[1] Liu Sumei, Zhang Jing. Several sampling techniques for sediment porewater [J]. Marine Environmental Science, 1999, 18(2): 66-71. [刘素美,张经.沉积物间隙水的几种制备方法 [J]. 海洋环境科学, 1999, 18(2): 66-71.]
[2] Revsbech N P, Jorgensen B B, Blackburn T H. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat [J]. Limnology and Oceanography, 1983, 28: 1 062-1 074.
[3] Archer D, Emerson S, Smith C R. Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results [J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 831-2 845.
[4] Cai W J, Reimers C E. The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface [J]. Limnology and Oceanography, 1993, 38: 1 776-1 787.
[5] Cai W J, Reimers C E, Shaw T. Microelectrode studies of organic carbon degradation and calcite dissolution at a California continential rise site [J]. Geochimica et Cosmochimica Acta, 1995, 59: 497-511.
[6] Reimers C E, Ruttenberg K C, Canfield D E, et al. Porewater pH and authigenic phrases formed in the uppermost sediments of the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 1996, 60: 4 037-4 057.
[7] Komada T, Reimers C E, Boehme S E. Dissolved inorganic carbon profiles and fluxes determined using pH and pCO2 microelectrodes [J]. Limnology and Oceanography, 1998, 43: 769-781.
[8] Zhao P, Cai W J. An improved pCO2 microelectrode [J]. Analytical Chemistry, 1997, 69: 5 052-5 058.
[9] Zhao P, Cai W J. pH polymeric membrane microelectrodes based on neutral carriers and their application in aquatic environments [J]. Analytica Chimica Acta, 1999, 395: 285-291.
[10] Cai W J, Zhao P, Wang Y. pH and pCO2 microelectrode measurements and the diffusive behavior of carbon dioxide species in coastal marine sediments [J]. Marine Chemistry, 2000, 70: 133-148.
[11] De Beer D, Glud A, Epping E, et al. A fast responding CO2 microelectrode for profiling sediments, microbial mats and biofilms [J]. Limnology and Oceanography, 1997, 42: 1 590-1 600.
[12] Baur J E, Spaine T W. Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide [J]. Journal of Electroanalytical Chemistry,1998, 443 (2): 208-216.
[13] Marzouk S A M, Ufer S, Buck R P, et al. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia [J]. Analytical Chemistry,1998 70 (23): 5 054-5 061.
[14] Wang M, Yao S, Madou M A. long-term stable iridium oxide pH electrode [J]. Sensors and Actuators B-Chemical,2002, 81 (2/3): 313-315.
[15] Smiechowski M F, Lvovich V F. Iridium oxide sensors for acidity and basicity detection in industrial lubricants [J]. Sensors and Actuators B-Chemical, 2003, 96 (1/2): 261-267.
[16] Yao S, Wang M, Madou M. A pH electrode based on melt-oxidized iridium oxide[J]. Journal of the Electrochemical Society,2001, 148 (4): H29-H36.
[17] Du R G, Hu R G, Huang R S, et al. In situ measurement of Cl- concentrations and pH at the reinforcing steel/concrete interface by combined sensors [J]. Analytical Chemistry, 2006 Accepted.
[18] Beyenal H, Davis C C, Lewandowski Z. An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms [J]. Sensors and Actuators B, 2004, 97: 202-210.
[19] Yao S, Wang M. Electrochemical Sensor for Dissolved Carbon Dioxide Measurement [J]. Journal of the Electrochemical Society, 2002, 149(1): H28-H32.
[20] Berner R A. Electrode studies of hydrogen sulfide in marine sediments [J]. Geochimica et Cosmochimica Acta, 1963, 27: 563-575.
[21] Revsbach N P, Jorgensen B B, Blackburn T H, et al. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat [J]. Limnology and Oceanography, 1983, 28(6): 1 062-1 074.
[22] Visscher P T, Beukema J, Van Gemerden H. In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode [J]. Limnology and Oceanography,1991, 36: 1 476-1 480.
[23] Gundersen J K, Jorgensen B B, Larsen E, et al. H W. Mats of giant sulfur bacteria on deep-sea sediments due to fluctuating hydrothermal flow [J]. Nature, 1992, 360: 454-455.
[24] Song Jinming, Li Pengcheng. Iron and manganese in interstitial waters and sediment environments of Nansha Islands, South China Sea [J]. Acta Scientiae Circumstiae, 1996, 16(3): 294-301. [宋金明,李鹏程.南沙群岛海域沉积物环境与间隙水中的铁锰[J]. 环境科学学报,1996, 16(3): 294-301.]
[25] Song Jinming, Li Pengcheng. -2 valence sulfur of lagoon and off-reef sediment interstitial waters of Nansha Islands, South China sea [J]. Oceanologia et Limnologia Sinica,1996, 27(6): 590-597.[宋金明,李鹏程.南沙群岛海域泻湖及礁外沉积物间隙水中的-2价硫[J]. 海洋与湖沼, 1996, 27(6): 590-597.]
[26] Clark L C, Wolf R, Granger D, et al. Continuous recording of blood oxygen tensions by polarography [J]. Journal of Applied Physiology, 1953, 6: 189-193.
[27] Glud R N, Wenzhofer F, Tengberg A, et al. Distribution of oxygen in surface sediments from central Sagami Bay, Japan: in situ measurements by microelectrodes and planar optodes [J]. Deep-Sea Research I, 2005, 52: 1 974-1 987.
[28] Revsbech N P. An oxygen microelectrode with a guard cathode [J]. Limnology and Oceanography,1989,34: 474-478.
[29] Revsbech N P, Nielsen L P, Ramsing N B. A novel microsensor for determination of apparent diffusivity in sediments [J]. Limnology and Oceanography, 1998, 43(5): 986-992.
[30] Jorgensen B B, Revsbech N P. Diffusive boundary layers and the oxygen uptake of sediments and detritus [J]. Limnology and Oceanography, 1985, 30(1): 111-122.
[31] Reimers C E, Fischer K M, Merewether R, et al. Oxygen microprofiles measured in situ in deep ocean sediments [J]. Nature, 1986, 320: 741-744.
[32] Reimers C E. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean [J].Deep-Sea Research, 1987, 34:2 017-2 035.
[33] Jahnke R A, Christiansen M B. A free-vehicle benthic chamber instrument for sea floor studies [J]. Deep-Sea Research, 1989, 36: 625-637.
[34] Helder W, Bakker J F. Shipboard comparison of micro- and minielectrodes for measuring oxygen distribution in marine sediments [J]. Limnology and Oceanography, 1985, 30(5): 1 106-1 109.
[35] Glud R N, Gundersen J K, Revsbech N P, et al. Effect on the benthic diffusive boundary layer imposed by microelectrodes [J]. Limnology and Oceanography, 1994, 39(2): 462-467.
[36] Tengberg A, de Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography - A review of design, technical solutions and functioning [J]. Progress in Oceanography, 1995, 35: 253-294.
[37] Bickford G P. The effects of sewage organic matter on biogeochemical processes within mid-shelf sediments offshore Sydney, Australia [J]. Marine Pollution Bulletin, 1996, 33: 168-181.
[38] Meijer L E, Avnimelech Y. On the use of microelectrodes in fish pond sediments [J]. Aquacultural Engineering, 1999, 21: 71-83.
[39] Rabouille C, Denis L, Dedieu K, et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations [J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 49-69.
[40] Sauter E J, Schluter M, Suess E. Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from porewater oxygen microprofiles [J]. Deep Sea Research, 2001, 48: 529-553.
[41] Wenzhofer F, Holby O, Kohls O. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes [J]. Deep-Sea Research I, 2001, 48: 1 741-1 755.
[42] Epping E, van der Zee C, Soetaert K, et al. On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare canyon (NE Atlantic) [J]. Progress in Oceanography, 2002, 52: 399-431.
[43] Bond A M. Modern Polarographic methods in Analytical Chemistry [M]. Marcel Dekker Inc, 1980: 1-350.
[44] Brendel P J, Luther G W. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, oxygen, and S(-II) in porewaters of marine and freshwater sediments [J]. Environmental Science & Technology, 1995, 29: 751-761.
[45] Xu K. Development of Hg-Au voltammetric microelectrodes for determination of dissolved Mn, Fe, O2, and S(-II) within marine biofilms[D]. University of Delaware, 1997: 1-101.
[46] Xu K, Dexter S C, Luther G W. Voltammetric microelectrodes for biocorrosion studies [J]. Corrosion, 1998, 54: 814-823.
[47] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction [J]. Geochimica et Cosmochimica Acta, 1993, 57: 3 867-3 883.
[48] Luther G W, Sundby B, Lewis B L, et al. The interaction of manganese with the nitrogen cycle in continental margin sediment: alternative pathways for dinitrogen formation[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4 043-4 052.
[49] Luther G W, Reimers C E, Nuzzio D B. In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(-II) and pH in porewaters [J]. Environmental Science & Technology, 1999, 33: 4 352-4 356.
[50] Reimers C E, Luther G W, Lovalvo D, et al. Real-time measurement of pore water redox species and pH using voltammetric, potentiometric and amperometric microelectrodes from an ROV [C].// Blain S, et al. ed. Marine Analytical Chemistry for Monitoring and Oceanographic Research Proceedings. Brest, France, 1997.
[51] Martin W R, Sayles F L. Organic matter cycling in sediments of the continental margin in the northweat Atlantic ocean [J]. Deep-sea Reseach I, 2004, 51: 457-489.
[52] Cai W J, Luther G, Cornwell J, et al. Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments: a case study in Lake Champlain[J]. Geochimica et Cosmochimica Acta,2006,submitted.
[53] Cai W J, Zhao P, Theberge S M, et al. Porewater redox species, pH and pCO2 in aquatic sediments-Electrochemical sensor studies in Lake Champlain and Sapelo Island [C].// Taillefert M, Rozan T F, ed. Environmental Electrochemistry: Analyses of Trace Element Biogeochemistry ACS Symposium Series 811, 2002.
[54] Beyenal H, Tanyolac A, Lewandowski Z. Measurement of local effective diffusivity in heterogeneous biofilms [J]. Water Science and Technology, 1998, 38: 171-178.
[55] Dexter S C, Xu K, Luther G W. Mn cycling in marine bioflims: Effect on the rate of localized corrosion [J]. Biofouling, 2003, 19: 139-149.
[56] Correia dos Santos M M, Vilhena M F, Simoes Goncalves M L. Interaction of lead (II) with sediment particles: A mercury microelectrode study [J]. Analytica Chimmica Acta, 2001, 441: 191-200.
[57] Lohse L, Epping E H G, Helder W, et al. Oxygen pore water profiles in continental shelf sediments of the North Sea: turbulent versus molecular diffusion [J]. Oceanographic Literature Review, 1997, 44: 810-811.
[58] Guss S. Oxygen uptake at the sediment-water interface simultaneously measured using a flux chamber method and microelectrodes [J]. Estuarine, Coastal and Shelf Science, 1998, 46: 143-156.
[59] Reimers C E, Glud R N. In situ chemical sensor measurements at the sediment-water interface [C]// Varney M S, ed. Chemical Sensors in Oceanography. Gordon Breach Science Publishers, 2000.
|