1 |
Turcotte D L, Schubert G. Geodynamics[M]. Cambridge, UK: Cambridge university Press, 2002.
|
2 |
Konopliv A S, Banerdt W B, Sjogren W L. Venus gravity: 180th degree and order model[J]. Icarus, 1999, 139(1): 3-18.
|
3 |
Phillips R J, Hansen V L. Geological evolution of Venus: Rises, plains, plumes, and plateaus[J]. Science, 1998, 279(5 356): 1 492-1 497.
|
4 |
Smrekar S E, Stofan E R, Mueller N, et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data[J]. Science, 2010, 328(5 978): 605-608.
|
5 |
Smrekar S E, Phillips R J. Venusian highlands: Geoid to topography ratios and their implications[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 582-597.
|
6 |
Bindschadler D L, Schubert G, Kaula W M. Coldspots and hotspots-global tectonics and mantle dynamics of Venus[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 495-13 532.
|
7 |
Yang An, Wei Daiyun, Huang Jinshui. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus[J]. Planetary and Space Science, 2016, 129: 24-31.
|
8 |
Kiefer W S, Hager B H. A mantle plume model for the equatorial highlands of Venus[J]. Journal of Geophysical Research-Planets, 1991, 96: 20 947-20 966.
|
9 |
Simons M, Solomon S C, Hager B H. Localization of gravity and topography: Constraints on the tectonics and mantle dynamics of Venus[J]. Geophysical Journal International, 1997, 131(1): 24-44.
|
10 |
Ivanov M A, Head J W. Global geological map of Venus[J]. Planetary and Space Science, 2011, 59(13): 1 559-1 600.
|
11 |
Helbert J, Muller N, Kostama P. Surface brightness seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus[J]. Geophysical Research Letters, 2008, 35(11): L11201. DOI:10.1029/2008GL033609.
doi: 10.1029/2008GL033609
|
12 |
Smrekar S E,Sotin C. Constraints on mantle plumes on Venus: Implications for volatile history[J]. Icarus, 2012, 217(2): 510-523.
|
13 |
Huang Jinshui, Yang An, Zhong Shijie. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics[J]. Earth and Planetary Science Letters, 2013, 362: 207-214.
|
14 |
Yang An, Weng Huihui, Huang Jinshui. Numerical studies of the effects of phase transitions on Venusian mantle convection[J]. Science China: Earth Sciences, 2015, 58(10): 1 883-1 894.
|
15 |
Armann M,Tackley P J. Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two-dimensional models[J]. Journal of Geophysical Research-Planets, 2012, 117: E12003. DOI: 10.1029/2012je004231.
doi: 10.1029/2012je004231
|
16 |
Rolf T, Steinberger B, Sruthi U, et al. Inferences on the mantle viscosity structure and the post-overturn evolutionary state of Venus[J]. Icarus, 2018, 313: 107-123.
|
17 |
King S D. Venus resurfacing constrained by geoid and topography[J]. Journal of Geophysical Research—Planets, 2018, 123(5): 1 041-1 060.
|
18 |
Rappaport N J, Konopliv A S, Kucinskas A B. An improved 360 degree and order model of Venus topography[J]. Icarus, 1999, 139(1): 19-31.
|
19 |
Steinberger B, Werner S C, Torsvik T H. Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars[J]. Icarus, 2010, 207(2): 564-577.
|
20 |
Pauer M, Fleming K, ?adek O. Modeling the dynamic component of the geoid and topography of Venus[J]. Journal of Geophysical Research, 2006, 111: E11012. DOI: 10.1029/2005je002511.
doi: 10.1029/2005je002511
|
21 |
Nimmo F,Mckenzie D. Volcanism and tectonics on Venus[J]. Annual Review of Earth and Planetary Sciences, 1998, 26(1): 23-51.
|
22 |
Hirth G, Kohlstedt D L. Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters, 1996, 144(1/2): 93-108.
|
23 |
Gülcher A J P, Gerya T V, Montési L G J, et al. Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus[J]. Nature Geoscience, 2020, 13(8): 547-554.
|
24 |
Schaber G G, Strom R G, Moore H J, et al. Geology and distribution of impact craters on Venus: What are they telling us[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 257-13 301.
|
25 |
Phillips R J, Raubertas R F, Arvidson R E, et al. Impact craters and Venus resurfacing history[J]. Journal of Geophysical Research—Planets, 1992, 97(E10): 15 923-15 948.
|
26 |
Herrick R R, Rumpf M E. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters[J]. Journal of Geophysical Research, 2011, 116: E02004. DOI:10.1029/2010JE003722.
doi: 10.1029/2010JE003722
|
27 |
Hansen V L, Young D A. Venus's evolution: A synthesis[J]. Geological Society of America, 2007, 419: 255-273.
|
28 |
Bjonnes E E, Hansen V L, James B, et al. Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories[J]. Icarus, 2012, 217(2): 451-461.
|
29 |
Strom R G, Schaber G G, Dawson D D. The global resurfacing of Venus[J]. Journal of Geophysical Research—Planets, 1994, 99(E5): 10 899-10 926.
|
30 |
Moresi L, Solomatov V. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus[J]. Geophysical Journal International, 1998, 133(3): 669-682.
|
31 |
Turcotte D L. An episodic hypothesis for Venusian tectonics[J]. Journal of Geophysical Research—Planets, 1993, 98(E9): 17 061-17 068.
|
32 |
Parmentier E M,Hess P C. Chemical differentiation of a convecting planetary interior—Consequences for a one plate planet such as Venus[J]. Geophysical Research Letters, 1992, 19(20): 2 015-2 018.
|
33 |
Stofan E R, Smrekar S E, Bindschadler D L, et al. Large topographic rises on Venus: Implications for mantle upwelling[J]. Journal of Geophysical Research—Planets, 1995, 100(E11): 23 317-23 327.
|
34 |
French S W, Romanowicz B. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots[J]. Nature, 2015, 525(7 567): 95-99.
|
35 |
Phillips R J, Grimm R E, Malin M C. Hot-Spot evolution and the global tectonics of Venus[J]. Science, 1991, 252(5 006): 651-658.
|
36 |
Hansen V L, Banks B K, Ghent R R. Tessera terrain and crustal plateaus, Venus[J]. Geology, 1999, 27(12): 1 071-1 074.
|
37 |
Mueller N, Helbert J, Hashimoto G L, et al. Venus surface thermal emission at 1μm in VIRTIS imaging observations: Evidence for variation of crust and mantle differentiation conditions[J]. Journal of Geophysical Research, 2008, 113: E00B17.DOI: 10.1029/2008je003118.
doi: 10.1029/2008je003118
|
38 |
Gilimore M S, Treiman A, Helbert J, et al. Venus surface composition constrained by observation and experiment[J]. Space Science Reviews, 2017, 212(3/4): 1 511-1 540.
|
39 |
Gilimore M S, Mueller N, Helbert J. VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition[J]. Icarus, 2015, 254: 350-361.
|
40 |
Jurdy D M,Stoddard P R. The coronae of Venus: Impact, plume or other origin[J]. Special Paper of the Geological Society of America, 2007, 430: 859-878.
|
41 |
Piskorz D, Elkins-Tanton L, Smrekar S E. Coronae formation on Venus via extension and lithospheric instability[J]. Journal of Geophysical Research, 2014, 119(12): 2 568-2 582.
|
42 |
Sandwell D T, Schubert G. Flexural ridges, trenches, and outer rises around coronae on Venus[J]. Journal of Geophysical Research—Planets, 1992, 97(E10): 16 069-16 083.
|
43 |
Mckenzie D, Ford P G, Johnson C, et al. Features on Venus generated by plate boundary processes[J]. Journal of Geophysical Research—Planets, 1992, 97(E8): 13 533-13 544.
|
44 |
Schaber G G, Sandwell D. A global survey of possible subduction sites on Venus[J]. Icarus, 1995, 117(1): 173-196.
|
45 |
Gerya T V, Stern R J, Sobolev S V, et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation[J]. Nature, 2015, 527(7 577): 221-225.
|
46 |
Davaille A, Smrekar S E, Tomlinson S. Experimental and observational evidence for plume-induced subduction on Venus[J]. Nature Geoscience, 2017, 10(5): 349-355.
|
47 |
Grimm R E, Solomatov V. Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B10): 11 911-11 929.
|
48 |
Anderson F S, Smrekar S E. Global mapping of crustal and lithospheric thickness on Venus[J]. Journal of Geophysical Research-Planets, 2006, 111: E08006. DOI: 10.1029/2004je002395.
doi: 10.1029/2004je002395
|
49 |
James P B, Zuber M T, Phillips R J. Crustal thickness and support of topography on Venus[J]. Journal of Geophysical Research—Planets, 2013, 118(4): 859-875.
|
50 |
Wei Daiyun, Yang An, Huang Jinshui. The gravity field and crustal thickness of Venus[J]. Science China: Earth Sciences, 2014, 57(9): 2 025-2 035.
|
51 |
McKenzie D. The relationship between topography and gravity on earth and Venus[J]. Icarus, 1994, 112(1): 55-88.
|
52 |
Orth C P, Solomatov V S. The isostatic stagnant lid approximation and flobal variations in the Venusian lithospheric thickness[J]. Geochemistry Geophysics Geosystems, 2011, 12(7). DOI:10.1029/2011GC003582.
doi: 10.1029/2011GC003582
|
53 |
Kaula W M, Phillips R J. Quantitative tests for plate tectonics on Venus[J]. Geophysical Research Letters, 1981, 8(12): 1 187-1 190.
|
54 |
Moresi L N, Solomatov V S. Numerical investigation of 2d convection with extremely large viscosity variations[J]. Physics of Fluids, 1995, 7(9): 2 154-2 162.
|
55 |
Solomatov V S, Moresi L N. Stagnant lid convection on Venus[J]. Journal of Geophysical Research, 1996, 101(E2): 4 737-4 753.
|
56 |
Tackley P J. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding[J]. Geochemistry Geophysics Geosystems, 2000, 1(8). DOI: 10.1029/2000GC000036.
doi: 10.1029/2000GC000036
|
57 |
Stein C, Schmalzl J, Hansen U. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection[J]. Physics of the Earth and Planetary Interiors, 2004, 142(3/4): 225-255.
|
58 |
Smrekar S E, Davaille A, Sotin C. Venus interior structure and dynamics[J]. Space Science Reviews, 2018, 214(5): 88.
|
59 |
H?ink T, Lenardic A, Richards M. Depth-dependent viscosity and mantle stress amplification: Implications for the role of the asthenosphere in maintaining plate tectonics[J]. Geophysical Journal International, 2012, 191(1): 30-41.
|
60 |
Ratcliff J T, Tackley P J, Schubert G, et al. Transitions in thermal convection with strongly variable viscosity[J]. Physics of the Earth and Planetary Interiors, 1997, 102(3/4): 201-212.
|
61 |
Zhong Shijie, McNamara A, Tan E, et al. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS[J]. Geochemistry Geophysics Geosystems, 2008, 9(10). DOI:10.1029/2008gc002048.
doi: 10.1029/2008gc002048
|
62 |
Reese C C, Solomatov V S, Baumgardner J R, et al. Stagnant lid convection in a spherical shell[J]. Physics of the Earth and Planetary Interiors, 1999, 116(1/4): 1-7.
|
63 |
Tackley P J, Stevenson D J, Glatzmaier G A, et al. Effects of multiple phase-transitions in a 3-dimensional spherical model of convection in Earth's mantle[J]. Journal of Geophysical Research—Solid Earth, 1994, 99(B8): 15 877-15 901.
|
64 |
Roberts J H, Zhong Shijie. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy[J]. Journal of Geophysical Research, 2006, 111: E06013. DOI: 10.1029/2005je002668.
doi: 10.1029/2005je002668
|
65 |
Turcotte D L. How does Venus lose heat[J]. Journal of Geophysical Research—Planets, 1995, 100(E8): 16 931-16 940.
|
66 |
Herrick R R. Resurfacing history of Venus[J]. Geology, 1994, 22(8): 703-706.
|
67 |
Turcotte D L, Morein G, Roberts D, et al. Catastrophic resurfacing and episodic subduction on Venus[J]. Icarus, 1999, 139(1): 49-54.
|
68 |
Fowler A C, O'Brien S B G. A mechanism for episodic subduction on Venus[J]. Journal of Geophysical Research—Planets, 1996, 101(E2): 4 755-4 763.
|
69 |
Stein C, Fahl A, Hansen U. Resurfacing events on Venus: Implications on plume dynamics and surface topography[J]. Geophysical Research Letters, 2010, 37(1): L01201. DOI: 10.1029/2009gl041073.
doi: 10.1029/2009gl041073
|
70 |
Griffin W L, Belousova E A, O'Neill C, et al. The world turns over: Hadean-Archean crust-mantle evolution[J]. Lithos, 2014, 189: 2-15.
|
71 |
O'Neill C, Nimmo F. The role of episodic overturn in generating the surface geology and heat flow on Enceladus[J]. Nature Geoscience, 2010, 3(2): 88-91.
|
72 |
Liao Yifan, Sun Ningyu, Mao Zhu. Recent advance and prospects in the structure and thermal elastic properties of lower mantle minerals[J]. Advances in Earth Science, 2017, 32(5): 465-480.
|
|
廖一帆,孙宁宇,毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展,2017,32(5):465-480.
|
73 |
Papuc A M, Davies G F. Transient mantle layering and the episodic behaviour of Venus due to the 'basalt barrier' mechanism[J]. Icarus, 2012, 217(2): 499-509.
|
74 |
Ogawa M. Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth[J]. Journal of Geophysical Research—Planets, 2000, 105(E3): 6 997-7 012.
|
75 |
Steinbach V, Yuen D A. The effects of multiple phase-transitions on Venusian mantle convection[J]. Geophysical Research Letters, 1992, 19(22): 2 243-2 246.
|
76 |
Schubert G, Solomatov V S, Tackley P J. et al. Mantle convection and the thermal evolution of Venus[M]// Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment. Tucson: University of Arizona Press, 1997:1 245-1 288.
|
77 |
Bercovici D, Ricard Y. Plate tectonics, damage and inheritance[J]. Nature, 2014, 508(7 497): 513-516.
|
78 |
Noack L, Breuer D, Spohn T. Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus[J]. Icarus, 2012, 217(2): 484-498.
|
79 |
Lenardic A, Jellinek A M, Moresi L. A climate induced transition in the tectonic style of a terrestrial planet[J]. Earth and Planetary Science Letters, 2008, 271(1/4): 34-42.
|