地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 912 -923. doi: 10.11867/j.issn.1001-8166.2020.075

综述与评述 上一篇    下一篇

金星内部结构与动力学研究进展
杨安 1, 2( ),相松 3, 4,黄金水 3, 4   
  1. 1.中国科学院海洋研究所,海洋地质与环境重点实验室,山东 青岛 266071
    2.青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室,山东 青岛 266061
    3.中国科学技术大学地球和空间科学学院,安徽 合肥 230026
    4.中国科学院比较行星学卓越中心,安徽 合肥 230026
  • 收稿日期:2020-05-18 修回日期:2020-08-18 出版日期:2020-09-10
  • 基金资助:
    国家自然科学基金青年科学基金项目“晚古生代以来动力地形对全球海平面变化的影响”(41804086);国家自然科学基金面上项目“板块构造运动对地幔内部热化学结构的影响的数值模拟”(41674096)

Recent Advance in the Interior Structure and Dynamics of Venus

An Yang 1, 2( ),Song Xiang 3, 4,Jinshui Huang 3, 4   

  1. 1.Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
    2.Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266061,China
    3.School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China
    4.CAS Center for Excellence in Comparative Planetology,Hefei 230026,China
  • Received:2020-05-18 Revised:2020-08-18 Online:2020-09-10 Published:2020-10-28
  • About author:Yang An (1987-), male, Pengxi County, Sichuan Province, Assistant professor. Research areas include mantle convection and lithosphere dynamics. E-mail: yangan@qdio.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Influence of dynamic topography on global sea level change since late Paleozoic”(41804086);“Numerical simulation of the thermochemical evolution of the Earth’s mantle with plate tectonics”(41674096)

金星是一个与地球在大小、质量、组成和离太阳的距离等方面都非常相似的行星,但是现今金星不存在类似地球上的板块构造运动,也没有内生磁场。根据金星的重力和地形的研究显示金星的岩石圈比较厚。金星的大地水准面和地形的比值(导纳)比较大、相关性也很高,表明金星内部存在全球性的动力学过程。金星上存在约10个类似地球上夏威夷下方的地幔柱,最新的金星快车探测资料显示其中几个地幔柱存在近期的火山活动。另外对金星陨石坑数据的分析表明金星表面比较年轻,平均年龄大约为5亿年,这暗示着金星可能发生过全球性的表面更新,但金星的表面更新是一个灾难性的还是均匀的过程则存在很大的争议。同样存在争议的问题是金星过去是否存在类似当今地球的板块构造运动,是一直处于类似现今金星的停滞盖层对流,还是处于一种完全不同的对流模式?总的来说,金星的地幔对流模式与地球的以板块构造为特征的地幔对流模式显著不同。回顾了金星的重力、地形和表面构造等主要表面观测及其对金星内部结构和动力学的约束,总结了近年来对金星内部结构与动力学的一些认识,并对未来研究提出展望。

Venus is similar to the Earth in size, mass, composition and distance to the sun. However, Venus has neither plate tectonics nor dynamo that exists on the Earth. The lithosphere of Venus is very thick based on its topography and gravity. The admittance and correlation between Venusian geoid and topography are very high, suggesting that they are strongly influenced by the internal dynamical process of Venus. Analyses show that there may be 10 Hawaii-like mantle plumes in Venusian mantle. Data from Venus Express has shown evidence for recent active volcanism among several of these plumes. The distribution of impact craters on Venus shows that Venusian surface has a young age and the age is averaged about 500 Ma, suggesting that Venus may have experienced a global resurfacing event. However, whether this resurfacing is catastrophic or equilibrium is still under debate. It is also unclear whether Venus had plate tectonics in the past, is it always in stagnant lid regime, or might it have an entirely different mode?In general, the style of mantle convection on Venus is quite different from that of the Earth which is manifested by the plate tectonics. Here we reviewed the main observations including gravity, topography and surface tectonics which provide constrains on the interior structure and dynamics of Venus, and recent advance in the interior structure and dynamics of Venus. This review aims to provide new insights into the interior dynamics of Venus.

中图分类号: 

图1 地球和金星的全球地形和大地水准面(截断到180阶)
Fig.1 Global topography and geoid of the Earth and Venus (Truncated at degree 180)
图2 金星和地球的大地水准面幅值(a)和地形幅值(b)及其导纳(c)和相关性(d
Fig.2 Geoid (a) and topography (b) amplitudes of the Earth and Venus, and admittance ratios (c) and correlation (d) between the geoid and topography
图3 金星上瓦片状地形和冕
(a)瓦片状地形的SAR图像实例 [ 10 ];(b)Aramaiti冕的SAR图像 [ 23 ];(c)地形特征 [ 23 ];(d)数值模型产生的地形 [ 23 ]
Fig.3 Tessera and coronae on Venus
(a)Example of tessera imaged by SAR [ 10 ];(b) Aramaiti coronae imaged by SAR [ 23 ];(c)Topographic signature [ 23 ];(d)Topographic shape produced by numerical model [ 23 ]
图4 不同黏度比和瑞利数时的3种地幔对流模式[ 55 ]
实线椭圆区域表示产生类似现今地球地幔对流模式的参数范围,虚线矩形区域表示地球地幔的实际参数范围
Fig.4 The three convective regimes as a function of the Rayleigh number and the viscosity contrast[ 55 ]
The ellipse area with solid line shows the parameter range where the convective pattern is reminiscent of the present-day Earth’s mantle and the rectangle area with dashed line shows the actual parameter range for the Earth’s mantle
图5 黏度比固定为105时不同屈服应力和表面瑞利数时的3种地幔对流模式[ 57 ]
Fig.5 Different convective regimes as a function of the yield stress and surface Rayleigh number for a constant viscosity contrast of 105[ 57 ]
图6 金星地幔对流数值模型的均方根速度[ 15 ]
Fig.6 Time evolution of rms. velocity of the model of Venus[ 15 ]
图7 金星地幔中相变示意图(根据参考文献[ 15 , 72 ]修改)
Fig.7 Schematic diagram of phase transformations in Venusian mantle (modified after references [15,72])
1 Turcotte D L, Schubert G. Geodynamics[M]. Cambridge, UK: Cambridge university Press, 2002.
2 Konopliv A S, Banerdt W B, Sjogren W L. Venus gravity: 180th degree and order model[J]. Icarus, 1999, 139(1): 3-18.
3 Phillips R J, Hansen V L. Geological evolution of Venus: Rises, plains, plumes, and plateaus[J]. Science, 1998, 279(5 356): 1 492-1 497.
4 Smrekar S E, Stofan E R, Mueller N, et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data[J]. Science, 2010, 328(5 978): 605-608.
5 Smrekar S E, Phillips R J. Venusian highlands: Geoid to topography ratios and their implications[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 582-597.
6 Bindschadler D L, Schubert G, Kaula W M. Coldspots and hotspots-global tectonics and mantle dynamics of Venus[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 495-13 532.
7 Yang An, Wei Daiyun, Huang Jinshui. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus[J]. Planetary and Space Science, 2016, 129: 24-31.
8 Kiefer W S, Hager B H. A mantle plume model for the equatorial highlands of Venus[J]. Journal of Geophysical Research-Planets, 1991, 96: 20 947-20 966.
9 Simons M, Solomon S C, Hager B H. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus[J]. Geophysical Journal International, 1997, 131(1): 24-44.
10 Ivanov M A, Head J W. Global geological map of Venus[J]. Planetary and Space Science, 2011, 59(13): 1 559-1 600.
11 Helbert J, Muller N, Kostama P. Surface brightness seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus[J]. Geophysical Research Letters, 2008, 35(11): L11201. DOI:10.1029/2008GL033609.
doi: 10.1029/2008GL033609    
12 Smrekar S E,Sotin C. Constraints on mantle plumes on Venus: Implications for volatile history[J]. Icarus, 2012, 217(2): 510-523.
13 Huang Jinshui, Yang An, Zhong Shijie. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics[J]. Earth and Planetary Science Letters, 2013, 362: 207-214.
14 Yang An, Weng Huihui, Huang Jinshui. Numerical studies of the effects of phase transitions on Venusian mantle convection[J]. Science China: Earth Sciences, 2015, 58(10): 1 883-1 894.
15 Armann M,Tackley P J. Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models[J]. Journal of Geophysical Research-Planets, 2012, 117: E12003. DOI: 10.1029/2012je004231.
doi: 10.1029/2012je004231    
16 Rolf T, Steinberger B, Sruthi U, et al. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus[J]. Icarus, 2018, 313: 107-123.
17 King S D. Venus resurfacing constrained by geoid and topography[J]. Journal of Geophysical Research—Planets, 2018, 123(5): 1 041-1 060.
18 Rappaport N J, Konopliv A S, Kucinskas A B. An improved 360 degree and order model of Venus topography[J]. Icarus, 1999, 139(1): 19-31.
19 Steinberger B, Werner S C, Torsvik T H. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars[J]. Icarus, 2010, 207(2): 564-577.
20 Pauer M, Fleming K, ?adek O. Modeling the dynamic component of the geoid and topography of Venus[J]. Journal of Geophysical Research, 2006, 111: E11012. DOI: 10.1029/2005je002511.
doi: 10.1029/2005je002511    
21 Nimmo F,Mckenzie D. Volcanism and tectonics on Venus[J]. Annual Review of Earth and Planetary Sciences, 1998, 26(1): 23-51.
22 Hirth G, Kohlstedt D L. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108.
23 Gülcher A J P, Gerya T V, Montési L G J, et al. Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus[J]. Nature Geoscience, 2020, 13(8): 547-554.
24 Schaber G G, Strom R G, Moore H J, et al. Geology and distribution of impact craters on Venus: What are they telling us[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 257-13 301.
25 Phillips R J, Raubertas R F, Arvidson R E, et al. Impact craters and Venus resurfacing history[J]. Journal of Geophysical Research—Planets, 1992, 97(E10): 15 923-15 948.
26 Herrick R R, Rumpf M E. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters[J]. Journal of Geophysical Research, 2011, 116: E02004. DOI:10.1029/2010JE003722.
doi: 10.1029/2010JE003722    
27 Hansen V L, Young D A. Venus's evolution: A synthesis[J]. Geological Society of America, 2007, 419: 255-273.
28 Bjonnes E E, Hansen V L, James B, et al. Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories[J]. Icarus, 2012, 217(2): 451-461.
29 Strom R G, Schaber G G, Dawson D D. The global resurfacing of Venus[J]. Journal of Geophysical Research—Planets, 1994, 99(E5): 10 899-10 926.
30 Moresi L, Solomatov V. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus[J]. Geophysical Journal International, 1998, 133(3): 669-682.
31 Turcotte D L. An episodic hypothesis for Venusian tectonics[J]. Journal of Geophysical Research—Planets, 1993, 98(E9): 17 061-17 068.
32 Parmentier E M,Hess P C. Chemical differentiation of a convecting planetary interior—Consequences for a one plate planet such as Venus[J]. Geophysical Research Letters, 1992, 19(20): 2 015-2 018.
33 Stofan E R, Smrekar S E, Bindschadler D L, et al. Large topographic rises on Venus: Implications for mantle upwelling[J]. Journal of Geophysical Research—Planets, 1995, 100(E11): 23 317-23 327.
34 French S W, Romanowicz B. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots[J]. Nature, 2015, 525(7 567): 95-99.
35 Phillips R J, Grimm R E, Malin M C. Hot-Spot evolution and the global tectonics of Venus[J]. Science, 1991, 252(5 006): 651-658.
36 Hansen V L, Banks B K, Ghent R R. Tessera terrain and crustal plateaus, Venus[J]. Geology, 1999, 27(12): 1 071-1 074.
37 Mueller N, Helbert J, Hashimoto G L, et al. Venus surface thermal emission at 1μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions[J]. Journal of Geophysical Research, 2008, 113: E00B17.DOI: 10.1029/2008je003118.
doi: 10.1029/2008je003118    
38 Gilimore M S, Treiman A, Helbert J, et al. Venus surface composition constrained by observation and experiment[J]. Space Science Reviews, 2017, 212(3/4): 1 511-1 540.
39 Gilimore M S, Mueller N, Helbert J. VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition[J]. Icarus, 2015, 254: 350-361.
40 Jurdy D M,Stoddard P R. The coronae of Venus: Impact, plume or other origin[J]. Special Paper of the Geological Society of America, 2007, 430: 859-878.
41 Piskorz D, Elkins-Tanton L, Smrekar S E. Coronae formation on Venus via extension and lithospheric instability[J]. Journal of Geophysical Research, 2014, 119(12): 2 568-2 582.
42 Sandwell D T, Schubert G. Flexural ridges, trenches, and outer rises around coronae on Venus[J]. Journal of Geophysical Research—Planets, 1992, 97(E10): 16 069-16 083.
43 Mckenzie D, Ford P G, Johnson C, et al. Features on Venus generated by plate boundary processes[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 533-13 544.
44 Schaber G G, Sandwell D. A global survey of possible subduction sites on Venus[J]. Icarus, 1995, 117(1): 173-196.
45 Gerya T V, Stern R J, Sobolev S V, et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation[J]. Nature, 2015, 527(7 577): 221-225.
46 Davaille A, Smrekar S E, Tomlinson S. Experimental and observational evidence for plume-induced subduction on Venus[J]. Nature Geoscience, 2017, 10(5): 349-355.
47 Grimm R E, Solomatov V. Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B10): 11 911-11 929.
48 Anderson F S, Smrekar S E. Global mapping of crustal and lithospheric thickness on Venus[J]. Journal of Geophysical Research-Planets, 2006, 111: E08006. DOI: 10.1029/2004je002395.
doi: 10.1029/2004je002395    
49 James P B, Zuber M T, Phillips R J. Crustal thickness and support of topography on Venus[J]. Journal of Geophysical Research—Planets, 2013, 118(4): 859-875.
50 Wei Daiyun, Yang An, Huang Jinshui. The gravity field and crustal thickness of Venus[J]. Science China: Earth Sciences, 2014, 57(9): 2 025-2 035.
51 McKenzie D. The relationship between topography and gravity on earth and Venus[J]. Icarus, 1994, 112(1): 55-88.
52 Orth C P, Solomatov V S. The isostatic stagnant lid approximation and flobal variations in the Venusian lithospheric thickness[J]. Geochemistry Geophysics Geosystems, 2011, 12(7). DOI:10.1029/2011GC003582.
doi: 10.1029/2011GC003582    
53 Kaula W M, Phillips R J. Quantitative tests for plate tectonics on Venus[J]. Geophysical Research Letters, 1981, 8(12): 1 187-1 190.
54 Moresi L N, Solomatov V S. Numerical investigation of 2d convection with extremely large viscosity variations[J]. Physics of Fluids, 1995, 7(9): 2 154-2 162.
55 Solomatov V S, Moresi L N. Stagnant lid convection on Venus[J]. Journal of Geophysical Research, 1996, 101(E2): 4 737-4 753.
56 Tackley P J. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding[J]. Geochemistry Geophysics Geosystems, 2000, 1(8). DOI: 10.1029/2000GC000036.
doi: 10.1029/2000GC000036    
57 Stein C, Schmalzl J, Hansen U. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[J]. Physics of the Earth and Planetary Interiors, 2004, 142(3/4): 225-255.
58 Smrekar S E, Davaille A, Sotin C. Venus interior structure and dynamics[J]. Space Science Reviews, 2018, 214(5): 88.
59 H?ink T, Lenardic A, Richards M. Depth-dependent viscosity and mantle stress amplification: Implications for the role of the asthenosphere in maintaining plate tectonics[J]. Geophysical Journal International, 2012, 191(1): 30-41.
60 Ratcliff J T, Tackley P J, Schubert G, et al. Transitions in thermal convection with strongly variable viscosity[J]. Physics of the Earth and Planetary Interiors, 1997, 102(3/4): 201-212.
61 Zhong Shijie, McNamara A, Tan E, et al. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[J]. Geochemistry Geophysics Geosystems, 2008, 9(10). DOI:10.1029/2008gc002048.
doi: 10.1029/2008gc002048    
62 Reese C C, Solomatov V S, Baumgardner J R, et al. Stagnant lid convection in a spherical shell[J]. Physics of the Earth and Planetary Interiors, 1999, 116(1/4): 1-7.
63 Tackley P J, Stevenson D J, Glatzmaier G A, et al. Effects of multiple phase-transitions in a 3-dimensional spherical model of convection in Earth's mantle[J]. Journal of Geophysical Research—Solid Earth, 1994, 99(B8): 15 877-15 901.
64 Roberts J H, Zhong Shijie. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy[J]. Journal of Geophysical Research, 2006, 111: E06013. DOI: 10.1029/2005je002668.
doi: 10.1029/2005je002668    
65 Turcotte D L. How does Venus lose heat[J]. Journal of Geophysical Research—Planets, 1995, 100(E8): 16 931-16 940.
66 Herrick R R. Resurfacing history of Venus[J]. Geology, 1994, 22(8): 703-706.
67 Turcotte D L, Morein G, Roberts D, et al. Catastrophic resurfacing and episodic subduction on Venus[J]. Icarus, 1999, 139(1): 49-54.
68 Fowler A C, O'Brien S B G. A mechanism for episodic subduction on Venus[J]. Journal of Geophysical Research—Planets, 1996, 101(E2): 4 755-4 763.
69 Stein C, Fahl A, Hansen U. Resurfacing events on Venus: Implications on plume dynamics and surface topography[J]. Geophysical Research Letters, 2010, 37(1): L01201. DOI: 10.1029/2009gl041073.
doi: 10.1029/2009gl041073    
70 Griffin W L, Belousova E A, O'Neill C, et al. The world turns over: Hadean-Archean crust-mantle evolution[J]. Lithos, 2014, 189: 2-15.
71 O'Neill C, Nimmo F. The role of episodic overturn in generating the surface geology and heat flow on Enceladus[J]. Nature Geoscience, 2010, 3(2): 88-91.
72 Liao Yifan, Sun Ningyu, Mao Zhu. Recent advance and prospects in the structure and thermal elastic properties of lower mantle minerals[J]. Advances in Earth Science, 2017, 32(5): 465-480.
廖一帆,孙宁宇,毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展,2017,32(5):465-480.
73 Papuc A M, Davies G F. Transient mantle layering and the episodic behaviour of Venus due to the 'basalt barrier' mechanism[J]. Icarus, 2012, 217(2): 499-509.
74 Ogawa M. Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth[J]. Journal of Geophysical Research—Planets, 2000, 105(E3): 6 997-7 012.
75 Steinbach V, Yuen D A. The effects of multiple phase-transitions on Venusian mantle convection[J]. Geophysical Research Letters, 1992, 19(22): 2 243-2 246.
76 Schubert G, Solomatov V S, Tackley P J. et al. Mantle convection and the thermal evolution of Venus[M]// Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson: University of Arizona Press, 1997:1 245-1 288.
77 Bercovici D, Ricard Y. Plate tectonics, damage and inheritance[J]. Nature, 2014, 508(7 497): 513-516.
78 Noack L, Breuer D, Spohn T. Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus[J]. Icarus, 2012, 217(2): 484-498.
79 Lenardic A, Jellinek A M, Moresi L. A climate induced transition in the tectonic style of a terrestrial planet[J]. Earth and Planetary Science Letters, 2008, 271(1/4): 34-42.
[1] 董治宝,吕萍. 深空探测时代的风沙地貌学[J]. 地球科学进展, 2019, 34(10): 1001-1014.
[2] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.
[3] 张鸿翔. 我国特色成矿系统的研究进展与重点关注的科学问题[J]. 地球科学进展, 2009, 24(5): 563-570.
[4] 李江海,侯贵廷,刘守偈. 早期碰撞造山过程与板块构造:前寒武纪地质研究的机遇和挑战[J]. 地球科学进展, 2006, 21(8): 843-848.
[5] 徐斐,周祖翼. 洋底高原:了解地球内部的窗口[J]. 地球科学进展, 2003, 18(5): 745-752.
[6] 贺世杰,郭锋. 地幔柱的识别和演化研究述评[J]. 地球科学进展, 2003, 18(3): 433-439.
[7] 刘宝珺,李廷栋. 地质学的若干问题[J]. 地球科学进展, 2001, 16(5): 607-616.
[8] 陈晋阳. 地幔对流与板块构造的研究进展[J]. 地球科学进展, 2001, 16(4): 587-589.
[9] 石耀霖. 地幔对流研究的一些新进展[J]. 地球科学进展, 2001, 16(4): 496-500.
[10] 杨学明,杨晓勇,M.J.Le Bas. 碳酸岩的地质地球化学特征及其大地构造意义[J]. 地球科学进展, 1998, 13(5): 457-466.
[11] 郑永飞,李曙光,陈江峰. 化学地球动力学[J]. 地球科学进展, 1998, 13(2): 121-128.
[12] 李荫亭. 地幔柱假说及其发展[J]. 地球科学进展, 1997, 12(5): 484-487.
[13] 朱介寿. 全球地慢三维结构模型及动力学研究新进展[J]. 地球科学进展, 1996, 11(5): 421-431.
[14] 傅容珊. 大地水准面异常地震层析和地幔热动力模型[J]. 地球科学进展, 1995, 10(5): 450-456.
[15] 方国庆; 张晓宝. 板块沉积学[J]. 地球科学进展, 1993, 8(4): 80-82.
阅读次数
全文


摘要