地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 863 -869. doi: 10.11867/j.issn.1001-8166.2006.08.0863

综述与评述 上一篇    下一篇

  1. 厦门大学环境科学研究中心,福建 厦门 361005
  • 收稿日期:2006-03-22 修回日期:2006-04-28 出版日期:2006-08-15
  • 通讯作者: 许昆明 E-mail:kunmingx@xmu.edu.cn
  • 基金资助:


Microelectrodes for in Situ Chemical Measurements in Sediments

Xu Kunming,Hu Ronggang   

  1. Environmental Science Research Center, Xiamen University, Xiamen 361005
  • Received:2006-03-22 Revised:2006-04-28 Online:2006-08-15 Published:2006-08-15


Microelectrodes for in situ chemical measurements in sediments are powerful techniques that cannot be substituted by alternative methods and are receiving increasing attentions from scientific community. This paper introduces three major electrochemical categories of microelectrodes that have practical applications in quantifying sediment chemistry, and cover the working principles, construction procedures, and applications of pH microelectrode, pCO2 microelectrode, sulfide selective microelectrode, oxygen membrane microelectrode, and Hg-Au voltammetric microelectrode in sediments. In particular, this paper describes the electrochemical properties of Iridium oxides pH microelectrodes and Hg-Au microelectrodes constructed in the laboratory and provides in details technicalities for measuring redox chemical species in sediments by voltammetry. It is believed that microelectrode applications have deepened biogeochemical study in sediments.


[1] Liu Sumei, Zhang Jing. Several sampling techniques for sediment porewater [J]. Marine Environmental Science, 1999, 18(2): 66-71. [刘素美,张经.沉积物间隙水的几种制备方法 [J]. 海洋环境科学, 1999, 18(2): 66-71.]

[2] Revsbech N P, Jorgensen B B, Blackburn T H. Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat [J]. Limnology and Oceanography, 1983, 28: 1 062-1 074.

[3] Archer D, Emerson S, Smith C R. Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results [J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 831-2 845.

[4] Cai W J, Reimers C E. The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface [J]. Limnology and Oceanography, 1993, 38: 1 776-1 787.

[5] Cai W J, Reimers C E, Shaw T. Microelectrode studies of organic carbon degradation and calcite dissolution at a California continential rise site [J]. Geochimica et Cosmochimica Acta, 1995, 59: 497-511.

[6] Reimers C E, Ruttenberg K C, Canfield D E, et al. Porewater pH and authigenic phrases formed in the uppermost sediments of the Santa Barbara Basin [J]. Geochimica et Cosmochimica Acta, 1996, 60: 4 037-4 057.

[7] Komada T, Reimers C E, Boehme S E. Dissolved inorganic carbon profiles and fluxes determined using pH and pCO2 microelectrodes [J]. Limnology and Oceanography, 1998, 43: 769-781.

[8] Zhao P, Cai W J. An improved pCO2 microelectrode [J]. Analytical Chemistry, 1997, 69: 5 052-5 058.

[9] Zhao P, Cai W J. pH polymeric membrane microelectrodes based on neutral carriers and their application in aquatic environments [J]. Analytica Chimica Acta, 1999, 395: 285-291.

[10] Cai W J, Zhao P, Wang Y. pH and pCO2 microelectrode measurements and the diffusive behavior of carbon dioxide species in coastal marine sediments [J]. Marine Chemistry, 2000, 70: 133-148.

[11] De Beer D, Glud A, Epping E, et al. A fast responding CO2 microelectrode for profiling sediments, microbial mats and biofilms [J]. Limnology and Oceanography, 1997, 42: 1 590-1 600.

[12] Baur J E, Spaine T W. Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide [J]. Journal of Electroanalytical Chemistry,1998, 443 (2): 208-216.

[13] Marzouk S A M, Ufer S, Buck R P, et al. Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia [J]. Analytical Chemistry,1998 70 (23): 5 054-5 061.

[14] Wang M, Yao S, Madou M A. long-term stable iridium oxide pH electrode [J]. Sensors and Actuators B-Chemical,2002, 81 (2/3): 313-315.

[15] Smiechowski M F, Lvovich V F. Iridium oxide sensors for acidity and basicity detection in industrial lubricants [J]. Sensors and Actuators B-Chemical, 2003, 96 (1/2): 261-267.

[16] Yao S, Wang M, Madou M. A pH electrode based on melt-oxidized iridium oxide[J]. Journal of the Electrochemical Society,2001, 148 (4): H29-H36.

[17] Du R G, Hu R G, Huang R S, et al. In situ measurement of Cl- concentrations and pH at the reinforcing steel/concrete interface by combined sensors [J]. Analytical Chemistry, 2006 Accepted.

[18] Beyenal H, Davis C C, Lewandowski Z. An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms [J]. Sensors and Actuators B, 2004, 97: 202-210.

[19] Yao S, Wang M. Electrochemical Sensor for Dissolved Carbon Dioxide Measurement [J]. Journal of the Electrochemical Society, 2002, 149(1): H28-H32.

[20] Berner R A. Electrode studies of hydrogen sulfide in marine sediments [J]. Geochimica et Cosmochimica Acta, 1963, 27: 563-575.

[21] Revsbach N P, Jorgensen B B, Blackburn T H, et al. Microelectrode studies of the photosynthesis and O2, H2S and pH profiles of a microbial mat [J]. Limnology and Oceanography, 1983, 28(6): 1 062-1 074.

[22] Visscher P T, Beukema J, Van Gemerden H. In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode [J]. Limnology and Oceanography,1991, 36: 1 476-1 480.

[23] Gundersen J K, Jorgensen B B, Larsen E, et al. H W. Mats of giant sulfur bacteria on deep-sea sediments due to fluctuating hydrothermal flow [J]. Nature, 1992, 360: 454-455.

[24] Song Jinming, Li Pengcheng. Iron and manganese in interstitial waters and sediment environments of Nansha Islands, South China Sea [J]. Acta Scientiae Circumstiae, 1996, 16(3): 294-301. [宋金明,李鹏程.南沙群岛海域沉积物环境与间隙水中的铁锰[J]. 环境科学学报,1996, 16(3): 294-301.]

[25] Song Jinming, Li Pengcheng. -2 valence sulfur of lagoon and off-reef sediment interstitial waters of Nansha Islands, South China sea [J]. Oceanologia et Limnologia Sinica,1996, 27(6): 590-597.[宋金明,李鹏程.南沙群岛海域泻湖及礁外沉积物间隙水中的-2价硫[J]. 海洋与湖沼, 1996, 27(6): 590-597.]

[26] Clark L C, Wolf R, Granger D, et al. Continuous recording of blood oxygen tensions by polarography [J]. Journal of Applied Physiology, 1953, 6: 189-193.

[27] Glud R N, Wenzhofer F, Tengberg A, et al. Distribution of oxygen in surface sediments from central Sagami Bay, Japan: in situ measurements by microelectrodes and planar optodes [J]. Deep-Sea Research I, 2005, 52: 1 974-1 987.

[28] Revsbech N P. An oxygen microelectrode with a guard cathode [J]. Limnology and Oceanography,1989,34: 474-478.

[29] Revsbech N P, Nielsen L P, Ramsing N B. A novel microsensor for determination of apparent diffusivity in sediments [J]. Limnology and Oceanography, 1998, 43(5): 986-992.

[30] Jorgensen B B, Revsbech N P. Diffusive boundary layers and the oxygen uptake of sediments and detritus [J]. Limnology and Oceanography, 1985, 30(1): 111-122.

[31] Reimers C E, Fischer K M, Merewether R, et al. Oxygen microprofiles measured in situ in deep ocean sediments [J]. Nature, 1986, 320: 741-744.

[32] Reimers C E. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean [J].Deep-Sea Research, 1987, 34:2 017-2 035.

[33] Jahnke R A, Christiansen M B. A free-vehicle benthic chamber instrument for sea floor studies [J]. Deep-Sea Research, 1989, 36: 625-637.

[34] Helder W, Bakker J F. Shipboard comparison of micro- and minielectrodes for measuring oxygen distribution in marine sediments [J]. Limnology and Oceanography, 1985, 30(5): 1 106-1 109.

[35] Glud R N, Gundersen J K, Revsbech N P, et al. Effect on the benthic diffusive boundary layer imposed by microelectrodes [J]. Limnology and Oceanography, 1994, 39(2): 462-467.

[36] Tengberg A, de Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography - A review of design, technical solutions and functioning [J]. Progress in Oceanography, 1995, 35: 253-294.

[37] Bickford G P. The effects of sewage organic matter on biogeochemical processes within mid-shelf sediments offshore Sydney, Australia [J]. Marine Pollution Bulletin, 1996, 33: 168-181.

[38] Meijer L E, Avnimelech Y. On the use of microelectrodes in fish pond sediments [J]. Aquacultural Engineering, 1999, 21: 71-83.

[39] Rabouille C, Denis L, Dedieu K, et al. Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations [J]. Journal of Experimental Marine Biology and Ecology, 2003, 285/286: 49-69.

[40] Sauter E J, Schluter M, Suess E. Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from porewater oxygen microprofiles [J]. Deep Sea Research, 2001, 48: 529-553.

[41] Wenzhofer F, Holby O, Kohls O. Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes [J]. Deep-Sea Research I, 2001, 48: 1 741-1 755.

[42] Epping E, van der Zee C, Soetaert K, et al. On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare canyon (NE Atlantic) [J]. Progress in Oceanography, 2002, 52: 399-431.

[43] Bond A M. Modern Polarographic methods in Analytical Chemistry [M]. Marcel Dekker Inc, 1980: 1-350.

[44] Brendel P J, Luther G W. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, oxygen, and S(-II) in porewaters of marine and freshwater sediments [J]. Environmental Science & Technology, 1995, 29: 751-761.

[45] Xu K. Development of Hg-Au voltammetric microelectrodes for determination of dissolved Mn, Fe, O2, and S(-II) within marine biofilms[D]. University of Delaware, 1997: 1-101.

[46] Xu K, Dexter S C, Luther G W. Voltammetric microelectrodes for biocorrosion studies [J]. Corrosion, 1998, 54: 814-823.

[47] Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction [J]. Geochimica et Cosmochimica Acta, 1993, 57: 3 867-3 883.

[48] Luther G W, Sundby B, Lewis B L, et al. The interaction of manganese with the nitrogen cycle in continental margin sediment: alternative pathways for dinitrogen formation[J]. Geochimica et Cosmochimica Acta, 1997, 61: 4 043-4 052.

[49] Luther G W, Reimers C E, Nuzzio D B. In situ deployment of voltammetric, potentiometric, and amperometric microelectrodes from a ROV to determine dissolved O2, Mn, Fe, S(-II) and pH in porewaters [J]. Environmental Science & Technology, 1999, 33: 4 352-4 356.

[50] Reimers C E, Luther G W, Lovalvo D, et al. Real-time measurement of pore water redox species and pH using voltammetric, potentiometric and amperometric microelectrodes from an ROV [C].// Blain S, et al. ed. Marine Analytical Chemistry for Monitoring and Oceanographic Research Proceedings. Brest, France, 1997.

[51] Martin W R, Sayles F L. Organic matter cycling in sediments of the continental margin in the northweat Atlantic ocean [J]. Deep-sea Reseach I, 2004, 51: 457-489.

[52] Cai W J, Luther G, Cornwell J, et al. Carbon cycling and the coupling between proton and electron transfer reactions in aquatic sediments: a case study in Lake Champlain[J]. Geochimica et Cosmochimica Acta,2006,submitted.

[53] Cai W J, Zhao P, Theberge S M, et al. Porewater redox species, pH and pCO2 in aquatic sediments-Electrochemical sensor studies in Lake Champlain and Sapelo Island [C].// Taillefert M, Rozan T F, ed. Environmental Electrochemistry: Analyses of Trace Element Biogeochemistry ACS Symposium Series 811, 2002.

[54] Beyenal H, Tanyolac A, Lewandowski Z. Measurement of local effective diffusivity in heterogeneous biofilms [J]. Water Science and Technology, 1998, 38: 171-178.

[55] Dexter S C, Xu K, Luther G W. Mn cycling in marine bioflims: Effect on the rate of localized corrosion [J]. Biofouling, 2003, 19: 139-149.

[56] Correia dos Santos M M, Vilhena M F, Simoes Goncalves M L. Interaction of lead (II) with sediment particles: A mercury microelectrode study [J]. Analytica Chimmica Acta, 2001, 441: 191-200.

[57] Lohse L, Epping E H G, Helder W, et al. Oxygen pore water profiles in continental shelf sediments of the North Sea: turbulent versus molecular diffusion [J]. Oceanographic Literature Review, 1997, 44: 810-811.

[58] Guss S. Oxygen uptake at the sediment-water interface simultaneously measured using a flux chamber method and microelectrodes [J]. Estuarine, Coastal and Shelf Science, 1998, 46: 143-156.

[59] Reimers C E, Glud R N. In situ chemical sensor measurements at the sediment-water interface [C]// Varney M S, ed. Chemical Sensors in Oceanography. Gordon Breach Science Publishers, 2000.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[6] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[7] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[8] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[9] 泮枫敏,袁华茂,宋金明,段丽琴. 海水痕量元素—有机配体的配分特征与影响因素研究进展[J]. 地球科学进展, 2019, 34(5): 499-512.
[10] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[11] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[12] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
[13] 韦海伦, 蔡进功, 王国力, 王学军. 海洋沉积物有机质赋存的多样性与物源指标的多疑性综述[J]. 地球科学进展, 2018, 33(10): 1024-1033.
[14] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[15] 杨林, 董玉祥, 杜建会. 海岸沙丘对风暴响应研究进展[J]. 地球科学进展, 2017, 32(7): 716-722.