Please wait a minute...
img img
高级检索
地球科学进展  2020, Vol. 35 Issue (9): 902-911    DOI: 10.11867/j.issn.1001-8166.2020.074
综述与评述     
火星风条痕特征及其形成机制
董治宝(),吕萍,李超,胡光印
陕西师范大学行星风沙科学研究院,陕西 西安 710119
Characteristics and Formation Mechanism of Wind Streaks on Mars
Zhibao Dong(),Lü Ping,Chao Li,Guangyin Hu
Planetary Aeolian Research Institute,Shaanxi Normal University,Xi'an 710119,China
 全文: PDF(7192 KB)   RICH HTML
摘要:

风条痕是一系列风成特征的总称,表现为与周围背景显著的反照率差异,具有二维平面形状,不具有三维形态,在火星上广泛分布,对火星表面风场乃至全球环流特征具有良好的指示作用,但对其的研究长期被忽视。基于已有研究成果,总结了火星风条痕的类型、形状特征及其形成机制。根据反照率大小及其与障碍物的关系,火星风条痕可以分为6种基本类型:亮色风条痕、暗色风条痕、混合风条痕、黑斑状及其相关的条痕、沙丘尾部条痕和霜冻风条痕,其中,亮色和暗色风条痕最普遍、最具代表性,是火星表面最普遍的多变特征。火星风条痕主要分布于60°S~60°N,不同类型风条痕分布特征稍有差异。因赖以形成的障碍物特征复杂多样,火星风条痕具有多种平面形状,如锥形、扇形、卵形和平行状等。根据火星风条痕沉积物特征与风沙蚀积的关系,亮色风条痕一般为堆积型风条痕,而暗色风条痕则属于风蚀型风条痕。目前,关于亮色风条痕为堆积型认识比较一致,而将暗色风条痕归为风蚀型尚有争议。在缺乏火星气象观测资料的情况下,根据风条痕走向反演火星表面风场特征具有良好的可靠性,并有助于理解地质历史时期风对火星表面的改造作用。

关键词: 火星风沙地貌风条痕沉积物特征形成机制    
Abstract:

Wind streaks with two-dimensional plane shapes are a collective term for a variety of aeolian features that display distinctive albedo surface patterns and they do not have three-dimensional shape. Wind streaks are widely distributed on Mars, and are good proxy indicators of the surface wind regime, and even of global circulation patterns on Mars. However, the study on wind streaks has been largely ignored for a long time. Based on published studies, this paper summarized the types, morphology and formation mechanism of wind streaks. According to the relationship between albedo and obstacles, wind streaks can be divided into six basic types: bright wind streaks, dark wind streaks, mixed-tone wind streaks, splotches and related wind streaks, dune shadow wind streaks and frost wind streaks, of which the bright and dark streaks are the most common and representative, for they are the most abundant types of variable features on Mars. Wind streaks are primarily distributed in the latitudinal zone between 60°S and 60°N with little difference among different types, and they have many shapes such as tapered, fan, oval and parallel shapes due to the diverse obstacles. Considering the relationship between sediment characteristics and aeolian erosion and deposition, bright wind streaks are generally depositional with a consensus and dark streaks are erosional with a controversy. In the absence of Martian meteorological observation data, the retrieval of surface wind regime based on the orientation of wind streaks has good reliability, which helps to understand the modifications of Martian surfaces by wind in the geological context.

Key words: Martian aeolian geomorphology    Wind streaks    Sediment characteristics    Formation mechanism
收稿日期: 2020-05-28 出版日期: 2020-10-28
ZTFLH:  P185.3  
基金资助: 国家自然科学基金项目“塔里木盆地周围干燥剥蚀山地风化速率研究”(41930641);“巴丹吉林沙漠高大沙山系统的形成”(41871008)
作者简介: 董治宝(1966-),男,陕西横山人,教授,主要从事风沙物理与风沙地貌研究. E-mail:zbdong@snnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董治宝
吕萍
李超
胡光印

引用本文:

董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.

Zhibao Dong,Lü Ping,Chao Li,Guangyin Hu. Characteristics and Formation Mechanism of Wind Streaks on Mars. Advances in Earth Science, 2020, 35(9): 902-911.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2020.074        http://www.adearth.ac.cn/CN/Y2020/V35/I9/902

类型障碍物种类或 风条痕形状形状描述长度/km出现地点时空变化
亮色风条痕陨击坑、山丘、陡坡型泪珠状、锥形、平行状、扇形5~25中低纬度地区小幅变化,夏季主要位于南半球
槽沟型锯齿状、线形、不规则形10~100叙利亚高原(Syria Planum)、夜迷宫(Labyrinthus Noctis)、科普莱特斯(Coprates)快速变化,夏、秋季主要位于南半球
片状锯齿状、线形、不规则形10~100叙利亚高原(Syria Planum)、夜迷宫(Labyrinthus Noctis)、科普莱特斯(Coprates)快速变化,夏、秋季主要位于南半球
暗色风条痕陨击坑、陡坡型扇形、锥形10~3025°~40°S,平坦地区约在沙尘暴发生之后100天
融合型不规则形5~150萨西斯(Tharsis)、大瑟提斯(Syrtis Major)的区域性山坡与陨击坑、陡坡型类似,大多发生在沙尘暴之后,也有一些发生在其他时间
线型线形

长5~100

宽0.1~4.0

散布资料不足
混合风条痕陨击坑型泪珠状和锥形5~20大瑟提斯(Syrtis Major)、萨西斯欧克西亚沼泽(Tharsis Oxia Palus)资料不足
黑斑状及其相关的风条痕陨击坑斑点型平行状和锥形5~100科柏洛斯(Cerberus)偶发,夏季位于南半球
霜冻风条痕陨击坑型泪珠状和锥形5~30纬度55°~70°的极冠区域随CO2霜冠的出现而出现
沙丘尾部风条痕陨击坑型泪珠状5~20北极沙丘区资料不足
表1  火星风条痕分类方案[12]
图1  火星风条痕典型类型(a) 亮色风条痕(HiRISE影像:ESP_040963_1960_RED, NASA/JLP/University of Arizona);(b) 暗色风条痕(CTX影像:K03_054573_1665_XN_13S143W, NASA/JLP/Malin Space Science System);(c) 混合风条痕(CTX影像:J07_047417_1605_XI_19S246W, NASA/JLP/Malin Space Science System);(d) 黑斑点状风条痕(THEMIS Day IR影像, Astrogeology Science Center, USGS);(e) 沙丘尾部风条痕(CTX影像:P02_001709_2578_XN_77N149W, NASA/JLP/ Malin Space Science System);(f) 霜冻风条痕(HiRISE影像:ESP_020742_0925_RED, NASA/JLP/University of Arizona)
图2  火星陨击坑风条痕的纬向分布(据参考文献[18]修改)
图3  风条痕特征参数的定义(据参考文献[17]修改)θ是风条痕的角宽度,指风条痕张开的最大角度;?是风条痕的伸展方向,从正北方向顺时针旋转至角宽度的平分线处所对应的角度
图4  火星风条痕长度概率分布(据参考文献[17]修改)
图5  火星风条痕长度/陨击坑直径值(L/D)的概率分布(据参考文献[17]修改)
图6  火星风条痕角宽度概率分布(据参考文献[17]修改)
图7  火星鹰陨击坑附近风棱石岩尾、平原沙波纹、坑内沙波纹和风条痕走向的对比(据参考文献[22]修改)
图8  火星风条痕平均方向的全球分布(据参考文献[20]修改)(a)“海盗号”(Viking)数据,1977 年沙尘暴之后;(b)“水手号”(Mariner)数据(1971—1972年),黑色圆圈区域为根据“海盗号”影像获得的全球沙尘暴发生之前的风条痕走向
图9  库姆塔格沙漠北部的舌状风条痕(“羽毛状”沙丘的“羽毛”部分)
1 Dundas C M. An aeolian grainflow model for Martian recurring slope lineae [J]. Icarus, 2020, 343: 113681.
2 Greeley R. Introduction to Planetary Geomorphology [M]. Cambridge, UK: Cambridge University Press, 2013.
3 Cohen-Zada A L, Blumberg D G, Maman S. Earth and planetary aeolian streaks: A review [J]. Aeolian Research, 2016, 20: 108-125.
4 Sagan C, Pollack J B. Windblown dust on Mars [J]. Nature, 1969, 223: 791-794.
5 Sagan C, Veverka J, Fox P, et al. Variable features on Mars: Preliminary mariner 9 television results [J]. Icarus, 1972, 17(2): 346-372.
6 Sagan C. Sandstorms and eolian erosion on Mars [J]. Journal of Geophysical Research (1896-1977), 1973, 78(20): 4 155-4 161.
7 Cohen-Zada A L, Maman S, Blumberg D G. Earth aeolian wind streaks: Comparison to wind data from model and stations [J]. Journal of Geophysical Research: Planets, 2017, 122(5): 1 119-1 137.
8 Greeley R, Skypeck A, Pollack J B. Martian aeolian features and deposits: Comparisons with general circulation model results [J]. Journal of Geophysical Research: Planets, 1993, 98(E2): 3 183-3 196.
9 Greeley R, Schubert G, Limonadi D, et al. Wind streaks on Venus: Clues to atmospheric circulation [J]. Science, 1994, 263(5 145): 358.
10 Fenton L K, Richardson M I. Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes [J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32 885-32 902.
11 Greeley R, Thompson S D. Mars: Aeolian features and wind predictions at the Terra Meridiani and Isidis Planitia potential Mars Exploration Rover landing sites [J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8 093.
12 Greeley R, Iversen J D. Wind as a Geological Process: On Earth, Mars, Venus and Titan [M]. New York: Cambridge University Press, 1985.
13 Thomas P, Veverka J, Lee S, et al. Classification of wind streaks on Mars [J]. Icarus, 1981, 45(1): 124-153.
14 Arvidson R E. Wind-blown streaks, splotches, and associated craters on Mars: Statistical analysis of Mariner 9 photographs [J]. Icarus, 1974, 21(1): 12-27.
15 Gifford F A, Hosker R P, Rao K S. Diffusion-deposition patterns in Martian streaks [J]. Icarus, 1978, 36(1): 133-146.
16 Greeley R, Papson R, Veverka J. Crater streaks in the Chryse Planitia region of Mars: Early Viking results [J]. Icarus, 1978, 34(3): 556-567.
17 Veverka J, Cook K, Goguen J. A statistical study of crater-associated wind streaks in the North Equatorial Zone of Mars [J]. Icarus, 1978, 33(3): 466-482.
18 Thomas P, Veverka J, Gineris D, et al. Dust streaks on Mars [J]. Icarus, 1984, 60(1): 161-179.
19 Greeley R, Iversen J D, Pollack J B, et al. Wind tunnel simulations of light and dark streaks on Mars [J]. Science, 1974, 183(4 127): 847.
20 Thomas P, Veverka J. Seasonal and secular variation of wind streaks on Mars: An analysis of Mariner 9 and Viking data [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B14): 8 131-8 146.
21 Veverka J, Gierasch P, Thomas P. Wind streaks on Mars: Meteorological control of occurence and mode of formation [J]. Icarus, 1981, 45(1): 154-166.
22 Sullivan R, Banfield D, Bell J F, et al. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site [J]. Nature, 2005, 436(7 047): 58-61.
23 Peterfreund A R. Visual and infrared observations of wind streaks on Mars [J]. Icarus, 1981, 45(2): 447-467.
24 Geissler P E, Johnson J R, Sullivan R, et al. First in situ investigation of a dark wind streak on Mars [J]. Journal of Geophysical Research: Planets, 2008, 113(E12): E12S31.
25 Greeley R, Kraft M D, Kuzmin R O, et al. Mars pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data [J]. Journal of Geophysical Research: Planets, 2000, 105(E1): 1 829-1 840.
26 Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian Geomorphology of the Kumtagh Desert[M]. Beijing:Science Press,2011.
26 董治宝,苏志珠,钱广强,等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社,2011.
[1] 庞姗姗,王喜冬,刘海龙,邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 董治宝,吕萍,李超,胡光印. 火星独特风沙地貌之横向沙脊[J]. 地球科学进展, 2020, 35(7): 661-677.
[4] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[5] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[6] 许浩,张君峰,汤达祯,尹微,陈艳鹏,林文姬. 低压油气藏形成机制研究现状及发展趋势[J]. 地球科学进展, 2009, 24(5): 506-511.
[7] 任留东;陈炳蔚. 高喜马拉雅变质岩“夕线石带”的地质意义[J]. 地球科学进展, 2004, 19(5): 715-721.
[8] 顾朝林,张敏. 长江三角洲都市连绵区性状特征与形成机制研究[J]. 地球科学进展, 2001, 16(3): 332-338.