地球科学进展 ›› 2019, Vol. 34 ›› Issue (12): 1301 -1315. doi: 10.11867/j.issn.1001-8166.2019.12.1301

研究论文 上一篇    下一篇

鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积
李向东( ),陈海燕,陈洪达   
  1. 昆明理工大学国土资源工程学院,云南 昆明 650093
  • 收稿日期:2019-09-29 修回日期:2019-11-18 出版日期:2019-12-10
  • 基金资助:
    国家自然科学基金项目“阿拉善地块东南缘与鄂尔多斯盆地西缘中、上奥陶统浊流演化及其与内波相互作用研究”(41272119);云南省教育厅科学研究基金项目“澄江生物群软体印痕化石保存的沉积水动力条件”(2015Z030)

Deep-water Combined-flow Deposits of the Upper Ordovician Lashenzhong Formation in Zhuozishan Area, Western Margin of Ordos Basin

Xiangdong Li( ),Haiyan Chen,Hongda Chen   

  1. School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2019-09-29 Revised:2019-11-18 Online:2019-12-10 Published:2020-02-12
  • About author:Li Xiangdong (1973-), male, Lantian County, Shaanxi Province, Associate professor. Research areas include marine sedimentology. E-mail: Lixiangdong614@163.com
  • Supported by:
    the National Natural Science Foundation of China “Study of the evolution of turbidity currents and its interaction with internal waves of Middle and Upper Ordovician on the southeastern margin of Alxa Block and western margin of Ordos Basin”(41272119);The Science Foundation of Yunnan Provincial Department of Education “Sedimentary hydrodynamics for preservation of soft impression fossil in Chengjiang Fauna”(2015Z030)

深水复合流沉积研究近年来尚处于起步阶段,发现新的实例并探讨复合流沉积构造对环境的指示作用具有重要意义。鄂尔多斯盆地西缘北部内蒙古桌子山地区上奥陶统拉什仲组以深水斜坡至盆地环境下浊流沉积为主,兼有等深流沉积和内波、内潮汐沉积,沉积时具有复杂的水动力条件。在详细的野外观察和测量的基础上,结合已有水槽实验和相关实例的研究成果,对拉什仲组有关复合流沉积构造进行了详细研究。在深水沉积环境中发现了典型的复合流沉积构造,包括复合流层理、准平行层理和小型似丘状交错层理。垂向上可归纳为6种沉积构造序列,分别为:(a)正粒序层—浪成波纹层理—复合流层理;(b)准平行层理—正粒序层—复合流层理;(c)正粒序层—准平行层理;(d)准平行层理—双向交错层理—小型似丘状交错层理;(e)黏土岩中的叠置小型似丘状交错层理和(f)黏土岩中的复合流层理。结合拉什仲组沉积环境和沉积类型,复合流沉积可能为深水环境下浊流、等深流和内波流交互作用形成,依据流体与海底地形的作用,可划分为浊流抑制区(序列a和b)、强交互区(序列c)、内波作用区(序列d)和弱交互区(序列e和f)。该研究对于在地层记录中研究内波、内潮汐与海底地形作用和有关沉积相带划分具有重要意义。

The research of deep-water combined-flow deposits is still in its infancy at present, which has great significance for discovering new case study and discussing the indication effects of combined-flow sedimentary structures on depositional environment. The Upper Ordovician Lashenzhong Formation in Zhuozishan area, Inner Mongolia, in the north of western Ordos Basin, is mainly deposited by turbidity currents concomitant with contour currents as well as internal-waves and internal-tides in deep-water slope and basin floor environment which display typical complex hydrodynamic conditions. Here we studied the deep-water combined-flow sedimentary structures of Lashenzhong Formation in detail based on careful field work, combined with the results of flume experiments and other related case studies in literatures. Several combined-flow sedimentary structures were found in deep-water environment, which include combined-flow-ripple lamination, quasi-planar lamination and small-scale hummocky cross-stratification-like structures. These sedimentary structures can be summarized vertically as 6 sedimentary structure successions: normal graded layer through wave-ripple lamination to combined-flow-ripple lamination (a), quasi-planar lamination through normal graded layer to combined- flow-ripple lamination (b), amphibolous normal graded layer overlaying by quasi-planar lamination (c), quasi-planar lamination through bi-directional cross-lamination to small-scale hummocky cross-stratification-like structures (d), amalgamated small-scale hummocky cross-stratification-like structures enveloped claystone (e) and combined- flow-ripple lamination enveloped claystone (f). The origin of deep-water combined-flow deposits perhaps is the interactions of turbidity currents, contour currents and internal-wave currents according to the sedimentary types and environment in Lashenzhong Formation. Based on the interactions between sedimentary currents and sea floor topography, four sedimentation zones were suggested: turbidity currents restrained zone (succession a and b), strong interaction zone (succession c), internal-wave action zone (succession d) and weak interaction zone (succession e and f). This study will be helpful for the study of interactions of internal-waves and internal-tides with sea floor topography, and related sedimentation zone division in geological records.

中图分类号: 

图1 鄂尔多斯盆地西缘晚奥陶世艾家山早期古地理略图[ 40 , 41 ]
Fig.1 Sketch showing paleogeography of early Aijiashan Age in Late Ordovician, western margin of Ordos Basin[ 40 , 41 ]
图2 鄂尔多斯盆地西缘桌子山地区奥陶系岩性综合示意图
Fig.2 Lithologic synthesis column of Ordovician in Zhuozishan area, western margin of Ordos Basin
图3 鄂尔多斯盆地西缘桌子山地区奥陶纪深水沉积特征
(a) 拉什仲组灰绿色黏土岩夹薄层、极薄层粉砂岩;(b) 拉什仲组灰绿色薄层细砂岩底面上发育的 Paleodictyon遗迹化石,经浊流侵蚀和改造;(c) 公乌素组岩性,下部为灰绿色黏土岩夹灰绿色薄层粉砂岩、细砂岩,上部为深灰色薄层石灰岩;(d) 公乌素组薄层石灰岩中的 Paleodiciyon sp.遗迹化石
Fig.3 Characteristics of deep-water depoosits of Ordovician in Zhuozishan area, western margin of Ordos Basin
(a) Grayish green claystone interbedded with very thin- to thin-bedded siltstone, Lashenzhong Formation; (b) Paleodictyon trace fossils on base of grayish green thin-bedded fine-grained sandstone, eroded and reformed by a turbidity current, Lashenzhong Formation; (c) Grayish green claystone interbedded with thin-bedded siltstone and fine-grained sandstone overlay by dark gray thin-bedded limestone, Gongwusu Formation; (d) Paleodictyon sp. trace fossils in thin-bedded limestone, Gongwusu Formation
图4 鄂尔多斯盆地西缘桌子山地区拉什仲组沉积类型
(a) 不完整的鲍玛序列,灰绿色厚层细砂岩底面发育槽模(箭头);(b) 灰绿色厚层砂岩中的复合型条纹条带构造,垂向上具有窄—宽—窄序列;(c) 灰绿色粉砂岩中的“人”字形交错纹层;(d) 灰绿色中层粉砂岩中的包卷层理,垂直变形可呈现紧闭的背形(长箭头)和开阔的向形,背形具有较均一的砂核(短箭头)
Fig.4 Sedimentary types of Lashenzhong Formation in Zhuozishan area, western margin of Ordos Basin
(a) Incomplete Boma sequence, flutes (arrow) on base of grayish green thick-bedded fine-grained sandstone; (b) Compound stripped-and-banded structure with narrow-wide-narrow vertical succession in grayish green thick-bedded sandstone; (c) Chevron cross-lamination in grayish green siltstone; (d) Convolute lamination in grayish green medium-bedded siltstone, note the tight anticline (long arrow) with disorganized sand core (short arrow) and flat syncline
图5 鄂尔多斯盆地西缘桌子山地区拉什仲组槽模(a)和小型交错层理(b)古水流玫瑰花图
Fig.5 Rose diagram of flutes (a) and small-scale cross- laminations (b) in Lashenzhong Formation, Zhuozishan area of western margin of Ordos Basin
图6 鄂尔多斯盆地西缘桌子山地区拉什仲组复合流沉积构造
(a) 鲍玛序列T c段黏土质粉砂岩中的叠置透镜体(长箭头)和复合流纹层,前者具有浪成波纹层理的不均一结构,后者具有明显的上凸纹层;(b) 准平行层理、正粒序层和复合流层理,复合流层理具有不对称的波峰(长箭头),纹层厚度向波谷变厚(短箭头); (c) 准平行层理,上、下可见模糊的正粒序层;(d) 准平行层理、双向交错层理(水平箭头)和内部曲线型纹层(长箭头)的不对称小型似丘状交错层理;(e) 波状层理向准平行层理的转化,其上为不对称小型似丘状交错层理,内部为高角度曲线型纹层(箭头);(f) 不对称小型似丘状交错层理,内部为低角度曲线型纹层(长箭头),丘状纹层向上渐变为水平纹层(短箭头);(g) 对称小型似丘状交错层理,由向上变平缓的丘状纹层组成(箭头);(h)同(g),其下为爬升层理,含有上凸型纹层(长箭头);b: 双向交错层理;c: 复合流层理;g: 正粒序层;h: 小型似丘状交错层理;q: 准平行层理;w: 浪成波纹层理,含不均一结构、束状体、波状层理等;(b)和(g)为中层细砂岩;(c)、(e)和(h)为薄层粉砂岩;(d)和(f)分别为薄层中砂岩和中层黏土质粉砂岩
Fig.6 Combined-flow sedimentary structures of Lashenzhong Formationin Zhuozishan area, western margin of Ordos Basin
(a) Amalgamated clayish siltstone lenses with discordant foresets (long arrow) and overlay combined-flow-ripple lamination with convex-up laminae in Tc division of Bouma sequence; (b) Quasi-planar lamination, normal graded layer and combined- flow-ripple lamination, note the asymmetric wave crest (long arrow) and thickening laminae toward wave trough (short arrow); (c) Quasi-planar lamination enveloped by amphibolous normal graded layer; (d) Quasi-planar lamination, bi-directional cross-lamination (horizontal arrow) and asymmetrical small-scale Hummocky Cross-Stratification-like structures (HCS-like) with curved internal laminae (long arrow); (e) Undulatory lamination changed laterally into quasi-planar lamination and overlay asymmetrical small-scale HCS-like structures with high angle curved laminae (arrow); (f) Asymmetrical small-scale HCS-like structures with low angle curved laminae (long arrow) and hummocky strata growth vertically into flat laminae (short arrow); (g) Symmetrical small-scale HCS-like structures with gently hummocky strata upward (arrow); (h) Same as (g), underlaying climbing ripple lamination with some convex-up laminae (long arrow); b: Bi-directional cross-lamination; c: Combined-flow-ripple lamination; g: Normal graded layer; h: Small-scale hummocky cross-stratification-like structures; q: Quasi-planar lamination; w: Wave-ripple lamination, include discordant foresets lens, offshooting lamination and undulatory lamination; (b) and (g) are medium-bedded fine-grained sandstone; (c), (e) and (h) are thin-bedded siltstone; (d) and (f) are thin-bedded medium-grained sandstone and medium-bedded clayish siltstone respectively
表1 深水牵引流特征与相关沉积构造
Table 1 Fluid characteristics of traction flow and related sedimentary structures in deep-water environment
沉积类型 流体特征 沉积构造 本文中的鉴别标志
等深流沉积 沿海底等高线流动,与区域斜坡方向垂直;在等深流事件中出现低流速期与高流速期的交替;流速可达100 cm/s;在地史时期可受天文旋回控制 水流方向与区域斜坡方向垂直的单向交错层理;具有粒度细—粗—细周期性变化的条纹条带构造(窄—宽—窄序列)、平行层—均匀层—平行层序列及同一岩层中的岩性序列(如粉砂岩—细砂岩—粉砂岩序列);生物扰动构造发育 与区域斜坡方向垂直的古水流(采用玫瑰花图分析);具有窄—宽—窄序列的条纹条带构造( 图4 b)
内波、内潮汐沉积 内潮汐及其他长周期内波可形成双向交替流,或相互叠加形成单向优势流;内孤立波及其他短周期内波可形成紊流事件和振荡流;流速可达50 cm/s;是否受天文旋回影响尚不清楚 双向交错层理;水流方向与区域斜坡方向相反的单向交错层理;脉状、波状、透镜状层理;浪成波纹层理;镶嵌于黏土岩中的薄鲕粒层;特殊的包卷层理(顶部向一边倾斜、开阔的向形与紧闭的背形及背形下的砂核) 与区域斜坡方向垂直的古水流(采用玫瑰花图分析);浪成波纹层理( 图4 c);特殊的包卷层理( 图4 d)
深水复合流沉积 深水环境中复合流一般由短周期内波形成的振荡流与低密度浊流、等深流等单向流交互作用而形成;可进而分为波控复合流和流控复合流 复合流层理;准平行层理;小型似丘状交错层理;复合流波痕;波脊平直的不对称2D波痕;波长与波高在双对数图解上具有良好线性关系的波痕 复合流层理;准平行层理;小型似丘状交错层理( 图6
图7 复合流沉积示意图[ 21 ]
Uw:波轨迹速度;Uc:单向流速度;NM:无颗粒移动;CFR:复合流痕;HCS:丘状交错层理;PB:平行层理;脉动流、反向流的解释见文中;Lamb等 [ 21 ]用图(a)和(b)解释流体速度较大的近源沉积;用图(c)和(d)解释流体速度较小的远源沉积
Fig.7 Cartoon for deposition of combined-flow[ 21 ]
Uw. Wave orbital velocity; Uc. Unidirectional current velocity; NM. No Movement; CFR. Combined-Flow Ripples; HCS. Hummocky Cross-Stratification; PB. Plane Bed; See text for explanation of reversing-current flow and pulsating flow; Lamb et al. [ 21 ] interpret proximal deposition (higher flow velocity) of turbidity currents with plot (a) and (b), and distal case (lower flow velocity) with plot (c) and (d)
图8 桌子山地区拉什仲组深水复合流沉积模式示意图
Fig.8 Cartoon for deposition model of deep-water combined-flow in Lashenzhong Formation, Zhuozishan area
1 Dumas S,Arnott R W C,Southard J B. Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record[J]. Journal of Sedimentary Research,2005,75(3):501-513.
2 Harms J C.Hydraulic significance of some sand ripples[J].Geological Society of America Bulletin,1969,80(3):363-396.
3 Swift D J P,Figueiredo A G,Jr Freeland G L,et al. Hummocky cross-stratification and megaripples:A geological double standard?[J]. Journal of Sedimentary Petrology,1983,53(4):1 295-1 317.
4 N?ttvedt A,Kreisa R D. Model for the combined-flow origin of hummocky cross-stratification[J].Geology,1987,15(4):357-361.
5 Datta B,Sarkar S,Chaudhuri A K. Swaley cross-stratification in medium to coarse sandstone produced by oscillatory and combined flows:Examples from the Proterozoic Kansapathar Formation,Chhattisgarh Basin, M.P.,India[J]. Sedimentary Geology,1999,129(1/2):51-70.
6 Basilici G,de Luca P H V,Poiré D G. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera):A turbiditic deep-water or storm-dominated prodelta inner-shelf system?[J]. Sedimentary Geology,2012,267/268:73-82.
7 Puga-Bernabéuá,Martín J M,Braga J C,et al. Offshore remobilization processes and deposits in low-energytemperate-water carbonate-ramp systems:Examples from the Neogenebasins of the Betic Cordillera (SE Spain)[J]. Sedimentary Geology,2014,304:11-27.
8 Arnott R W,Southard J B. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification[J]. Journal of Sedimentary Petrology,1990,60(2):211-219.
9 Perillo M M,Best J L,Yokokawa M,et al.A unified model for bedform development and equilibriumunder unidirectional,oscillatory and combined-flows[J]. Sedimentology,2014,61(7):2 063-2 085.
10 Perillo M M,Best J L,Garcia M H,et al. A new phase diagram for combined-flow bedforms[J]. Journal of Sedimentary Research,2014,84 (4):301-313.
11 Wu Xuxu,Parsons D R. Field investigation of bedform morphodynamics under combined flow[J]. Geomorphology, 2019,339:9-30.
12 Walker R G,Plint A G. Wave- and storm-dominated shallow marine systems[M]//Walker R G,James N P. Facies Models. Canada:Geological Association of Canada,1992:219-238.
13 Molgat M,Arnott R W C. Combined tide and wave influence on sedimentation patterns in the Upper Jurassic Swift Formation, south-eastern Alberta[J]. Sedimentology,2001,48(6):1 353-1 369.
14 Aschoff J L,Olariu C,Steel R J. Recognition and significance of bayhead delta deposits in therock record:A comparison of modern and ancient systems[J]. Sedimentology,2018,65(1):62-95.
15 Isla M F,Schwarz E,Veiga G D. Bedset characterization within a wave-dominated shallow-marinesuccession:An evolutionary model related to sediment imbalances[J]. Sedimentary Geology,2018,374:36-52.
16 Collins D S,Johnson H D,Allison P A,et al. Coupled 'storm-flood' depositional model:Application to the Miocene-Modern Baram Delta Province,north-west Borneo[J]. Sedimentology,2017,64(1):1 203-1 235.
17 Li M Z,Amos C L. Sheet flow and large wave ripples under combined wave and currents:Field observations,model predictions and effects on boundary layer dynamics[J]. Continental Shelf Research,1999,19(5):637-663.
18 Hill P R,Meulé S,Longuépée H. Combined-flow processes and sedimentary structures on the shoreface of the wave-dominated grande-riviére-de-la-baleine delta[J]. Journal of Sedimentary Research,2003,73(2):217-226.
19 Myrow P M,Fischer W,Goodge J W. Wave-modified turbidites:Combined-flow shoreline and shelf deposits,Cambrian,Antarctica[J]. Journal of Sedimentary Research,2002,72(5):641-656.
20 Pattison S A J. Storm-influenced prodelta turbidite complex in the Lower Kenilworth Member at Hatch Mesa,Book cliffs,Utah,USA:Implications for shallow marine facies models[J]. Journal of Sedimentary Research,2005,75(3):420-439.
21 Lamb M P,Myrow P M,Lukens C,et al. Deposits from wave-influenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,USA[J]. Journal of Sedimentary Research,2008,78(7):480-498.
22 Li Xiangdong,He Youbin,Zheng Zhaochang,et al. Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group,Ningxia[J]. Acta Geologica Sinica,2010,84(2):221-232.
李向东,何幼斌,郑昭昌,等. 宁夏香山群徐家圈组发现深水复合流沉积构造[J]. 地质学报,2010,84(2):221-232.
23 Abdi A,Gharaie M H M,Bádenas B. Internal wave deposits in Jurassic Kermanshah pelagic carbonates andradiolarites (Kermanshah area,West Iran)[J]. Sedimentary Geology,2014,314:47-59.
24 Tinterri R,Laporta M,Ogata K. Asymmetrical cross-current turbidite facies tract in a structurally-confined mini-basin (Priabonian-Rupelian,Ranzano Sandstone,northern Apennines,Italy)[J]. Sedimentary Geology,2017,352:63-87.
25 Tinterri R,Magalhaes P M,Tagliaferri A,et al. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes:Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)[J]. Sedimentary Geology,2016,344:382-407.
26 Pomar L,Molina J M,Ruiz-Ortiz P A,et al. Storms in the deep: Tempestite- and beach-like deposits in pelagic sequences (Jurassic, Subbetic, South of Spain)[J]. Marine and Petroleum Geology,2019,107:365-381.
27 Gao Zhenzhong,Luo Shunshe,He Youbin. Ordovician submarine fan systems in west margin of Ordos[J]. Oil & Gas Geology,1995,16(2):119-125.
高振中,罗顺社,何幼斌. 鄂尔多斯盆地西缘奥陶纪海底扇沉积体系[J]. 石油与天然气地质,1995,16(2):119-125.
28 Zhang Kang. Olistostrome in Ordovician system,western and southern margin of Ordos Basin[J]. Acta Sedimentologica Sinica,1992,10(1):11-18.
张抗. 鄂尔多斯盆地西、南缘奥陶系滑塌堆积[J]. 沉积学报,1992,10(1):11-18.
29 Zhao Jun,He Youbin,Xiao Bin,et al. Sedimentary characteristics and sedimentary model of calcirudite in the Wulalike Formation of Middle Ordovician in Zhuozishan area of Inner Mongolia[J]. Journal of Yangtze University(Nature Science Edition),2014,11(10):6-8.
赵俊,何幼斌,肖彬,等. 桌子山地区中奥陶统乌拉力克组砾屑灰岩沉积特征及深水沉积模式研究[J]. 长江大学学报:自然科学版,2014,11(10):6-8.
30 Jin Huijuan,Sun Mingliang,Li Yuci. The "special" turbidite measure of the Middle Ordovician series in Zhuozishan area,Inner Mongolia[J]. Acta Sedimentologica Sinica,2004,23(1):34-40.
晋慧娟,孙明良,李育慈. 内蒙古桌子山中奥陶统的“特殊”浊积岩系[J]. 沉积学报,2004,23(1):34-40.
31 Xiao Bin,He Youbin,Luo Jinxiong,et al. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia[J]. Geological Review,2014,60(2):321-331.
肖彬,何幼斌,罗进雄,等. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积[J]. 地质论评,2014,60(2):321-331.
32 Li Hua,He Youbin,Feng Bin,et al. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. Earth Science,2018,43(6):2 149-2 159.
李华,何幼斌,冯斌,等. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化[J]. 地球科学,2018,43(6):2 149-2 159.
33 Li Xiangdong,Que Yi,Huan Yaqi. Depositional model for contourites the Kelimoli Formation,Middle Ordovician,Zhuozishan area[J]. Geological Journal of China Universities,2018,24(2):285-296.
李向东,阙易,郇雅棋. 桌子山地区中奥陶统克里摩里组深水等深流沉积模式[J]. 高校地质学报,2018,24(2):285-296.
34 Li Xiangdong,Chen Haiyan. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. Earth Science,2020.DOI:10.3799/dqkx.2019.119.
doi: 10.3799/dqkx.2019.119.    
李向东,陈海燕. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积[J]. 地球科学,2020. DOI:10.3799/dqkx.2019.119.
doi: 10.3799/dqkx.2019.119.    
35 Li Xiangdong,He Youbin,Wang Dan,et al. Internal-wave and internal-tide deposits of the Middle Ordovicaian Xiangshan Group Xujiajuan Formation,Ningxia[J]. Journal of Palaeogeography,2009,11(5):513-523.
李向东,何幼斌,王丹,等.宁夏香山群徐家圈组内波和内潮汐沉积[J]. 古地理学报,2009,11(5):513-523.
36 Li Xiangdong,He Youbin,Wang Dan,et al. Analysis on palaeocurrent in the Xujiajuan Formation,Xiangshan Group,Middle Ordovicaian,in Southern Helan Mountains[J]. Geological Review,2009,55(5):653-662.
李向东,何幼斌,王丹,等. 贺兰山以南中奥陶统香山群徐家圈组古水流分析[J]. 地质论评,2009,55(5):653-662.
37 Guo Yanru,Zhao Zhenyu,Zhang Yueqiao,et al. Development characteristics and new exploration areas of marine source rocks in Ordos Basin[J]. Acta Petrolei Sinica,2016,37(8):939-951.
郭彦如,赵振宇,张月巧,等. 鄂尔多斯盆地海相烃源岩系发育特征与勘探新领域[J]. 石油学报,2016,37(8):939-951.
38 Liu Xun,You Guoqing. Tectonic regional subdivision of China in the light of plate theory[J]. Geology in China,2015,42(1):1-17.
刘训,游国庆. 中国的板块构造区划[J]. 中国地质,2015,42(1):1-17.
39 Li Xiangdong,Que Yi,Huan Yaqi. Analysis of vertical sedimentary successions in the lower part of Kelimoli Formation,Middle Ordovician,Zhuozishan area[J]. Advances in Earth Science,2017,32(3):276-291.
李向东,阙易,郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展,2017,32(3):276-291.
40 Wu Xingning,Sun Liuyi,Yu Zhou,et al. Lithofacies paleogeography of Ordovician in western Ordos Basin[J]. Lithologic Reservoirs,2015,27(6):87-96.
吴兴宁,孙六一,于洲,等. 鄂尔多斯盆地西部奥陶纪岩相古地理特征[J]. 岩性油气藏,2015,27(6):87-96.
41 Guo Yanru,Zhao Zhenyu,Xu Wanglin,et al. Sequence stratigraphy of the Ordovician system in the Ordos Basin[J]. Acta Sedimentologica Sinica,2014,32(1):44-60.
郭彦如,赵振宇,徐旺林,等. 鄂尔多斯盆地奥陶系层序地层格架[J]. 沉积学报,2014,32(1):44-60.
42 Fei Anwei. Trace fossil assemblages and palaeoenvironment of Middle Ordovician Gongwusu Formation,Zhuozishan, Inner Mongolia[J]. Geoscience,2000,14(3):366-372.
费安玮. 桌子山中奥陶世公乌素组遗迹化石组合与古地理环境[J]. 现代地质,2000,14(3):366-372.
43 Li Xiangdong,Huan Yaqi. Origin of deep-water stripped-and-banded mudstones related to contour currents in the Ordovician,Zhuozishan area,Western margin of Ordos Basin[J]. Journal of Palaeogeography,2017,19(6):987-997.
李向东,郇雅棋. 鄂尔多斯盆地西缘桌子山地区奥陶系深水条纹条带状泥岩等深流成因分析[J]. 古地理学报,2017,19(6):987-997.
44 Fei Anwei. Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin[J]. Geological Journal of China Universities,2001,7(3):278-287.
费安玮. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境[J]. 高校地质学报,2001,7(3):278-287.
45 Li Rihui. Identification of contourites in Middle Ordovician Gongwushu Formation,Zhuozishan,and depositional environment[J]. Oil and Gas Geology,1994,15(3):235-240.
李日辉. 桌子山中奥陶统公乌素组等积岩的确认及沉积环境[J].石油与天然气地质,1994,15(3):235-240.
46 Li Rihui. Trace fossils and ichnofacies of middle Ordovician Gongwusu Formation,Zhuozishan,Inner Mongolia[J]. Acta Palaeontologica Sinica,1993,32(1):88-104.
李日辉. 内蒙古桌子山地区中奥陶世公乌素组的遗迹化石及遗迹相[J]. 古生物学报,1993,32(1):88-104.
47 Liu Qun,Kneller B,Fallgatter C,et al. Tabularity of individual turbidite beds controlled by flow efficiency and degree of confinement[J]. Sedimentology,2018,65(7):2 368-2 387.
48 J-C Faugeres,Stow D A V. Bottom-current-controlled sedimentation:A synthesis of the contourite problem[J]. Sedimentary Geology,1993,82(1/4):287-297.
49 Gao Zhenzhong,Eriksson K A,He Youbin,et al. Deep-water Traction Current Deposits-A Study of Internal Tides, Internal Waves,Contour Currents and Their Deposits[M]. Beijing:Science Press, 1998.
50 Zhao Yulong,Liu Zhifei. Spatial distribution of contourites in global ocean and its paleoclimatic significance—The contribution of international ocean drilling to the studies of contourites[J]. Advances in Earth Science,2017,32(12):1 287-1 296.
赵玉龙,刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展,2017,32(12):1 287-1 296.
51 Tian Zhuangcai,Guo Xiujun,Yu Le,et al. Review of the seabed sediment resuspension by internal solitary wave[J]. Advances in Earth Science,2018,33(2):166-178.
田壮才,郭秀军,余乐,等. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展,2018,33(2):166-178.
52 Pomar L,Morsilli M,Hallock P,et al. Internal waves,an under-explored source of turbulence events in the sedimentary record[J]. Earth-Science Reviews,2012,111(1/2):56-81.
53 Li Xiangdong. Proposed classification of internal-wave and internal-tide deposits in deep-water environment[J]. Geological Review,2013,59(6):1 097-1 109.
李向东. 关于深水环境下内波、内潮汐沉积分类的探讨[J]. 地质论评,2013,59(6):1 097-1 109.
54 Jin Huijuan,Li Yuci,Fang Guoqing. Internal-wave and internal-tide deposits in the palaeostratigraphic record of the western Qinling Mountains and their origin[J]. Acta Sedimentologica Sinica,2002,20(1):80-83.
晋慧娟,李育慈,方国庆. 西秦岭古代地层记录中内波、内潮汐沉积及其成因解释[J]. 沉积学报,2002,20(1):80-83.
55 Li Xiangdong,He Youbin,Zhang Mingji,et al. Sedimentary types of internal wave and internal tide deposits of Middle Ordovician,Xujiajuan Formation,Xiangshan Group,Ningxia Autonomous Region,China[J]. Advances in Earth Science,2011,26(9):1 006-1 014.
李向东,何幼斌,张铭记,等. 宁夏中奥陶统香山群徐家圈组内波、内潮汐沉积类型[J]. 地球科学进展,2011,26(9):1 006-1 014.
56 Gladstone C,McClelland H L O,Woodcock N H,et al. The formation of convolute lamination in mud-rich turbidites[J]. Sedimentology,2018,65(5):1 800-1 825.
57 Arnott R W C. Quasi-planar-laminated sandstone beds of the lower Cretaceous Bootlegger Member, North-central Montana:Evidence of combined-flow sedimentation[J]. Journal of Sedimentary Research,1993,63(3):488-494.
58 Prave A R,Duke W L. Small-scale hummocky cross-stratification in turbidites:A form of antidune stratification?[J]. Sedimentology,1990,37(3):531-539.
59 Mulder T,Razin P,J-C Faugeres. Hummocky cross-stratification-like structures in deep-sea turbidites:Upper Cretaceous Basque basins (Western Pyrenees, France)[J]. Sedimentology,2009,56(4):997-1 015.
60 Kneller B C,Branney M J. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology,1995,42(4):607-616.
61 Mulder T,Migeon S,Savoye B,et al. Inversely graded turbidite sequences in the deep Mediterranean:A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters,2001,21(2):86-93.
62 Sumner E J,Amy L A,Talling P J. Deposit structure and processes of sand deposition from deceleratingsediment suspensions[J]. Journal of Sedimentary Research,2008,78(8):529-547.
63 Dumas S,Arnott R W C. Origin of hummocky and swaley cross-stratification-The controlling influence of unidirectional current strength and aggradation rate[J]. Geology,2006,34(12):1 073-1 076.
64 Arnott R W C. Turbidites,and the case of the missing dunes[J]. Journal of Sedimentary Research,2012,82(6):379-384.
65 Xu Shumei,Feng Huaiwei,Li Sanzhong,et al. Study on caledonian movement in Helanshan and its surrounding area[J]. Acta Petrologica Sinica,2016,32(7):2 137-2 150.
许淑梅,冯怀伟,李三忠,等. 贺兰山及周边地区加里东运动研究[J]. 岩石学报,2016,32(7):2 137-2 150.
66 Eoff J D. Sedimentary facies of the upper Cambrian (Furongian,Jiangshanian and Sunwaptan) Tunnel City Group,Upper Mississippi Valley:New in sight on the old stormy debate[J]. Sedimentary Geology,2014,302:102-121.
[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 薛春玲, 戴霜, 陈中阳, 汪卫国. 亚洲奥陶系牙形刺生物地层研究进展[J]. 地球科学进展, 2021, 36(1): 29-44.
[3] 张创, 罗然昊, 张恒昌, 周雪, 王成龙, 邢华, 钱成. 中等地温场、长深埋期石英砂岩类储层成岩作用与孔隙度演化模式——以鄂尔多斯盆地延安地区下石盒子组为例[J]. 地球科学进展, 2017, 32(7): 744-756.
[4] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[5] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[6] 曹青,赵靖舟,赵小会,张涛,王宝清. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7): 819-828.
[7] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[8] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[9] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[10] 何幼斌,罗顺社,高振中. 深水牵引流沉积研究进展与展望[J]. 地球科学进展, 1997, 12(3): 247-252.
[11] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.
阅读次数
全文


摘要