地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1287 -1296. doi: 10.11867/j.issn.1001-8166.2017.12.1287

所属专题: 深海科学研究

大洋钻探科学目标展望 上一篇    下一篇

等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献
赵玉龙( ), 刘志飞   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-10-16 修回日期:2017-11-28 出版日期:2017-12-20
  • 基金资助:
    *国家自然科学基金面上项目“南海东北部末次冰期以来古海流强度的重建——沉积学和地球化学方法”(编号:41776047);国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(编号:91528304)资助.

Spatial Distribution of Contourites in Global Ocean and Its Paleoclimatic Significance—The Contribution of International Ocean Drilling to the Studies of Contourites

Yulong Zhao( ), Zhifei Liu   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-10-16 Revised:2017-11-28 Online:2017-12-20 Published:2018-03-06
  • About author:

    First author:Zhao Yulong(1982-), male, Ulanqab City, Inner Mongolia Autonomous Region, Associate professor. Research areas include marine sedimentology and paleoclimatic reconstruction.E-mail:yeoloon@tongji.edu.cn

  • Supported by:
    Foundation items:Project supported by the National Natural Science Foundation of China “Reconstruction of paleo-current intensities in the northeastern South China Sea since the last glacial: Sedimentological and geochemical approaches” (No.41776047) and “Deep-sea sedimentation process and mechanism in the South China Sea” (No.91528304).

等积体是海洋沉积最重要的类型之一,通常记录了长期的高分辨率古环境和古海洋演化信息,同时对海洋工程和油气开发等领域具有重要意义。通过对全球大洋进行钻探取芯和地球物理勘探,国际大洋钻探计划,尤其是最新阶段的“综合大洋钻探计划(IODP)”和 “国际大洋发现计划(IODP)”,在理解等积体的全球分布特征及其揭示的古环境和古海洋演化信息方面做出了巨大的贡献。研究显示,等积体在全球大洋中的空间分布主要受大洋深层环流的影响,但在特定海区的沉积和分布则受到构造活动、深层海流强度和沉积物供应等多种因素的影响。全球深层海流强度的变迁则受到气候变化,如新生代全球变冷、北半球冰盖扩张、季风强度演变以及构造活动和水团来源等因素的影响,不同海区的主要影响因素也有所不同。

Contourite is one of the most important type of sediments in the global ocean, which has recorded significant information on paleoclimatic changes. It is also of great importance for ocean engineering and marine hydrocarbon exploration. The development of scientific ocean drilling, especially the “Integrated Ocean Drilling Program” and the undergoing “International Ocean Discovery Program”, has made great contribution in mapping the spatial distribution of contourites and revealing contourite-related paleoclimatic information, through coring and geophysical exploration in the global ocean. It is found that the global distribution of contourites is controlled predominantly by the global deep-water circulation while its distribution in a specific region can be affected by the intensity of deep currents, tectonic activities, sediment supply, and so on. The geological changes in the global deep-water circulation is, however, further affected by tectonic activities, origins of water masses, as well as climate changes, e.g. the Cenozoic global cooling, changes in the size of the northern hemisphere ice caps, and intensity of monsoon. The main controlling factors of deep water circulation vary with different regions.

中图分类号: 

图1 国际大洋钻探计划(DSDP,ODP及IODP)在全球等积体上进行的钻探站位及全球等积体的空间分布(据参考文献[ 7 ]修改)
深蓝色点显示DSDP站位,深绿色点显示ODP站位,洋红色点显示IODP站位;字母(A~N)标示的灰色阴影区显示等积体在全球大洋中的主要分布区域;半透明箭头显示全球深层水的主要运移路径,其中末端叉形点显示表层水下沉的位置,而圆点则显示深层水上翻的位置
Fig.1 The sites of DSDP, ODP and IODP on the contourite drifts and the spatial distribution of contourite drifts in the world ocean (modified after reference[7])
Blue, red and magenta dots represent DSDP, ODP and IODP sites, respectively. The grey shadowed areas marked with A to N show the main distribution locations of contourites.The translucent blue curve shows the trajectory of deep water movement in the global ocean. The cross end of the trajectory represents the location where downwelling of shallow water forms the NADW, while the dot ends represent the locations where the deep water bodies upwell
表1 等积体在全球大洋中空间分布的主要影响因素
Table 1 The main control factors of the distribution of contourite drifts in the world ocean
图2 构造活动控制的地中海溢出流(MOW)自早上新世以来的变化(据参考文献[ 23 ]修改)
Fig.2 The changes of Mediterranean Outflow Water since the Pliocene under the control of tectonic activities (modified after reference[23])
图3 北大西洋深层环流及主要的等积体分布(据参考文献[ 15 ]修改)
本文涉及的等积体为红色字体
Fig.3 The contourite drifts and the related deep water masses in North Atlantic(modified after reference[15])
Those mentioned in the present study are shown in red texts
图4 现代太平洋深层环流示意图(据参考文献[ 38 ]修改)
蓝色线条显示深层环流路径,洋红色线条强调太平洋DWBC的主要路径 [ 39 , 40 ]
Fig.4 The deepwater circulation in the present-day Pacific Ocean (modified after reference[38])
Blue arrows show the paths of deepwater circulation, with emphasized Pacific DWBC shown in magenta arrows [ 39 , 40 ]
[1] Heezen B C, Hollister C D.Deep sea current evidence from abyssal sediments[J]. Marine Geology, 1964, 1(2): 141-174.
doi: 10.1016/0025-3227(64)90012-X     URL    
[2] Heezen B C, Hollister C D, Ruddiman W F.Shaping of the continental rise by deep geostrophic contour currents[J]. Science, 1966, 152(3 721): 502-508.
doi: 10.1126/science.152.3721.502     URL     pmid: 17815077
[3] Rebesco M, Hernndez-Molina F J, Van Rooij D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[J]. Marine Geology, 2014, 352: 111-154.
doi: 10.1016/j.margeo.2014.03.011     URL    
[4] Zenk M.Abyssal and contour currents[M]∥Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam: Elsevier, 2008: 37-57.
[5] Stow D, Faugères J-C, Howe J A.Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art[M]∥Stow D, Pudsey C J, Howe J A, et al, eds. Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. The Geological Society Memoirs 22. London: Lyell Collection, 2002: 7-20.
[6] Faugères J-C, Stow D.Contourite drifts: Nature, evolution and controls[M]∥Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam: Elsevier, 2008: 259-288.
[7] Rebesco M.Contourites[M]∥Selley R C, Cocks L, Plimer I R, eds. Encyclopedia of Geology, Volume 4. Oxford: Elsevier, 2005: 513-527.
[8] Faugères J-C, Mezerais M L, Stow D.Contourite drift types and their distribution in the North and South Atlantic Ocean basins[J]. Sedimentary Geology, 1993, 82(1/2/3/4): 189-203.
doi: 10.1016/0037-0738(93)90121-K     URL    
[9] Miramontes E, Cattaneo A, Jouet G, et al. The pianosa contourite depositional system (Northern Tyrrhenian Sea): Drift morphology and Plio-Quaternary stratigraphic evolution[J]. Marine Geology, 2016, 378: 20-42.
doi: 10.1016/j.margeo.2015.11.004     URL    
[10] Norris R D, Wilson P A, Blum P.Paleogene Newfoundland Sediment Drifts. Integrated Ocean Drilling Program Preliminary Reports, Volume 342[R]. College Station: Texas A & M University, 2012.
[11] Davies R, Cartwright J, Pike J, et al. Early Oligocene initiation of North Atlantic Deep Water formation[J]. Nature, 2001, 410(6 831): 917-920.
doi: 10.1038/35073551     URL     pmid: 11309613
[12] Via R K, Thomas D J.Evolution of Atlantic thermohaline circulation: Early Oligocene onset of deep-water production in the North Atlantic[J]. Geology, 2006, 34(6): 441-444.
doi: 10.1130/G22545.1     URL    
[13] Norris R D, Kroon D, Huber B T,et al.Cretaceous-palaeogene Ocean and climate change in the Subtropical North Atlantic[M]∥Kroon D, Norris R D, Klaus A, eds. Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geological Society London Special Publications, 2001, 183: 1-22.
[14] Norris R D, Klaus A, Kroon D.Mid-eocene deep water, the late palaeocene thermal maximum and continental slope mass wasting during the cretaceous-palaeogene impact[M]∥Kroon D, Norris R D, Klaus A, eds. Western North Atlantic Paleogene and Cretaceous Paleoceanography. Geological Society London Special Publications, 2001, 183: 23-48.
[15] Hernndez-Molina F J, Maldonado A, Stow D. Abyssal plain contourites[M]∥Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam: Elsevier, 2008: 345-378.
[16] Hernndez-Molina F J, Llave E, Stow D. Continental slope contourites[M]∥Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam: Elsevier, 2008: 379-408.
[17] Shao Lei, Li Xuejie, Geng Jianhua, et al. Deep water bottom current deposition in the northern South China Sea[J]. Science in China(Series D), 2007, 50(7): 1 060-1 066.
[邵磊, 李学杰, 耿建华, 等. 南海北部深水底流沉积作用[J]. 中国科学:D辑, 2007, 37(6): 771-777.]
doi: 10.3321/j.issn:1006-9267.2007.06.008     URL    
[18] Chen Hui, Xie Xinong, Zhang Wenyan,et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin, South China Sea[J]. Marine Geology, 2016, 378: 101-113.
doi: 10.1016/j.margeo.2015.11.002     URL    
[19] Shao Lei, Li Xianhua, Wei Gangjian, et al. Provenance of a prominent sediment drift on the northern slope of the South China Sea[J]. Science in China (Series D), 2001, 44(10): 919-925.
[邵磊, 李献华, 韦刚健, 等. 南海陆坡高速堆积体的物质来源[J].中国科学:D辑, 2001, 31(10): 828-833.]
[20] Bühring C, Sarnthein M, Erlenkeuser H.Toward a high-resolution stable isotope stratigraphy of the Last 1.1 m.y.: Site 1144, South China Sea[C]∥Proceedings of the Ocean Drlling Program Scientific Results, Volume 184. College Station: Texas A & M University, 2004: 1-29.
[21] Hernndez-Molina F J, Sierro F J, Llave E, et al. Evolution of the Gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339[J]. Marine Geology, 2016, 377: 7-39.
doi: 10.1016/j.margeo.2015.09.013     URL    
[22] Hernndez-Molina F J, Stow D, Alvarez-Zarikian C A, et al. Onset of Mediterranean outflow into the North Atlantic[J]. Science, 2014, 344(6 189): 1 244-1 250.
doi: 10.1126/science.1251306     URL    
[23] Filippelli G.A salty start to modern ocean circulation: Water flow out of the Mediterranean is linked to large-scale ocean circulation patterns[J]. Science, 2014, 344: 1 228-1 229.
doi: 10.1126/science.1255553     URL     pmid: 24926003
[24] Knutz P C.Paleocenographic significance of contourite drifts[M]∥Rebesco M, Camerlenghi A, eds. Contourites. Amsterdam: Elsevier, 2008: 511-535.
[25] Boyle P R, Romans B W, Tucholke B E, et al. Cenozoic North Atlantic deep circulation history recorded in contourite drifts, offshore Newfoundland, Canada[J]. Marine Geology, 2017, 385: 185-203.
doi: 10.1016/j.margeo.2016.12.014     URL    
[26] Hohbein M W, Sexton P F, Cartwright J A.Onset of North Atlantic deep water production coincident with inception of the Cenozoic global cooling trend[J]. Geology, 2012, 40(3): 255-258.
doi: 10.1130/G34655Y.1     URL    
[27] Zachos J,Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517): 686-693.
doi: 10.1126/science.1059412     URL     pmid: 11326091
[28] Campbell D C, Mosher D C.Geophysical evidence for widespread Cenozoic bottom current activity from the continental margin of Nova Scotia, Canada[J]. Marine Geology, 2015, 378: 237-260.
doi: 10.1016/j.margeo.2015.10.005     URL    
[29] Hillaire-Marcel C, De Vernal A, McKay J. Foraminifer isotope study of the Pleistocene Labrador Sea, northwest North Atlantic (IODP Sites 1302/03 and 1305), with emphasis on paleoceanographical differences between its “inner” and “outer” basins[J]. Marine Geology, 2011, 279(1): 188-198.
doi: 10.1016/j.margeo.2010.11.001     URL    
[30] Channell J E T, Wright J D, Mazaud A, et al. Age through tandem correlation of Quaternary relative paleointensity (RPI) and oxygen isotope data at IODP Site U1306 (Eirik drift, SW Greenland)[J]. Quaternary Science Reviews, 2014, 88: 135-146.
doi: 10.1016/j.quascirev.2014.01.022     URL    
[31] Hodell D A, Minth E K, Curtis J H, et al. Surface and deep-water hydrography on Gardar Drift (Iceland Basin) during the last interglacial period[J]. Earth and Planetary Science Letters, 2009, 288(1): 10-19.
doi: 10.1016/j.epsl.2009.08.040     URL    
[32] Böhm E, Lippold J, Gutjahr M, et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7 532): 73-76.
doi: 10.1038/nature14059     URL     pmid: 25517093
[33] García-Gallardo A, Grunert P, Van der Schee M, et al. Benthic foraminifera-based reconstruction of the first Mediterranean-Atlantic exchange in the early Pliocene Gulf of Cadiz[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 472: 93-107.
doi: 10.1016/j.palaeo.2017.02.009     URL    
[34] Kaboth S, de Boer B, Bahr A, et al. Mediterranean Outflow Water dynamics during the past ~570 kyr: Regional and global implications[J]. Paleogeography and Paleoclimatology, 2017, 32: 634-647.
doi: 10.1002/2016PA003063     URL    
[35] Bahr A, Kaboth S, Jiménez-Espejo F J, et al. Persistent monsoonal forcing of Mediterranean Outflow Water dynamics during the late Pleistocene[J]. Geology, 2015, 43(11): 951-954.
doi: 10.1130/G37013.1     URL    
[36] Singh A D, Rai A K, Tiwari M, et al.Fluctuations of Mediterranean Outflow Water circulation in the Gulf of Cadiz during MIS 5 to 7: Evidence from benthic foraminiferal assemblage and stable isotope records[J]. Global and Planetary Change, 2015, 133: 125-140.
doi: 10.1016/j.gloplacha.2015.08.005     URL    
[37] Bahr A, Jiménez-Espejo F J, Kolasinac N, et al. Deciphering bottom current velocity and paleoclimate signals from contourite deposits in the Gulf of Cadiz during the last 140 kyr: An inorganic geochemical approach[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(8): 3 145-3 160.
doi: 10.1002/2014GC005356     URL    
[38] Talley L, Pickard G, Emery W, et al. Descriptive Physical Oceanography—An Introduction[M]. Amsterdam: Elsevier, 2011.
[39] Kawabe M, Fujio S, Yanagimoto D.Deep-water circulation at low latitudes in the western North Pacific[J]. Deep Sea Research I:Oceanographic Research Papers, 2003, 50(5): 631-656.
doi: 10.1016/S0967-0637(03)00040-2     URL    
[40] Mitsuzawa K, Holloway G.Characteristics of deep currents along trenches in the northwest Pacific[J]. Journal of Geophysical Research, 1998, 103(C6): 13 085-13 092.
doi: 10.1029/97JC03416     URL    
[41] Wang Pinxian, Wang Bin, Cheng Hai,et al. The global monsoon across time scales: Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174: 84-121.
doi: 10.1016/j.earscirev.2017.07.006     URL    
[1] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[2] 何幼斌,罗顺社,高振中. 深水牵引流沉积研究进展与展望[J]. 地球科学进展, 1997, 12(3): 247-252.
阅读次数
全文


摘要