地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 704 -714. doi: 10.11867/j.issn.1001-8166.2020.062

综述与评述 上一篇    下一篇

球载云降水粒子探测器研究现状及进展
王鹏 1( ),刘磊 1, 2( ),刘西川 1,胡帅 1, 2,赵世军 1,姬文明 1,高太长 1, 2   
  1. 1.国防科技大学气象海洋学院,江苏 南京 211101
    2.电磁环境效应与 光电工程国家级重点实验室,江苏 南京 211101
  • 收稿日期:2020-05-06 修回日期:2020-06-15 出版日期:2020-07-10
  • 通讯作者: 刘磊 E-mail:wangpengqx@163.com;liuleidll@gmail.com
  • 基金资助:
    国家自然科学基金面上项目“利用远红外—太赫兹波高光谱辐射反演冰云微物理参数”(41875025);“地基红外高光谱辐射仪和偏振激光雷达联合反演薄云微物理参数”(41575024)

Research Status and Progress of Balloon-borne Cloud and Precipitation Particles Probe

Peng Wang 1( ),Lei Liu 1, 2( ),Xichuan Liu 1,Shuai Hu 1, 2,Shijun Zhao 1,Wenming Ji 1,Taichang Gao 1, 2   

  1. 1.College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China
    2.National Key Laboratory on Electromagnetic Environment and Electro-optical Engineering, Nanjing 211101, China
  • Received:2020-05-06 Revised:2020-06-15 Online:2020-07-10 Published:2020-08-21
  • Contact: Lei Liu E-mail:wangpengqx@163.com;liuleidll@gmail.com
  • About author:Wang Peng (1996-), male, Zaozhuang City, Shandong Province, Master student. Research areas include atmospheric physics and atmospheric environment. E-mail: wangpengqx@163.com
  • Supported by:
    the National Natural Science Foundation of China "Retrieval of microphysical properties of ice clouds from high-resolution far-infrared and terahertz radiation"(41875025);"Retrieving microphysical properties of thin clouds from combined ground-based hyperspectral infrared sounder and polarization lidar"(41575024)

准确观测云和降水的微物理特征是理解云降水物理过程的关键。由气象气球搭载测量仪器升空进行现场探测是获取云和降水粒子微物理特征的有效方式,其作为机载云降水粒子测量设备的补充手段,在现场测量中发挥着越来越重要的作用。根据现有球载云降水粒子探测器工作原理的差异,将其分为碰撞取样式、直接成像式、光学散射式、光强衰减式和电荷测量式探测器。总结了典型仪器的工作原理、关键技术和主要优缺点;简要介绍了其在云层精细结构获取、云参数遥感方法建立、云降水物理过程研究和参数化以及雷暴云的科学观测等方面的应用;最后,对球载云降水粒子探测器的发展趋势进行了展望,为开展相关技术研究和设备研制提供参考。

The accurate observation of the microphysical structure of cloud and precipitation plays an important role in understanding the formation of clouds and precipitation. In-situ measurement using measuring instruments carried by meteorological balloons is an effective way to obtain the microphysical properties of cloud and precipitation particles, which is a supplementary means for aircraft to observe cloud and precipitation particles. This observation method plays a more and more important role in in-situ measurement. According to the difference of the working principle of the existing balloon-borne cloud and precipitation particles probes, the detectors can be divided into particle impact-sampling sensors, particle imaging sensors, light-scattering sensors, light intensity attenuation sensors and charge measurement sensors. The working principles, key technologies and main advantages and disadvantages of typical instruments were summarized, and their applications to detailed cloud structure acquisition, cloud remote sensing method establishment, cloud and precipitation physical process research and parameterization, and scientific observation of thunderstorm clouds were briefly introduced. Finally, the development trend of balloon-borne cloud precipitation particle detectors was prospected, which will provide reference for related technical research and equipment development.

中图分类号: 

表1 典型球载云降水粒子测量仪器
Table 1 The typical balloon-borne cloud and precipitation particles measurement instruments
测量方式 仪器名称 测量要素 主要指标
碰撞取样式 Snow Crystal Sondes [ 11 ] 粒子形状、粒子尺寸 粒径:大于20 μm;仪器尺寸:14 cm×7 cm×5.5 cm;仪器重量:1.5 kg
碰撞取样式 Cloud Particle Replicator [ 17 ] 粒子形状、粒子尺寸 粒径:大于7 μm;仪器尺寸:91 cm×17 cm×8 cm;仪器重量:2.2 kg
碰撞取样式 Cloud Particle Video Sonde [ 13 ] 粒子形状、粒子尺寸 粒径:7 μm~1 mm;粒径分辨率:5 μm;仪器尺寸:16 cm×16 cm×53 cm;仪器重量:3 kg
碰撞取样式 Hydrometeor Videosonde [ 18 ] 粒子形状、粒子尺寸 粒径:7 μm~2 mm;仪器尺寸:22.5 cm×15.2 cm×41 cm;仪器重量:1.3 kg
碰撞取样式 New Hydrometeor Videosonde [ 19 ] 粒子形状、粒子尺寸 粒径:7 μm~5 mm;仪器尺寸:28 cm×10.6 cm×50 cm;仪器重量:2.4 kg
碰撞取样式 Balloon-Borne Ice Particle Imaging [ 20 ] 粒子形状、粒子尺寸 粒径:7 μm~1 mm;粒径分辨率:4 μm;粒径测量不确定度:5%~17%;仪器重量:3 kg
直接成像式 Precipitation Particle Image Sensor/Videosonde [ 21 ] 粒子尺寸、粒子电荷 粒径:0.5 mm~2 cm;电荷量:±1~±400 pC;仪器重量:3 kg
直接成像式 New Videosonde [ 22 ] 粒子尺寸、粒子电荷 粒径:0.5 mm~2 cm;粒径测量不确定度:2.6%~13%;电荷量:±1~±400 pC;仪器重量:950 g
直接成像式 Particle Size, Image, and Velocity [ 23 ] 粒子尺寸、下落速度 粒径:0.1 mm~10 mm;粒径测量不确定度:7%;仪器重量:2.72 kg
直接成像式 Digital Holographic Imager [ 15 ] 粒子形状、粒子尺寸 粒径:大于5 μm
光学散射式 Cloud Particle Sensor [ 24 ] 粒子数,粒子尺寸,粒子相态 粒径:2~80 μm;粒子计数:1 000个/秒;仪器尺寸:11.5 cm×14 cm×12 cm;仪器重量:200 g
光学散射式 Universal Cloud and Aerosol Sounding System [ 25 ] 粒子数,粒子尺寸 粒径:0.4~17 μm或1~40 μm;粒子计数:10 000个/秒;仪器重量:280 g
光强衰减式 Low-cost Laser Disdrometer [ 26 , 27 ] 粒子尺寸、下落速度 粒径:0.5~6 mm或0.06~24.5 mm;像素分辨率:0.125 mm;仪器重量:450 g
电荷测量式 Particle Charge Instrument [ 12 ] 粒子电荷、下落速度 电荷量:±10~±400 pC;电荷测量不确定度:15%;速度测量不确定度:10%
电荷测量式 Charge q and Size d[ 28 ] 粒子尺寸、粒子电荷 直径:0.8~8.0 mm;粒径测量不确定度:5%~25%;电荷量:±4~±400 pC;电荷测量不确定度:14.3%
1 Pruppacher H R, Klett J D. Microstructure of Atmospheric Clouds and Precipitation[M]. Dordrecht, Springer Netherlands: Microphysics of Clouds and Precipitation, 2010.
2 Heymsfield A J. Precipitation development in stratiform ice clouds: A microphysical and dynamical study[J]. Journal of the Atmospheric Sciences, 1977, 34( 2): 367- 381.
3 Zhang Lele, Gao Liming, Zhao Lin, et al. Review on correction of errors in precipitation measurement [J]. Journal of the Atmospheric Sciences, 2017, 32( 7): 723- 730.
张乐乐, 高黎明, 赵林, 等. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32( 7): 723- 730.
4 Stephens G L, Kummerow C D. The remote sensing of clouds and precipitation from space: A review[J]. Journal of the Atmospheric Sciences, 2007, 64( 11): 3 742- 3 765.
5 Huang Yipeng, Li Wanbiao, Zhao Yuchun, et al. A review of radar-and satellite—Based observational studies and nowcasting techniques on convection [J]. Advances in Earth Science, 2019, 34( 12): 1 273- 1 287.
黄亦鹏, 李万彪, 赵玉春, 等. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34( 12): 1 273- 1 287.
6 Baumgardner D, Abel S J, Axisa D, et al. Cloud ice properties: In situ measurement challenges[J]. Meteorological Monographs, 2017, 58: 9. 1-9. 23.
7 Baumgardner D, Brenguier J L, Bucholtz A, et al. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: A cook's tour of mature and emerging technology[J]. Atmospheric Research, 2011, 102( 1/2): 10- 29.
8 Huang Minsong, Lei Hengchi, Jin Ling. Pseudo particle identification in the image data from the airborne cloud and precipitation particle image Probe[J]. Chinese Journal of Atmospheric Sciences, 2017, 41( 5): 1 113- 1 124.
黄敏松, 雷恒池, 金玲. 机载云降水粒子成像仪所测数据中伪粒子的识别[J]. 大气科学, 2017, 41( 5): 1 113- 1 124.
9 Field P R, Heymsfield A J, Bansemer A. Shattering and particle interarrival times measured by optical array probes in ice clouds[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23( 10): 1 357- 1 371.
10 Lawson R P, Baker B, Pilson B, et al. In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds[J]. Journal of the Atmospheric Sciences, 2006, 63( 12): 3 186- 3 203.
11 Magono C, Tazawa S. Design of “Snow Crystal Sondes”[J]. Journal of the Atmospheric Sciences, 1966, 23( 5): 618- 625.
12 Marshall T C, Winn W P. Measurements of charged precipitation in a New Mexico thunderstorm: Lower positive charge centers[J]. Journal of Geophysical Research, 1982, 87( C9): 7 141- 7 157.
13 Murakami M, Matsuo T, Nakayama T, et al. Development of cloud particle video sonde[J]. Journal of the Meteorological Society of Japan, 1987, 65( 5): 803- 809.
14 Tsuchiya M, Kasai T, Hayashi M, et al. Development of aerosol sonde for observation balloon[J]. Transactions of the Society of Instrument and Control Engineers, 1996, 32( 3): 290- 296.
15 Comerón A, Kassianov E I, Sch?fer K, et al. A low-cost digital holographic imager for calibration and validation of cloud microphysics remote sensing[C]// Remote Sensing of Clouds and the Atmosphere XXI. 2016.
16 Stith J L, Baumgardner D, Haggerty J, et al. 100 years of progress in atmospheric observing systems[J]. Meteorological Monographs, 2018, 59: 2. 1-2. 55.
17 Miloshevich L M, Heymsfield A J. A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14( 4): 753- 768.
18 Murakami M, Matsuo T. Development of the hydrometeor videosonde[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7( 5): 613- 620.
19 Orikasa N, Murakami M. A new version of hydrometeor videosonde for cirrus cloud observations[J]. Journal of the Meteorological Society of Japan, 1997, 75( 6): 1 033- 1 039.
20 Kuhn T, Heymsfield A J. In situ balloon-borne ice particle imaging in high-latitude cirrus[J]. Pure and Applied Geophysics, 2016, 173( 9): 3 065- 3 084.
21 Takahashi T. Near absence of lightning in torrential rainfall producing Micronesian thunderstorms[J]. Geophysical Research Letters, 1990, 17( 13): 2 381- 2 384.
22 Boussaton M P, Coquillat S, Chauzy S, et al. A new videosonde with a particle charge measurement device for in situ observation of precipitation particles[J]. Journal of Atmospheric & Oceanic Technology, 2004, 21( 21): 1 519- 1 531.
23 Waugh S M, Ziegler C L, MacGorman D R, et al. A balloon-borne Particle Size, Imaging, and Velocity Probe for in situ microphysical measurements[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32( 9): 1 562- 1 580.
24 Fujiwara M, Sugidachi T, Arai T, et al. Development of a cloud particle sensor for radiosonde sounding[J]. Atmospheric Measurement Techniques, 2016, 9( 12): 5 911- 5 931.
25 Smith H R, Ulanowski Z, Kaye P H, et al. The Universal Cloud and Aerosol Sounding System (UCASS): A low-cost miniature optical particle counter for use in dropsonde or balloon-borne sounding systems[J]. Atmospheric Measurement Techniques, 2019, 12( 12): 6 579- 6 599.
26 Minda H, Tsuda N. Low-Cost Laser Disdrometer with the capability of hydrometeor imaging[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2012, 7( ): S132- S138.
27 Minda H, Makino T, Tsuda N, et al. Performance of a laser disdrometer with hydrometeor imaging capabilities and fall velocity estimates for snowfall[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11( 5): 624- 632.
28 Bateman M G, Rust W D, Marshall T C. A balloon-borne instrument for measuring the charge and size of precipitation particles inside thunderstorms[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11( 1): 161- 169.
29 Takahashi T, Fukuta N. Ice crystal replication with common plastic solutions[J]. Journal of Atmospheric and Oceanic Technology, 1988, 5( 1): 129- 135.
30 Maccready P B, Todd C J. Continuous particle sampler[J]. Journal of Applied Meteorology, 1964, 3( 4): 450- 460.
31 Nasiri S L, Baum B A, Heymsfield A J, et al. The development of midlatitude cirrus models for MODIS using FIRE-I, FIRE-II, and ARM in situ data[J]. Journal of Applied Meteorology, 2002, 41( 3): 197- 217.
32 Kajikawa M, Kikuchi K, Endoh T, et al. Observation of snow crystals in the lower atmosphere of Arctic Canada by means of "Snow Crystal Sondes"[J]. Journal of the Meteorological Society of Japan, 1983, 61( 3): 388- 401.
33 Orikasa N, Murakami M, Hoshimoto M, et al. Re-evaluation of the collection efficiency of the Hydrometeor Videosonde for dry snow particles[J]. Journal of the Meteorological Society of Japan, 2005, 83( 3): 439- 448.
34 Ohigashi T, Tsuboki K, Suzuki Y, et al. Characteristics of upper-tropospheric outflow-layer clouds of Typhoon Francisco ( 2013) observed by hydrometeor videosonde[J]. Atmospheric Research, 2020, 235: 104 635.
35 Takahashi T, Sugimoto S, Kawano T, et al. Microphysical structure and lightning initiation in Hokuriku winter clouds[J]. Journal of Geophysical Research: Atmospheres, 2019, 124( 23): 13 156- 13 181.
36 Orikasa N, Murakami M. Ice crystal shapes in midlatitude cirrus clouds derived from Hydrometeor Videosonde (HYVIS) observations[J]. Journal of the Meteorological Society of Japan, 2015, 93( 1): 143- 155.
37 Wolf V, Kuhn T, Milz M, et al. Arctic ice clouds over northern Sweden: Microphysical properties studied with the Balloon-borne Ice Cloud particle Imager B-ICI[J]. Atmospheric Chemistry and Physics, 2018, 18( 23): 17 371- 17 386.
38 Orikasa N, Murakami M J. Heymsfield A. Ice crystal concentration in midlatitude cirrus clouds: In situ measurements with the Balloon-borne Hydrometeor Videosonde (HYVIS)[J]. Journal of the Meteorological Society of Japan, 2013, 91( 2): 143- 161.
39 Suzuki K, Shimizu K, Ohigashi T, et al. Development of a new Videosonde observation system for in-situ precipitation particle measurements[J]. Sola, 2012, 8: 1- 4.
40 Suzuki K, Matsuo M, Nakano E, et al. Graupel in the different developing stages of Baiu monsoon clouds observed by videosondes[J]. Atmospheric Research, 2014, 142: 100- 110.
41 Takahashi T, Keenan T D. Hydrometeor mass, number, and space charge distribution in a “Hector” squall line[J]. Journal of Geophysical Research: Atmospheres, 2004, 109( D16). DOI: 10.1029/2004JD004667.
doi: 10.1029/2004JD004667    
42 Suzuki K, Nakagawa K, Kawano T, et al. Videosonde-observed graupel in different rain systems during Pre-YMC Project[J]. Sola, 2018, 14: 148- 152.
43 Takahashi T. Precipitation mechanisms in east Asian monsoon: Videosonde study[J]. Journal of Geophysical Research: Atmospheres, 2006, 111( D9). DOI: 10.1029/2005JD006268.
doi: 10.1029/2005JD006268    
44 Takahashi T. The Videosonde system and its use in the study of east Asian monsoon rain[J]. Bulletin of the American Meteorological Society, 2010, 91( 9): 1 231- 1 246.
45 Waugh S M, Ziegler C L, MacGorman D R. In situ microphysical observations of the 29-30 May 2012 Kingfisher, OK, supercell with a balloon-borne video disdrometer[J]. Journal of Geophysical Research: Atmospheres, 2018, 123( 10): 5 618- 5 640.
46 Chambers T E. A Digital Holographic Imager for Cloud Microphysics Studies[D]. Adelaide: University of Adelaide, 2017.
47 Sugita T, Kondo Y, Koike M, et al. Balloon-borne optical counter for in situ aerosol measurements[J]. Journal of Atmospheric Chemistry, 1999, 32( 1): 183- 204.
48 Kasai T, Tsuchiya M, Takami K, et al. Balloon borne optical particle counter for stratospheric observation[J]. Review of Scientific Instruments, 2003, 74( 2): 1 082- 1 092.
49 Iwasaki S, Maruyama K, Hayashi M, et al. Characteristics of aerosol and cloud particle size distributions in the tropical tropopause layer measured with optical particle counter and lidar[J]. Atmospheric Chemistry and Physics, 2007, 7( 13): 3 507- 3 518.
50 Gao R S, Perring A E, Thornberry T D, et al. A high-sensitivity low-cost optical particle counter design[J]. Aerosol Science and Technology, 2013, 47( 2): 137- 145.
51 Rosen J M, Kjome N T. Backscattersonde: A new instrument for atmospheric aerosol research[J]. Applied Optics, 1991, 30( 12): 1 552- 1 561.
52 Rosen J M, Kjome N T, Oltmans S J. Simultaneous ozone and polar stratospheric cloud observations at South Pole station during winter and spring 1991[J]. Journal of Geophysical Research: Atmospheres, 1993, 98( D7): 12 741- 12 751.
53 Khaykin S M, Engel I, V?mel H, et al. Arctic stratospheric dehydration-Part 1: Unprecedented observation of vertical redistribution of water[J]. Atmospheric Chemistry and Physics, 2013, 13( 22): 11 503- 11 517.
54 Minda H, Makino T, Tsuda N. Performance of a new low-cost laser disdrometer with rainfall intensity correction in heavy rainfall[J]. IEEE Transactions on Electrical and Electronic Engineering, 2014, 9( 5): 542- 547.
55 Weinheimer J A. The charge induced on a conducting cylinder by a point charge and its application to the measurement of charge on precipitation[J]. Journal of Atmospheric & Oceanic Technology, 1988, 5( 2): 298- 304.
56 Takahashi T, Tajiri T, Sonoi Y. Charges on graupel and snow crystals and the electrical structure of winter thunderstorms[J]. Journal of the Atmospheric Sciences, 1999, 56( 11): 1 561- 1 578.
57 Coquillat S, Boussaton M P, Chauzy S, et al. A new videosonde for in situ observation of precipitation particles[C]// Proceeding of the 12th International Conference on Atmospheric Electricity. Versailles,France, 2003.
58 Takahashi T, Kuhara K. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia[J]. Journal of the Meteorological Society of Japan, 1993, 71( 1): 21- 31.
59 Magono C, Lee C W. The vertical structure of snow clouds, as revealed by "Snow Crystal Sondes", Part II[J]. Journal of the Meteorological Society of Japan, 1973, 51( 3): 176- 190.
60 Tazawa S, Magono C. The vertical structure of snow clouds, as revealed by "Snow Crystal Sondes", Part I[J]. Journal of the Meteorological Society of Japan, 1973, 51( 3): 168- 175.
61 Heymsfield A J, Matrosov S, Baum B. Ice water path-optical depth relationships for cirrus and deep stratiform ice cloud layers[J]. Journal of Applied Meteorology, 2003, 42( 10): 1 369- 1 390.
62 Hong G, Yang P, Baum B A, et al. Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models[J]. Journal of Climate, 2009, 22( 23): 6 287- 6 312.
63 Orikasa N, Murakami M. A new version of hydrometeor videosonde for cirrus cloud observations[J]. Journal of the Meteorological Society of Japan, 1997, 75( 6): 1 033- 1 039.
64 Seiki T, Satoh M, Tomita H, et al. Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations[J]. Journal of Geophysical Research: Atmospheres, 2014, 119( 11): 6 681- 6 701.
65 Yoshida Y, Asano S, Yamamoto A, et al. Radiative properties of mid-latitude frontal ice-clouds observed by the shortwave and Longwave Radiometer-Sondes[J]. Journal of the Meteorological Society of Japan, 2004, 82( 2): 639- 656.
66 Wolf V, Kuhn T, Kr?mer M. On the dependence of cirrus parametrizations on the cloud origin[J]. Geophysical Research Letters, 2019, 46( 21): 12 565- 12 571.
67 Nakakita E, Yamaguchi K, Sumida Y, et al. Development of hydrometeor classification system using polarimetric radar measurements synchronized with the video-sonde observation[J]. Annual Journal of Hydraulic Engineering, JSCE, 2009, 53: 361- 366.
68 Kouketsu T, Uyeda H, Ohigashi T, et al. A hydrometeor classification method for X-Band Polarimetric Radar: Construction and validation focusing on solid hydrometeors under moist environments[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32( 11): 2 052- 2 074.
69 Matrosov S Y, Shupe M D, Heymsfield A J, et al. Ice cloud optical thickness and extinction estimates from radar measurements[J]. Journal of Applied Meteorology, 2003, 42( 11): 1 584- 1 597.
70 Baum B A, Heymsfield A J, Yang P, et al. Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models[J]. Journal of Applied Meteorology, 2005, 44( 12): 1 885- 1 895.
71 Ou S C, Liou K N, Takano Y, et al. Remote sounding of cirrus cloud optical depths and ice crystal sizes from AVHRR data: Verification using FIRE II IFO measurements[J]. Journal of the Atmospheric Sciences, 1995, 52( 23): 4 143- 4 158.
72 Sakai T, Orikasa N, Nagai T, et al. Optical and microphysical properties of upper clouds measured with the raman lidar and Hydrometeor Videosonde: A case study on 29 march 2004 over Tsukuba, Japan[J]. Journal of the Atmospheric Sciences, 2006, 63( 8): 2 156- 2 166.
73 Waugh S, Schuur T J. On the use of radiosondes in freezing precipitation[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35( 3): 459- 472.
74 Murakami M, Yamada Y, Matsuo T, et al. Microphysical structures of warm-frontal clouds the 20 June 1987 case study[J]. Journal of the Meteorological Society of Japan, 1992, 70( 5): 877- 895.
75 Ohigashi T, Tsuboki K, Oue M. Cloud-top supercooled liquid droplets in stratiform clouds observed during winter in inland Hokkaido, Japan[J]. Sola, 2016, 12: 140- 145.
76 Oue M, Ohigashi T, Tsuboki K, et al. Vertical distribution of precipitation particles in Baiu frontal stratiform intense rainfall around Okinawa Island, Japan[J]. Journal of Geophysical Research: Atmospheres, 2015, 120( 11): 5 622- 5 637.
77 Takahashi T, Suzuki K. Development of negative dipoles in a stratiform cloud layer in a Okinawa “Baiu” MCS system[J]. Atmospheric Research, 2010, 98( 2/4): 317- 326.
78 Murakami M, Matsuo T, Mizuno H, et al. Mesoscale and microscale structures of snow clouds over the sea of Japan Part I : Evolution of microphysical structures in short-lived convective snow clouds[J]. Journal of the Meteorological Society of Japan, 1994, 72( 5): 671- 694.
79 Watanabe R, Suzuki K, Kawano T, et al. Microphysical structures of early-winter snow clouds during a cold air outbreak of december 23-25, 2010[J]. Sola, 2014, 10: 62- 66.
80 Ikawa M, Mizuno H, Matsuo T, et al. Numerical modeling of the convective snow cloud over the sea of Japan precipitation mechanism and sensitivity to ice crystal nucleation rates[J]. Journal of the Meteorological Society of Japan, 1991, 69( 6): 641- 667.
81 Hayashi M, Iwasaka Y, Watanabe M, et al. Size and number concentration of liquid PSCs balloon-borne measurements at Ny-Alesund, Norway in winter of 1994/95[J]. Journal of the Meteorological Society of Japan, 1998, 76( 4): 549- 560.
82 V?mel H, Rummukainen M, Kivi R, et al. Dehydration and sedimentation of ice particles in the Arctic stratospheric vortex[J]. Geophysical Research Letters, 1997, 24( 7): 795- 798.
83 Kivi R, Kyr? E, D?rnbrack A, et al. Observations of vertically thick polar stratospheric clouds and record low temperature in the Arctic Vortex[J]. Geophysical Research Letters, 2001, 28( 19): 3 661- 3 664.
84 Khaykin S, Engel I, V?mel H, et al. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water[J]. Atmospheric Chemistry and Physics, 2013, 13( 22): 11 503- 11 517.
85 Marshall T C, Stolzenburg M. Estimates of cloud charge densities in thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 1998, 103( D16): 19 769- 19 775.
86 Stolzenburg M, Marshall T C. Charged precipitation and electric field in two thunderstorms[J]. Journal of Geophysical Research: Atmospheres, 1998, 103( D16): 19 777- 19 790.
87 Bateman M G, Rust W D, Smull B F, et al. Precipitation charge and size measurements in the stratiform region of two mesoscale convective systems[J]. Journal of Geophysical Research: Atmospheres, 1995, 100( D8): 16 341- 16 356.
88 Takahashi T, Yamaguchi N, Kawano T. Videosonde observation of torrential rain during Baiu season[J]. Atmospheric Research, 2001, 58( 3): 205- 228.
89 Takahashi T, Sugimoto S, Kawano T, et al. Riming electrification in Hokuriku winter clouds and comparison with laboratory observations[J]. Journal of the Atmospheric Sciences, 2016, 74( 2): 431- 447.
90 Yang Mingkun. The Design of a Balloon Carried Sonde and Receiving System on the Ground[D]. Lanzhou: Lanzhou University, 2012.
杨明堃. 一种球载探空仪及地面接收系统的设计[D]. 兰州: 兰州大学, 2012.
91 Sun Xiaojuan. The Design and Implementation of a Balloon Carried Donde System[D]. Lanzhou: Lanzhou University, 2017.
孙小娟. 一种球载探空仪系统的设计与实现[D]. 兰州: 兰州大学, 2017.
[1] 许昆明,胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
阅读次数
全文


摘要