水分再循环率、蒸发量、纬向风速和大气可降水量;x为水汽输送距离;ξ为常微分方程dy/dx的积分
Dominguez等动态再循环模型(Dynamic Recycling Model, DRM)(2006)[ 22 ] R ( χ , ξ , τ ) = 1 - e x p - 0 τ ε ( χ , ξ , τ ) ω ( χ , ξ , τ ) d τ ' χξτεω分别为拉格朗日坐标系下的xyt、蒸发量和大气可降水量
van der Ent等数值求解方法(2010)[ 23 ] S a _ Ω S a = ??? ? ( S a _ Ω u ) ? x ??? ? ( S a u ) ? x = ??? ? ( S a _ Ω v ) ? y ??? ? ( S a v ) ? y = P Ω P Sa为大气可降水量,Ω为水汽源区。该公式为大气水汽充分混合假设条件表达式,也是数值求解水分守恒方程的基础
图2 不同相态水体同位素组成差异(ε)随气团冷却过程的演变(据参考文献[ 37 ]修改)
Fig.2 Evolution of the isotopic composition of cloud water vapor and precipitation as the air mass coolsmodified after reference [ 37 ])
表2 典型区域水分再循环率研究结果比较
Table 2 Comparison of moisture recycling ratios in typical regions
图3 全球陆地降水再循环率计算结果的比较
(a)、(b)和(c)分别据参考文献[ 23 ]、[ 49 ]和[50]修改
Fig.3 Comparison of continental precipitation recycling ratios
(a) Modified after reference [ 23 ]; (b) Modified after reference [ 49 ]; (c) Modified after reference [ 50 ]
图4 全球水循环评估结果比较(据参考文献[ 53 ]修改)
Fig.4 Comparison of global water cycle assessment resultsmodified after reference [ 53 ])
1 Lu Guihua, He Hai. View of global hydrological cycle[J]. Advances in Water Science, 2006, 17(3): 419-424.
陆桂华,何海.全球水循环研究进展[J].水科学进展, 2006, 17(3):419-424.
2 Zhang Liping, Chen Xiaofeng, Zhao Zhipeng, et al. Progess in study of climate change impacts on hydrology and water resources[J]. Progress in Geography, 2008, 27(3): 60-67.
张利平,陈小凤, 赵志鹏,等.气候变化对水文水资源影响的研究进展[J].地理科学进展, 2008, 27(3): 60-67.
3 Starr V P, Peixoto J P. On the global balance of water vapor and the hydrology of deserts[J]. Tellus, 1958, 10(2): 188-194.
4 Rasmusson E M. Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field[J]. Monthly Weather Review, 1967, 95(7): 403-426.
5 Rasmusson E M. Atmospheric water vapor transport and the water balance of North America: Part II. Large-scale water balance investigations[J]. Monthly Weather Review, 1968, 96(10): 720-734.
6 Horton R E. Hydrologic interrelations between lands and oceans[J]. EOS, Transactions American Geophysical Union, 1943, 24(2): 753-764.
7 McDonald J E. The evaporation precipitation fallacy[J]. Weather, 1962, 17(5): 168-177.
8 Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
9 Budyko M I. Climate and Life[M]. New York and London: Academic Press, 1974.
10 Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694.
11 Molion L. A Climatonomic Study of the Energy and Moisture Fluxes of the Amazonas Basin with Considerations of Deforestation Effects[D]. Madison:University of Wisconsin, 1975.
12 Lettau H, Lettau K, Molion L C B. Amazonia's hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects[J]. Monthly Weather Review, 1979, 107(3): 227-238.
13 Brubaker K L, Entekhabi D, Eagleson P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1 077-1 089.
14 Burde G I, Zangvil A, Lamb P J. Estimating the role of local evaporation in precipitation for a two-dimensional region[J]. Journal of Climate, 1996, 9(6): 1 328-1 338.
15 Eltahir E A B, Bras R L. Precipitation recycling in the Amazon basin[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(518): 861-880.
16 Gat J R, Bowser C J, Kendall C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data[J]. Geophysical Research Letters, 1994, 21(7): 557-560.
17 Craig H, Gordon L. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[M]//Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, 1965.
18 Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature, 1984, 311(5 981): 24-29.
19 Cole J E, Rind D, Webb R S, et al. Climatic controls on interannual variability of precipitation δ18O Simulated influence of temperature, precipitation amount, and vapor source region[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D12): 14 223-14 235.
20 Risi C, Bony S, Vimeux F, et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D24110. DOI:10.1029/2010JD014690.
doi: 10.1029/2010JD014690    
21 Burde G I, Zangvil A. The estimation of regional precipitation recycling. Part I: Review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508.
22 Dominguez F, Kumar P, Liang X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19(8): 1 513-1 530.
23 van der Ent R J, Savenije H H G, Schaefli B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9): W09525. DOI:10.1029/2010WR009127.
doi: 10.1029/2010WR009127    
24 Numaguti A. Origin and recycling processes of precipitating water over the Eurasian continuent: Experiments usting an atmospheric general circulation model[J]. Journal of Geophysical Research, 1999,104(D2): 1 957-1 972.
25 Bosilovich M G, Schubert S D. Water vapor tracers as diagnostics of the regional hydrologic cycle[J]. Journal of Hydrometeorology, 2002, 3(2): 149-165.
26 Sodemann H, Wernli H, Schwierz C. Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 205-223.
27 Knoche H R, Kunstmann H. Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 345-12 358.
28 Dominguez F, Miguez-Macho G, Hu H. WRF with water vapor tracers: A study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
29 Peng H, Mayer B, Norman A L, et al. Modelling of hydrogen and oxygen isotope compositions for local precipitation[J]. Tellus B: Chemical and Physical Meteorology, 2005, 57(4): 273-282.
30 Froehlich K, Kralik M, Papesch W, et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70.
31 Peng T R, Liu K K, Wang C H, et al. A water isotope approach to assessing moisture recycling in the island‐based precipitation of Taiwan: A case study in the western Pacific[J]. Water Resources Research, 2011, 47(8): W08507. DOI:10.1029/2010WR009890.
doi: 10.1029/2010WR009890    
32 Yi Lan, Tao Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
33 Burde G I, Zangvil A. The estimation of regional precipitation recycling. Part II: A new recycling model[J]. Journal of Climate, 2001, 14(12): 2 509-2 527.
34 Koster R, Jouzel J, Suozzo R, et al. Global sources of local precipitation as determined by the NASA/GISS GCM[J]. Geophysical Research Letters, 1986, 13(2): 121-124.
35 Bosilovich M G, Schubert S D. Water vapor tracers as diagnostics of the regional hydrologic cycle[J]. Journal of Hydrometeorology, 2002, 3(2): 149-165.
36 Gimeno L, Stohl A, Trigo R M, et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4): RG4003. DOI:10.1029/2012RG000389.
doi: 10.1029/2012RG000389    
37 Sessions A L. Factors controlling the deuterium contents of sedimentary hydrocarbons[J]. Organic Geochemistry, 2016, 96: 43-64.
38 Salati E, Dall'olio A, Matsui E, et al. Recycling of water in the Amazon basin: An isotopic study[J]. Water Resources Research, 1979, 15(5): 1 250-1 258.
39 Ingraham N L, Taylor B E. Light stable isotope systematics of large‐scale hydrologic regimes in California and Nevada[J]. Water Resources Research, 1991, 27(1): 77-90.
40 Gat J R, Matsui E. Atmospheric water balance in the Amazon Basin: An isotopic evapotranspiration model[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 13 179-13 188.
41 Ogunkoya O O, Jenkins A. Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model[J]. Journal of Hydrology, 1993, 142(1/4): 71-88.
42 Phillips D L, Gregg J W. Uncertainty in source partitioning using stable isotopes[J]. Oecologia, 2001, 127: 171-179.
43 Bosilovich M G, Chern J D. Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins[J]. Journal of Hydrometeorology, 2006, 7(3): 312-329.
44 Bisselink B, Dolman A J. Recycling of moisture in Europe: Contribution of evaporation to variability in very wet and dry years[J]. Hydrology and Earth System Sciences, 2009, 13(9): 1 685-1 697.
45 Pokam W M, Djiotang L A T, Mkankam F K. Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data[J]. Climate Dynamics, 2012, 38(9/10): 1 715-1 729.
46 Kang Hongwen, Gu Xiangqian, Fu Xiang, et al. Precipitation recycling over the Northern China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 139-147.
康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
47 Wu P, Ding Y, Liu Y, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China[J]. International Journal of Climatology, 2019, 39(14): 5 241-5 255.
48 Kang Hongwen, Gu Xiangqian, Zhu Congwen, et al. Precipitation recycling in southern and central China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 892-900.
康红文, 谷湘潜, 祝从文, 等. 我国中部和南部地区降水再循环率评估[J]. 大气科学, 2004, 28(6): 892-900.
49 Goessling H F, Reick C H. What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents[J]. Hydrology and Earth System Sciences, 2011, 15: 3 217-3 235.
50 Risi C, Noone D, Frankenberg C, et al. Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements[J]. Water Resources Research, 2013, 49(7): 4 136-4 156.
51 Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359(6 394): 373-380.
52 Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
53 Trenberth K E, Smith L, Qian T, et al. Estimates of the global water budget and its annual cycle using observational and model data[J]. Journal of Hydrometeorology, 2007, 8(4): 758-769.
54 Rodell M, Beaudoing H K, L'Ecuyer T S, et al. The observed state of the water cycle in the early twenty-first century[J]. Journal of Climate, 2015, 28(21): 8 289-8 318.
55 Trenberth K E, Fasullo J, Smith L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics, 2005, 24(7/8): 741-758.
56 Ohmura A, Wild M. Is the hydrological cycle accelerating?[J]. Science, 2002, 298(5 597): 1 345-1 346.
57 Schneider U, Becker A, Finger P, et al. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1/2): 15-40.
58 Schlesinger W H, Jasechko S. Transpiration in the global water cycle[J]. Agricultural and Forest Meteorology, 2014, 189: 115-117.
59 Dai A, Qian T, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2 773-2 792.
60 Sheffield J, Wood E F. Characteristics of global and regional drought, 1950-2000: Analysis of soil moisture data from off‐line simulation of the terrestrial hydrologic cycle[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D17115). DOI:10.1029/2006JD008288.
doi: 10.1029/2006JD008288    
61 Huntington T G. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 2006, 319(1/4): 83-95.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[3] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[4] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[5] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[6] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[7] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[8] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[9] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[10] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[11] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[12] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[13] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[14] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[15] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
阅读次数
全文


摘要