1 |
Pruppacher H R, Klett J D. Microstructure of Atmospheric Clouds and Precipitation[M]. Dordrecht, Springer Netherlands: Microphysics of Clouds and Precipitation, 2010.
|
2 |
Heymsfield A J. Precipitation development in stratiform ice clouds: A microphysical and dynamical study[J]. Journal of the Atmospheric Sciences, 1977, 34( 2): 367- 381.
|
3 |
Zhang Lele, Gao Liming, Zhao Lin, et al. Review on correction of errors in precipitation measurement [J]. Journal of the Atmospheric Sciences, 2017, 32( 7): 723- 730.
|
|
张乐乐, 高黎明, 赵林, 等. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32( 7): 723- 730.
|
4 |
Stephens G L, Kummerow C D. The remote sensing of clouds and precipitation from space: A review[J]. Journal of the Atmospheric Sciences, 2007, 64( 11): 3 742- 3 765.
|
5 |
Huang Yipeng, Li Wanbiao, Zhao Yuchun, et al. A review of radar-and satellite—Based observational studies and nowcasting techniques on convection [J]. Advances in Earth Science, 2019, 34( 12): 1 273- 1 287.
|
|
黄亦鹏, 李万彪, 赵玉春, 等. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34( 12): 1 273- 1 287.
|
6 |
Baumgardner D, Abel S J, Axisa D, et al. Cloud ice properties: In situ measurement challenges[J]. Meteorological Monographs, 2017, 58: 9. 1-9. 23.
|
7 |
Baumgardner D, Brenguier J L, Bucholtz A, et al. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology[J]. Atmospheric Research, 2011, 102( 1/2): 10- 29.
|
8 |
Huang Minsong, Lei Hengchi, Jin Ling. Pseudo particle identification in the image data from the airborne cloud and precipitation particle image Probe[J]. Chinese Journal of Atmospheric Sciences, 2017, 41( 5): 1 113- 1 124.
|
|
黄敏松, 雷恒池, 金玲. 机载云降水粒子成像仪所测数据中伪粒子的识别[J]. 大气科学, 2017, 41( 5): 1 113- 1 124.
|
9 |
Field P R, Heymsfield A J, Bansemer A. Shattering and particle interarrival times measured by optical array probes in ice clouds[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23( 10): 1 357- 1 371.
|
10 |
Lawson R P, Baker B, Pilson B, et al. In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds[J]. Journal of the Atmospheric Sciences, 2006, 63( 12): 3 186- 3 203.
|
11 |
Magono C, Tazawa S. Design of “Snow Crystal Sondes”[J]. Journal of the Atmospheric Sciences, 1966, 23( 5): 618- 625.
|
12 |
Marshall T C, Winn W P. Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers[J]. Journal of Geophysical Research, 1982, 87( C9): 7 141- 7 157.
|
13 |
Murakami M, Matsuo T, Nakayama T, et al. Development of cloud particle video sonde[J]. Journal of the Meteorological Society of Japan, 1987, 65( 5): 803- 809.
|
14 |
Tsuchiya M, Kasai T, Hayashi M, et al. Development of aerosol sonde for observation balloon[J]. Transactions of the Society of Instrument and Control Engineers, 1996, 32( 3): 290- 296.
|
15 |
Comerón A, Kassianov E I, Sch?fer K, et al. A low-cost digital holographic imager for calibration and validation of cloud microphysics remote sensing[C]// Remote Sensing of Clouds and the Atmosphere XXI. 2016.
|
16 |
Stith J L, Baumgardner D, Haggerty J, et al. 100 years of progress in atmospheric observing systems[J]. Meteorological Monographs, 2018, 59: 2. 1-2. 55.
|
17 |
Miloshevich L M, Heymsfield A J. A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14( 4): 753- 768.
|
18 |
Murakami M, Matsuo T. Development of the hydrometeor videosonde[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7( 5): 613- 620.
|
19 |
Orikasa N, Murakami M. A new version of hydrometeor videosonde for cirrus cloud observations[J]. Journal of the Meteorological Society of Japan, 1997, 75( 6): 1 033- 1 039.
|
20 |
Kuhn T, Heymsfield A J. In situ balloon-borne ice particle imaging in high-latitude cirrus[J]. Pure and Applied Geophysics, 2016, 173( 9): 3 065- 3 084.
|
21 |
Takahashi T. Near absence of lightning in torrential rainfall producing Micronesian thunderstorms[J]. Geophysical Research Letters, 1990, 17( 13): 2 381- 2 384.
|
22 |
Boussaton M P, Coquillat S, Chauzy S, et al. A new videosonde with a particle charge measurement device for in situ observation of precipitation particles[J]. Journal of Atmospheric & Oceanic Technology, 2004, 21( 21): 1 519- 1 531.
|
23 |
Waugh S M, Ziegler C L, MacGorman D R, et al. A balloon-borne Particle Size, Imaging, and Velocity Probe for in situ microphysical measurements[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32( 9): 1 562- 1 580.
|
24 |
Fujiwara M, Sugidachi T, Arai T, et al. Development of a cloud particle sensor for radiosonde sounding[J]. Atmospheric Measurement Techniques, 2016, 9( 12): 5 911- 5 931.
|
25 |
Smith H R, Ulanowski Z, Kaye P H, et al. The Universal Cloud and Aerosol Sounding System (UCASS): A low-cost miniature optical particle counter for use in dropsonde or balloon-borne sounding systems[J]. Atmospheric Measurement Techniques, 2019, 12( 12): 6 579- 6 599.
|
26 |
Minda H, Tsuda N. Low-Cost Laser Disdrometer with the capability of hydrometeor imaging[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7( ): S132- S138.
|
27 |
Minda H, Makino T, Tsuda N, et al. Performance of a laser disdrometer with hydrometeor imaging capabilities and fall velocity estimates for snowfall[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11( 5): 624- 632.
|
28 |
Bateman M G, Rust W D, Marshall T C. A balloon-borne instrument for measuring the charge and size of precipitation particles inside thunderstorms[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11( 1): 161- 169.
|
29 |
Takahashi T, Fukuta N. Ice crystal replication with common plastic solutions[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5( 1): 129- 135.
|
30 |
Maccready P B, Todd C J. Continuous particle sampler[J]. Journal of Applied Meteorology, 1964, 3( 4): 450- 460.
|
31 |
Nasiri S L, Baum B A, Heymsfield A J, et al. The development of midlatitude cirrus models for MODIS using FIRE-I, FIRE-II, and ARM in situ data[J]. Journal of Applied Meteorology, 2002, 41( 3): 197- 217.
|
32 |
Kajikawa M, Kikuchi K, Endoh T, et al. Observation of snow crystals in the lower atmosphere of Arctic Canada by means of "Snow Crystal Sondes"[J]. Journal of the Meteorological Society of Japan, 1983, 61( 3): 388- 401.
|
33 |
Orikasa N, Murakami M, Hoshimoto M, et al. Re-evaluation of the collection efficiency of the Hydrometeor Videosonde for dry snow particles[J]. Journal of the Meteorological Society of Japan, 2005, 83( 3): 439- 448.
|
34 |
Ohigashi T, Tsuboki K, Suzuki Y, et al. Characteristics of upper-tropospheric outflow-layer clouds of Typhoon Francisco ( 2013) observed by hydrometeor videosonde[J]. Atmospheric Research, 2020, 235: 104 635.
|
35 |
Takahashi T, Sugimoto S, Kawano T, et al. Microphysical structure and lightning initiation in Hokuriku winter clouds[J]. Journal of Geophysical Research: Atmospheres, 2019, 124( 23): 13 156- 13 181.
|
36 |
Orikasa N, Murakami M. Ice crystal shapes in midlatitude cirrus clouds derived from Hydrometeor Videosonde (HYVIS) observations[J]. Journal of the Meteorological Society of Japan, 2015, 93( 1): 143- 155.
|
37 |
Wolf V, Kuhn T, Milz M, et al. Arctic ice clouds over northern Sweden: Microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI[J]. Atmospheric Chemistry and Physics, 2018, 18( 23): 17 371- 17 386.
|
38 |
Orikasa N, Murakami M J. Heymsfield A. Ice crystal concentration in midlatitude cirrus clouds: In situ measurements with the Balloon-borne Hydrometeor Videosonde (HYVIS)[J]. Journal of the Meteorological Society of Japan, 2013, 91( 2): 143- 161.
|
39 |
Suzuki K, Shimizu K, Ohigashi T, et al. Development of a new Videosonde observation system for in-situ precipitation particle measurements[J]. Sola, 2012, 8: 1- 4.
|
40 |
Suzuki K, Matsuo M, Nakano E, et al. Graupel in the different developing stages of Baiu monsoon clouds observed by videosondes[J]. Atmospheric Research, 2014, 142: 100- 110.
|
41 |
Takahashi T, Keenan T D. Hydrometeor mass, number, and space charge distribution in a “Hector” squall line[J]. Journal of Geophysical Research: Atmospheres, 2004, 109( D16). DOI: 10.1029/2004JD004667.
doi: 10.1029/2004JD004667
|
42 |
Suzuki K, Nakagawa K, Kawano T, et al. Videosonde-observed graupel in different rain systems during Pre-YMC Project[J]. Sola, 2018, 14: 148- 152.
|
43 |
Takahashi T. Precipitation mechanisms in east Asian monsoon: Videosonde study[J]. Journal of Geophysical Research: Atmospheres, 2006, 111( D9). DOI: 10.1029/2005JD006268.
doi: 10.1029/2005JD006268
|
44 |
Takahashi T. The Videosonde system and its use in the study of east Asian monsoon rain[J]. Bulletin of the American Meteorological Society, 2010, 91( 9): 1 231- 1 246.
|
45 |
Waugh S M, Ziegler C L, MacGorman D R. In situ microphysical observations of the 29-30 May 2012 Kingfisher, OK, supercell with a balloon-borne video disdrometer[J]. Journal of Geophysical Research: Atmospheres, 2018, 123( 10): 5 618- 5 640.
|
46 |
Chambers T E. A Digital Holographic Imager for Cloud Microphysics Studies[D]. Adelaide: University of Adelaide, 2017.
|
47 |
Sugita T, Kondo Y, Koike M, et al. Balloon-borne optical counter for in situ aerosol measurements[J]. Journal of Atmospheric Chemistry, 1999, 32( 1): 183- 204.
|
48 |
Kasai T, Tsuchiya M, Takami K, et al. Balloon borne optical particle counter for stratospheric observation[J]. Review of Scientific Instruments, 2003, 74( 2): 1 082- 1 092.
|
49 |
Iwasaki S, Maruyama K, Hayashi M, et al. Characteristics of aerosol and cloud particle size distributions in the tropical tropopause layer measured with optical particle counter and lidar[J]. Atmospheric Chemistry and Physics, 2007, 7( 13): 3 507- 3 518.
|
50 |
Gao R S, Perring A E, Thornberry T D, et al. A high-sensitivity low-cost optical particle counter design[J]. Aerosol Science and Technology, 2013, 47( 2): 137- 145.
|
51 |
Rosen J M, Kjome N T. Backscattersonde: A new instrument for atmospheric aerosol research[J]. Applied Optics, 1991, 30( 12): 1 552- 1 561.
|
52 |
Rosen J M, Kjome N T, Oltmans S J. Simultaneous ozone and polar stratospheric cloud observations at South Pole station during winter and spring 1991[J]. Journal of Geophysical Research: Atmospheres, 1993, 98( D7): 12 741- 12 751.
|
53 |
Khaykin S M, Engel I, V?mel H, et al. Arctic stratospheric dehydration-Part 1: Unprecedented observation of vertical redistribution of water[J]. Atmospheric Chemistry and Physics, 2013, 13( 22): 11 503- 11 517.
|
54 |
Minda H, Makino T, Tsuda N. Performance of a new low-cost laser disdrometer with rainfall intensity correction in heavy rainfall[J]. IEEE Transactions on Electrical and Electronic Engineering, 2014, 9( 5): 542- 547.
|
55 |
Weinheimer J A. The charge induced on a conducting cylinder by a point charge and its application to the measurement of charge on precipitation[J]. Journal of Atmospheric & Oceanic Technology, 1988, 5( 2): 298- 304.
|
56 |
Takahashi T, Tajiri T, Sonoi Y. Charges on graupel and snow crystals and the electrical structure of winter thunderstorms[J]. Journal of the Atmospheric Sciences, 1999, 56( 11): 1 561- 1 578.
|
57 |
Coquillat S, Boussaton M P, Chauzy S, et al. A new videosonde for in situ observation of precipitation particles[C]// Proceeding of the 12th International Conference on Atmospheric Electricity. Versailles,France, 2003.
|
58 |
Takahashi T, Kuhara K. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia[J]. Journal of the Meteorological Society of Japan, 1993, 71( 1): 21- 31.
|
59 |
Magono C, Lee C W. The vertical structure of snow clouds, as revealed by "Snow Crystal Sondes", Part II[J]. Journal of the Meteorological Society of Japan, 1973, 51( 3): 176- 190.
|
60 |
Tazawa S, Magono C. The vertical structure of snow clouds, as revealed by "Snow Crystal Sondes", Part I[J]. Journal of the Meteorological Society of Japan, 1973, 51( 3): 168- 175.
|
61 |
Heymsfield A J, Matrosov S, Baum B. Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers[J]. Journal of Applied Meteorology, 2003, 42( 10): 1 369- 1 390.
|
62 |
Hong G, Yang P, Baum B A, et al. Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models[J]. Journal of Climate, 2009, 22( 23): 6 287- 6 312.
|
63 |
Orikasa N, Murakami M. A new version of hydrometeor videosonde for cirrus cloud observations[J]. Journal of the Meteorological Society of Japan, 1997, 75( 6): 1 033- 1 039.
|
64 |
Seiki T, Satoh M, Tomita H, et al. Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119( 11): 6 681- 6 701.
|
65 |
Yoshida Y, Asano S, Yamamoto A, et al. Radiative properties of mid-latitude frontal ice-clouds observed by the shortwave and Longwave Radiometer-Sondes[J]. Journal of the Meteorological Society of Japan, 2004, 82( 2): 639- 656.
|
66 |
Wolf V, Kuhn T, Kr?mer M. On the dependence of cirrus parametrizations on the cloud origin[J]. Geophysical Research Letters, 2019, 46( 21): 12 565- 12 571.
|
67 |
Nakakita E, Yamaguchi K, Sumida Y, et al. Development of hydrometeor classification system using polarimetric radar measurements synchronized with the video-sonde observation[J]. Annual Journal of Hydraulic Engineering, JSCE, 2009, 53: 361- 366.
|
68 |
Kouketsu T, Uyeda H, Ohigashi T, et al. A hydrometeor classification method for X-Band Polarimetric Radar: Construction and validation focusing on solid hydrometeors under moist environments[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32( 11): 2 052- 2 074.
|
69 |
Matrosov S Y, Shupe M D, Heymsfield A J, et al. Ice cloud optical thickness and extinction estimates from radar measurements[J]. Journal of Applied Meteorology, 2003, 42( 11): 1 584- 1 597.
|
70 |
Baum B A, Heymsfield A J, Yang P, et al. Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models[J]. Journal of Applied Meteorology, 2005, 44( 12): 1 885- 1 895.
|
71 |
Ou S C, Liou K N, Takano Y, et al. Remote sounding of cirrus cloud optical depths and ice crystal sizes from AVHRR data: Verification using FIRE II IFO measurements[J]. Journal of the Atmospheric Sciences, 1995, 52( 23): 4 143- 4 158.
|
72 |
Sakai T, Orikasa N, Nagai T, et al. Optical and microphysical properties of upper clouds measured with the raman lidar and Hydrometeor Videosonde: A case study on 29 march 2004 over Tsukuba, Japan[J]. Journal of the Atmospheric Sciences, 2006, 63( 8): 2 156- 2 166.
|
73 |
Waugh S, Schuur T J. On the use of radiosondes in freezing precipitation[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35( 3): 459- 472.
|
74 |
Murakami M, Yamada Y, Matsuo T, et al. Microphysical structures of warm-frontal clouds the 20 June 1987 case study[J]. Journal of the Meteorological Society of Japan, 1992, 70( 5): 877- 895.
|
75 |
Ohigashi T, Tsuboki K, Oue M. Cloud-top supercooled liquid droplets in stratiform clouds observed during winter in inland Hokkaido, Japan[J]. Sola, 2016, 12: 140- 145.
|
76 |
Oue M, Ohigashi T, Tsuboki K, et al. Vertical distribution of precipitation particles in Baiu frontal stratiform intense rainfall around Okinawa Island, Japan[J]. Journal of Geophysical Research: Atmospheres, 2015, 120( 11): 5 622- 5 637.
|
77 |
Takahashi T, Suzuki K. Development of negative dipoles in a stratiform cloud layer in a Okinawa “Baiu” MCS system[J]. Atmospheric Research, 2010, 98( 2/4): 317- 326.
|
78 |
Murakami M, Matsuo T, Mizuno H, et al. Mesoscale and microscale structures of snow clouds over the sea of Japan Part I : Evolution of microphysical structures in short-lived convective snow clouds[J]. Journal of the Meteorological Society of Japan, 1994, 72( 5): 671- 694.
|
79 |
Watanabe R, Suzuki K, Kawano T, et al. Microphysical structures of early-winter snow clouds during a cold air outbreak of december 23-25, 2010[J]. Sola, 2014, 10: 62- 66.
|
80 |
Ikawa M, Mizuno H, Matsuo T, et al. Numerical modeling of the convective snow cloud over the sea of Japan precipitation mechanism and sensitivity to ice crystal nucleation rates[J]. Journal of the Meteorological Society of Japan, 1991, 69( 6): 641- 667.
|
81 |
Hayashi M, Iwasaka Y, Watanabe M, et al. Size and number concentration of liquid PSCs balloon-borne measurements at Ny-Alesund, Norway in winter of 1994/95[J]. Journal of the Meteorological Society of Japan, 1998, 76( 4): 549- 560.
|
82 |
V?mel H, Rummukainen M, Kivi R, et al. Dehydration and sedimentation of ice particles in the Arctic stratospheric vortex[J]. Geophysical Research Letters, 1997, 24( 7): 795- 798.
|
83 |
Kivi R, Kyr? E, D?rnbrack A, et al. Observations of vertically thick polar stratospheric clouds and record low temperature in the Arctic Vortex[J]. Geophysical Research Letters, 2001, 28( 19): 3 661- 3 664.
|
84 |
Khaykin S, Engel I, V?mel H, et al. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water[J]. Atmospheric Chemistry and Physics, 2013, 13( 22): 11 503- 11 517.
|
85 |
Marshall T C, Stolzenburg M. Estimates of cloud charge densities in thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 1998, 103( D16): 19 769- 19 775.
|
86 |
Stolzenburg M, Marshall T C. Charged precipitation and electric field in two thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 1998, 103( D16): 19 777- 19 790.
|
87 |
Bateman M G, Rust W D, Smull B F, et al. Precipitation charge and size measurements in the stratiform region of two mesoscale convective systems[J]. Journal of Geophysical Research: Atmospheres, 1995, 100( D8): 16 341- 16 356.
|
88 |
Takahashi T, Yamaguchi N, Kawano T. Videosonde observation of torrential rain during Baiu season[J]. Atmospheric Research, 2001, 58( 3): 205- 228.
|
89 |
Takahashi T, Sugimoto S, Kawano T, et al. Riming electrification in Hokuriku winter clouds and comparison with laboratory observations[J]. Journal of the Atmospheric Sciences, 2016, 74( 2): 431- 447.
|
90 |
Yang Mingkun. The Design of a Balloon Carried Sonde and Receiving System on the Ground[D]. Lanzhou: Lanzhou University, 2012.
|
|
杨明堃. 一种球载探空仪及地面接收系统的设计[D]. 兰州: 兰州大学, 2012.
|
91 |
Sun Xiaojuan. The Design and Implementation of a Balloon Carried Donde System[D]. Lanzhou: Lanzhou University, 2017.
|
|
孙小娟. 一种球载探空仪系统的设计与实现[D]. 兰州: 兰州大学, 2017.
|