地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 745 -752. doi: 10.11867/j.issn.1001-8166.2003.05.0745

研究论文 上一篇    下一篇

洋底高原:了解地球内部的窗口
徐斐,周祖翼   
  1. 同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2003-05-23 修回日期:2003-07-25 出版日期:2003-12-20
  • 通讯作者: 徐斐 E-mail:xu_fei2001@163.com
  • 基金资助:

    国家重点基础研究发展规划项目“暖池形成和演变的构造控制及其沉积证据”(编号:G2000078501)资助.

OCEANIC PLATEAUS:WINDOWS TO THE EARTH'S INTERIOR

Xu Fei , Zhou Zuyi   

  1. Laboratory of Marine Geology, Tongji University, Shanghai  200092, China
  • Received:2003-05-23 Revised:2003-07-25 Online:2003-12-20 Published:2003-10-01

洋底高原是洋壳的重要组成部分,它是分布在洋底的一种面积广大、且具有异常洋壳厚度的区域。洋底高原通常规模巨大,绝大多数喷发于大洋环境,岩石组成主要为镁铁质到超镁铁质,岩石类型主要为拉斑玄武岩。大多数洋底高原的岩石组成较为相似,而且均形成于一期或两期时间较短却大规模集中喷发的岩浆活动,目前认为是大规模的热地幔物质从地幔深部上升到岩石圈底部,由于巨大地幔柱头部(地幔羽)引起的熔融作用形成的。正是由于洋底高原与地幔柱之间具有这种十分密切的关系,因此对洋底高原的研究将成为我们了解地球内部的窗口。以ODP对翁通-爪哇和凯尔盖朗(Kerguelen)海台的研究为例,简单介绍了洋底高原的基本特征、地幔柱在其形成过程中的作用以及目前在这一领域还未解决的一些问题。

Based on the scientific results of ODP and focus on two typical examples, Ontong Java Plateau and Kerguelen Plateau, this paper summarizes the fundamental characteristics of oceanic plateaus, the role of mantle plumes in the formation of oceanic plateaus and some unresolved issues. As a major component of oceanic crust, oceanic plateaus are large regions of anomalously thick oceanic crust. Oceanic plateaus usually  occupy  large areas and erupt in an oceanic setting. They are composed predominantly of mafic to ultramafic rocks, and the rock types are mainly tholeiitic basalts. Most of these oceanic plateaus have homogeneous rock composition and erupted during one or two major pulses, which is attributed to melting in the large head of a starting mantle plume. Because of this close relationship between oceanic plateaus and mantle plume, oceanic plateaus has became the windows to the Earth's interior.

中图分类号: 

[1] Jin Xingchun, Zhou Zuyi, Wang Pinxian. Ocean Drilling & Chinese Earth Sciences[M]. Shanghai: Tongji University Press, 1995. [金性春,周祖翼,汪品先. 大洋钻探与中国地球科学[M]. 上海:同济大学出版社,1995. ]

[2] Arndt N, Weis D. Oceanic plateaus as windows to the Earth's interior: An ODP success story[J]. JOEDES Journal, 2002, 28(1): 79-84.

[3] Kappel E, Adams J. Solid Earth cycles and geodynamics[A]. In: Earth, Oceans and Life: IODP Initial Science Plan[C]. Washington DC:International Work Group Support Office, 2001.

[4] Frey F A, Coffin M F, Wallace P J, et al. Origin and evolution of a submarine large igneous province: The Kerguelen plateau and Broken ridge, southern Indian ocean[J]. Earth and Planetary Science Letters, 2000, 176: 73-89.

[5] Pisias N G, Delaney M L. Large igneous provinces: Their implications for Earth and planetary evolution[A]. Complex: Conference on Multiple Platform Exploration of the Ocean[C]. Vanconver, British Columbia, 1999.

[6] Shipboard Scientific Party. Leg 192 summary [A]. In: Brenda B. Proceedings of ODP Initial Reports 192[C]. Texas: Texas & University, 2000.

[7] Coffin M F, Eldhom O. Large igneous provinces: Crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32: 1-36.

[8] Mahoney J, Storey M, Duncan R, et al. Geochemistry and age of the Ontong Java Plateau[A]. In Pringle M, Sager W, Sliter W, eds. AGU Monograph on the Mesozoic Pacific: Geology, Tectonics, and Volcanism[C]. Washington DC: American Geophysical Union, 1993, 77: 233-261.

[9] Weis D, Ingle S, Nicolaysen K, et al. Origin of continental components in Indian Ocean basalts: Evidence from Elan Bank ( Kerguelen Plateau, ODP Leg 183, Site 1137)[J]. Geology, 2001, 29: 147-150.

[10] White R S, Mekenzie D. Mantle plumes and flood basalts[J]. Journal of Geophysical Research, 1995, 100: 17 543-17 586.

[11] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts[J]. Earth and Planetary Science Letters, 1990, 99: 79-93.

[12] Saunders A, Fitton J G, Kerr A, et al. The north Atlantic igneous province[A]. In: Mahoney J J, Coffin M F, eds. Large Igneous Provinces: Continental, Oceanin and Planetary Flood Colcanism[C]. Washington DC:American Geophysical Union, 1997. 45-94.

[13] Arndt N T, Albarède F, Nisbet E G. Mafic and ultramafic magmatism[A]. In: de Wit M J, Ashwal L D, eds. Greenstone Belts[C]. Oxford UK: Oxford Science Publications, 1997. 233-254.

[14] Révillon S, Arndt N T, Chauvel C, et al. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: Plumbing system of an oceanic plateau[J]. Journal of Petrology, 2000, 41: 1 127-1 153.

[15] Millard F C, Fred A F, Paul W. The lost world: Environmental effects during the formation of a giant volcanic province[A]. In: JOI eds. ODP Highlights[C]. Washington DC, 2003, 20. 

[16] Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth and Planetary Science Letters, 1999, 166: 177-195.

[1] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[2] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[3] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4): 422-427.
[4] 何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42.
[5] 李永祥,鄢全树,赵西西,全体船上科学家. 剥蚀型汇聚板块边缘大地震成因机理研究:来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736.
[6] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[7] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[8] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[9] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[10] 吴婷婷,李三忠,庞洁红,王健,戴黎明,IODP Expedition 324 Scientific Party. IODP 324航次FMS成像测井资料处理及其在Shatsky海隆构造研究中的应用[J]. 地球科学进展, 2010, 25(7): 753-765.
[11] 李春峰,苏 新,姜 涛,Ujiie K, Fabbri O, Yamaguchi A,Chester F M,Kimura G. 日本南海海槽俯冲增生楔前缘的构造变形特征[J]. 地球科学进展, 2010, 25(2): 203-211.
[12] 张鸿翔. 我国特色成矿系统的研究进展与重点关注的科学问题[J]. 地球科学进展, 2009, 24(5): 563-570.
[13] 陈木宏. 国际综合大洋钻探计划IODP323白令海航次介绍[J]. 地球科学进展, 2009, 24(12): 1352-1356.
[14] 田军. 新生代的气候节律:赤道太平洋IODP-320、321航次[J]. 地球科学进展, 2009, 24(12): 1357-1361.
[15] 刘志飞,拓守廷. IODP计划的新进展[J]. 地球科学进展, 2009, 24(12): 1318-1324.
阅读次数
全文


摘要