Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (4): 375-389    DOI: 10.11867/j.issn.1001-8166.2021.041
综述与评述     
复合流沉积特征的谱系研究现状及其理论框架
李向东()
昆明理工大学国土资源工程学院,云南 昆明 650093
Current Situation of Combined-flow Deposition for Sedimentary Characteristic Series and Its Theory Frame Work
Xiangdong LI()
School of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,China
 全文: PDF(2969 KB)   HTML
摘要:

复合流由单向流和振荡流叠加而成,属于不同流体相互作用范畴,其研究起源于水槽实验中对复合流波痕的观察,一开始便和沉积学结合在一起。复合流沉积对于复杂水动力条件下的沉积学研究具有非常重要的意义,是目前确定沉积岩沉积时流体相互作用的主要依据。以现有复合流文献为基础,从复合流底床形态与垂向序列谱系、沉积效应与层理构造谱系和泥质底床上的层面构造谱系等3个方面进行了总结。复合流沉积特征受单向流速度和振荡流速度的双重控制,各底床形态及相关的纹层构造均表现出从对称到不对称的连续变化,其不对称程度随单向流速度的增大而增加。垂向序列介于单向衰弱流悬浮沉积和双向振荡流悬浮沉积之间,鲍玛序列和风暴序列是其两个端元类型。复合流沉积虽然以粉砂和细砂颗粒为主,但是在较粗的颗粒中(如扁平砾屑)也可以形成特殊的颗粒组构。在层面构造中,由于单向流和振荡流速度的变化(包括大小和叠加方向)在泥质底床上也会形成不同的底痕谱系。因此,对复合流沉积的研究,将是注重振荡流与单向流相互作用的沉积过程研究,从而有别于传统沉积学在不同沉积环境下的模式研究。

关键词: 复合流沉积单向流振荡流沉积特征沉积过程    
Abstract:

Combined flows belong to the interaction between different flows, common with both a unidirectional and an oscillatory component, which were first investigated in flume experiments associated with sedimentology. Deposits of combined flows have great significance in the study of sedimentology in a complex hydrodynamic system, which includes the main evidence for the interaction between different sedimentary flows in rocks. Here we review the deposits of combined-flow from three sections based on present literatures: bed configurations and series of vertical sequences; sedimentary effects of flow and series of cross-bedding structures; and sole marks on muddy substrate. The characteristics of combined-flow deposits are controlled by velocities of unidirectional and oscillatory flow, therefore both the bed configurations and related laminated structures have a continuous variation from symmetric to asymmetric form, and become more asymmetric as the unidirectional flow velocity increases. The vertical sequence is between the vertical stratification produced by suspension of purely unidirectional flow and oscillatory flow, and Bouma sequence and tempestite sequence are their end-member cases, respectively. Although the combined-flow deposits are mainly composed of silt and fine-grained sand, some special granular fabric is produced in coarser particles such as plate-like intraclasts. Different spectrum of sole surfaces on muddy substrate is also formed among bed side sedimentary structures because of the variable velocities (including magnitude and superposition direction) of unidirectional and oscillatory flows. Therefore, in the future research area of combined-flow deposits, sedimentary processes research of the interaction of unidirectional and oscillatory flows should be paid much attention, rather than sedimentary mode research for traditional sedimentology based on the various sedimentary environment.

Key words: Combined-flow deposits    Unidirectional-flow    Oscillatory-flow    Sedimentary Characteristics    Deposition processes
收稿日期: 2021-01-13 出版日期: 2021-05-31
ZTFLH:  P512.2  
基金资助: 国家自然科学基金项目“阿拉善地块东南缘与鄂尔多斯盆地西缘中、上奥陶统浊流演化及其与内波相互作用研究”(41272119)
作者简介: 李向东(1973-),男,陕西蓝田人,副教授,主要从事深水沉积及其应用研究. E-mail:lixiangdong614@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李向东

引用本文:

李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.

Xiangdong LI. Current Situation of Combined-flow Deposition for Sedimentary Characteristic Series and Its Theory Frame Work. Advances in Earth Science, 2021, 36(4): 375-389.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.041        http://www.adearth.ac.cn/CN/Y2021/V36/I4/375

图1  复合流底床形态相图与垂向序列[1,32,33,42,43](a)复合流底床形态相图,实线由水槽实验结果绘出,短虚线为推测界线[1];(b)和(c)复合流沉积示意图[42];(d)、(e)和(f)特殊路径复合流沉积垂向序列[43],(d)为(a)中的路径1,(e)为(a)中的路径2,(f)为(a)中的路径3;NM:无颗粒移动,流体能量在主要颗粒移动门限之下,对应于鲍玛序列中的上平行层理段;CR:流水波痕;S2D:小型2D波痕;SS3D:对称小型3D波痕;AS3D:不对称小型3D波痕;SLR:对称大型3D波痕;ALR:不对称大型3D波痕;PB:平行层理(含准平行层理);CFR:复合流层理;HCS:丘状交错层理(含似丘状交错层理);MG: 块状层或粒序层;M: 泥质层(静水或近静水沉积);Uw:振荡流速度;Uc:单向流速度
波痕类型定义特征
流水波痕波峰和波谷均较圆滑,呈不对称状,陡坡倾向指示水流方向平均波长约35 cm,平均波高1.5 cm,各波痕指数平均值分别为:RI=12,RSI=1.9,RDI=0.5
小型2D波痕规则波痕,具有平直且侧向连续的波脊,波峰尖锐、波谷圆滑,与流向垂直波长小于振荡流轨迹直径,平均长度约23 cm,平均波高约3.7 cm,6≤RI≤14,平均为10,RSI≈1,RDI平均0.38
3D波痕小型对称与小型2D波痕类似,平面上呈三维形态,具有弯曲至不规则的波脊,波谷可出现剥蚀现象,波长一般为10~50 cm平均波长21 cm,波高3.1 cm,各波痕指数平均值分别为:RI=7,RSI=1.1,RDI=0.42
不对称平均波长22 cm,波高变化较大,平均2.5 cm,4≤RI≤11,平均为8,RSI平均1.5~1.9,RDI平均0.59
大型对称具有尖锐的波峰、宽缓而圆滑的波谷以及平直的迎流面,波脊弯曲连续或平直断续,常具有波脊分岔现象其上常叠置有小型波痕,波长一般大于50 cm,8≤RI≤26,平均为13,1.0≤RSI≤1.9,平均为1.3,0.4≤RDI≤0.7,平均为0.5
不对称具有突变边界而形态模糊的波峰、深的波谷和圆滑的迎流面,平面上波脊形态多变,从弯曲连续到不规则,无平直波脊其上常叠置有小型波痕,波长一般大于50 cm,7≤RI≤19,平均为10,1.5≤RSI≤9.0,平均为3.3, RDI≥0.6,平均为0.7
丘状(似丘状)底床与大型3D波痕类似,具有特征性的宽广而圆滑的波峰,无突变的崩落点,平面上呈孤立的三维丘状形态7≤RI≤26,平均为13,0.4≤RDI≤0.9,RSI介于对称3D波痕和不对称3D波痕之间,平均为2.4
表1  复合流波痕的类型与特征[1, 2, 32]
图2  洼状交错层理纹层充填谱系示意图[66](a)槽状交错层;(b)和(c)中间形态;(d)对称充填
图3  复合流作用下内碎屑沉积示意图[70](a)~(d)底床瞬时剪切应力(近底床流速)与板状内碎屑运动的关系;(a)脉动流示意图,单向流和波动传播方向相反,Uc<0, |Uc|>|Uw|;(b)底床剪切力较小时板状内碎屑的滑动;(c) 底床剪切力较大时板状内碎屑的旋转;(d) 底床剪切力逐渐减小时前期形成的粗糙底床滑动挤压形成直立或大角度倾斜的砾屑堆积;(e)内碎屑层几何形态横向变化野外素描图;Uc:单向流速度;Uw:振荡流速度;T:波动周期;FS:扇形扁立组构;C:杂乱扁立组构
图4  泥质底床上复合流底痕谱系及形成机制[76](a)槽痕;(b)纵向冲刷痕;(c)阶梯状冲刷痕;(d)复合流工具痕;(e)丘状和洼状底床;(f)波痕(垂直叠加);(g)复合流底痕形成机制示意图;A、B和C:流体与相应的底痕
图5  复合流沉积研究理论框架图(a)复合流分类;(b)对称共轴叠加沉积特征谱系框架图
1 DUMAS S,ARNOTT R W C,SOUTHARD J B. Experiments on oscillatory-flow and combined-flow bed forms:Implications for interpreting parts of the shallow-marine sedimentary record[J]. Journal of Sedimentary Research,2005,75(3):501-513.
2 PERILLO M M,BEST J L,YOKOKAWA M,et al. A unified model for bedform development and equilibrium under unidirectional,oscillatory and combined-flows[J]. Sedimentology,2014,61(7):2 063-2 085.
3 LI Xiangdong. An overview of hydromechanics in sedimentology[J]. Global Geology,2020,39(1):45-55.
3 李向东. 浅议沉积学中的流体问题[J]. 世界地质,2020,39(1):45-55.
4 HARMS J C. Hydraulic significance of some sand ripples[J]. Geological Society of America Bulletin,1969,80(3):363-396.
5 WUNDERLICH F. Genesis and environment of the ''Nellenkoepfchenschichten'' (Lower Emsian, Rheinian Devon) at locus typicus in comparison with modern coastal environments of the German Bay[J]. Journal of Sedimentary Petrology,1970,40(1):102-130.
6 MURRAY S P. Bottom currents near the coast during Hurricane Camille[J]. Journal of Geophysical Research,1970,75(24):4 579-4 582.
7 SWIFT D J P, FIGUEIREDO A G, FREELAND G L,et al. Hummocky cross-stratification and megaripples:A geological double standard[J]. Journal of Sedimentary Petrology,1983,53(4):1 295-1 317.
8 GREENWOOD B. Hummocky cross-stratification in the surf zone: Flow parameters and bedding genesis [J]. Sedimentology,1986,33(1):33-45.
9 N?TTVEDT A,KREISA R D. Model for the combined-flow origin of hummocky cross-stratification[J]. Geology,1987,15(4):357-361.
10 WALKER R G,PLINT A G. Wave- and storm-dominated shallow marine systems[C]//WALKER R G,JAMES N P. Facies models. Geological Association of Canada,1992:219-238.
11 PERILLO M M,BEST J L,GARCIA M H. A new phase diagram for combined-flow bedforms[J]. Journal of Sedimentary Research,2014,84(4):301-313.
12 MOLGAT M,ARNOTT R W C. Combined tide and wave influence on sedimentation patterns in the Upper Jurassic Swift Formation, south-eastern Alberta [J]. Sedimentology,2001,48(6):1 353-1 369.
13 PATTISON S A J. Storm-influenced prodelta turbidite complex in the Lower Kenilworth Member at Hatch Mesa,Book cliffs,Utah,USA:Implications for shallow marine facies models[J].Journal of Sedimentary Research,2005,75(3):420-439.
14 BOWMAN A P,HOWARD D,JOHNSON H D. Storm-dominated shelf-edge delta successions in a high accommodation setting:The palaeo-Orinoco delta (Mayaro Formation),Columbus Basin,South-East Trinidad [J]. Sedimentology,2014,61(3):792-835.
15 HARAZIM D,MCILROY D. Mud-rich density-driven flows along an early Ordovician storm-dominated shoreline:Implications for shallow-marine facies models[J]. Journal of Sedimentary Research,2015,85(5):509-528.
16 COLLINS D S,JOHNSON H D,ALLISON P A,et al. Coupled 'storm-flood' depositional model:Application to the Miocene-Modern Baram Delta Province,north-west Borneo[J]. Sedimentology,2017,64(5):1 203-1 235.
17 WU Xuxu,PARSONS D R. Field investigation of bedform morphodynamics under combined flow[J]. Geomorphology,2019,339:19-30.
18 LI M Z,AMOS C L. Sheet flow and large wave ripples under combined wave and currents:Field observations,model predictions and effects on boundary layer dynamics[J]. Continental Shelf Research,1999,19(5):637-663.
19 HILL P R,MEULé S,LONGUéPéE H. Combined-flow processes and sedimentary structures on the shoreface of the wave-dominated grande-riviére-de-la-baleine delta[J]. Journal of Sedimentary Research,2003,73(2):217-226.
20 PENG Yang,STEEL R J,OLARIU C. Transition from storm wave-dominated outer shelf to gullied upper slope:The mid-Pliocene Orinoco shelf margin,South Trinidad[J]. Sedimentology,2017,64(6):1 511-1 539.
21 LI Xiangdong. Advances in genetic mechanism research on hummocky and hummocky-like cross- stratifications [J]. Journal of Palaeogeography,2020,22(6):1 065-1 080.
21 李向东. 丘状和似丘状交错层理成因机制研究进展[J].古地理学报,2020,22(6):1 065-1 080.
22 MYROW P M,FISCHER W,GOODGE J W. Wave-modified turbidites: Combined-flow shoreline and shelf deposits,Cambrian,Antarctica[J]. Journal of Sedimentary Research,2002,72(5):641-656.
23 PLINT A G,MACQUAKER J H S,VARBAN B L. Bedload transport of mud across a wide,storm-influenced ramp:Cenomanian-Turonian Kaskapau Formation,Western Canada foreland basin[J]. Journal of Sedimentary Research,2012,82(11):801-822.
24 LI Xiangdong,HE Youbin,ZHENG Zhaochang,et al. Deep-water combined-flow sedimentary structures in Xujiajuan Formation of Xiangshan Group,Ningxia[J]. Acta Geologica Sinica,2010,84(2):221-232.
24 李向东,何幼斌,郑昭昌,等. 宁夏香山群徐家圈组发现深水复合流沉积构造[J].地质学报,2010,84(2):221-232.
25 POMAR L,MOLINA J M,RUIZ-ORTIZ P A,et al. Storms in the deep:Tempestite-and beach-like deposits in pelagic sequences (Jurassic,Subbetic,South of Spain)[J]. Marine and Petroleum Geology,2019,107:365-381.
26 TINTERRI R,MAGALHAES P M,TAGLIAFERRI A,et al.Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes:Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)[J]. Sedimentary Geology,2016,344:382-407.
27 LI Xiangdong,CHEN Haiyan,CHEN Hongda. Deep-water combined-flow deposits of the upper ordovician Lashen-zhong Formation in Zhuozishan area,western margin of Ordos Basin[J]. Advances in Earth Science,2019,34(12):1 301-1 305.
27 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J].地球科学进展,2019,34(12):1 301-1 305.
28 BASILICI G,de LUCA P H V,POIRé D G. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera):A turbiditic deep-water or storm-dominated prodelta inner-shelf system?[J]. Sedimentary Geology,2012,267/268:73-92.
29 JOBE Z R,HOWES N C,AUCHTER N C. Comparing submarine and fluvial channel kinematics:Implications for stratigraphic architecture[J]. Geology,2016,44 (11):931-934.
30 DEREUIL A A,BIRGENHEIER L P. Sediment dispersal and organic carbon preservation in a dynamic mudstone-dominated system,Juana Lopez Member,Mancos Shale[J]. Sedimentology,2019,66(3):1 002-1 041.
31 INMAN D L,BOWEN A J. Flume experiments on sand transport by waves and currents[C]//Process 8th conference on Coastal Engineering,1963:137-150.
32 ARNOTT R W,SOUTHARD J B. Exploratory flow-duct experiments on combined-flow bed configurations and some implications for interpreting storm-event stratification[J]. Journal of Sedimentary Petrology,1990,60(2):211-219.
33 ARNOTT R W C. Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member, North-Central Montana: Evidence of combined-flow sedimentation[J]. Journal of Sedimentary Research,1993,63(3):488-494.
34 PANAGIOTOPOULOS I,SYLAIOS G,COLLINS M B.Threshold studies of gravel size particles under the co-linear combined action of waves and currents[J]. Sedimentology,1994,41(5):951-962.
35 YOKOKAWA M,MASUDA F,ENDO N. Sand particle movement on migrating combined-flow ripples[J]. Journal of Sedimentary Research,1995,A65(1):40-44.
36 PAPHITIS D,VELEGRAKIS A F,COLLINS M B,et al. Laboratory investigations into the threshold of movement of natural sand-sized sediments under unidirectional,oscillatory and combined-flows[J]. Sedimentology,2001,48(3):645-659.
37 DUMAS S,ARNOTT R W C. Origin of hummocky and swaley cross-stratification-the controlling influence of unidirectional current strength and aggradation rate[J]. Geology,2006,34(12):1 073-1 076.
38 YOVANNI A,CATA?O-LOPERA,LANDRY B J,et al. Scour and burial mechanics of conical frustums on a sandy bed under combined flow conditions[J]. Ocean Engineering,2011,38(10):1 256-1 268.
39 LI Xiangdong.Proposed classification of internal-wave and internal-tide deposits in deep-water environment[J]. Geological Review,2013,59(6):1 097-1 109.
39 李向东. 关于深水环境下内波、内潮汐沉积分类的探讨[J]. 地质论评,2013,59(6):1 097-1 109.
40 HAGADORN J W,MCDOWELL C. Microbial influence on erosion,grain transport and bedform genesis in sandy substrates under unidirectional flow[J]. Sedimentology,2012,59(3):795-808.
41 PASSCHIER S,KLEINHANS M G. Observations of sand waves,megaripples,and hummocks in the Dutch coastal area and their relation to currents and combined flow conditions[J]. Journal of Geophysical Research,2005,110(F4):F04S15. DOI:10.1029/2004JF000215.
doi: 10.1029/2004JF000215.
42 LAMB M P,MYROW P M,LUKENS C,et al. Deposits from wave-influenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,USA[J]. Journal of Sedimentary Research,2008,78(7):480-498.
43 MYROW P M,SOUTHARD J B. Combined-flow model for vertical stratification sequences in shallow marine storm-deposited beds[J]. Journal of Sedimentary Petrology,1991,61(2):202-210.
44 VENDITTI J G,CHURCH M,BENNETT S J. On the transition between 2D and 3D dunes[J]. Sedimentology,2005,52(6):1 343-1 359.
45 KNELLER B C,BRANNEY M J. Sustained high-density turbidity currents and the deposition of thick massive sands[J]. Sedimentology,1995,42(4):607-616.
46 MULDER T,RAZIN P,FAUGERES J C. Hummocky cross-stratification-like structures in deep-sea turbidites:Upper Cretaceous Basque basins (Western Pyrenees,France)[J]. Sedimentology,2009,56(4):997-1 015.
47 LI Xiangdong,HE Youbin,LUO Jinxiong,et al. Basic sedimentary unit of Xujiajuan Formation,Xiangshan Group,Ningxia,China[J]. Acta Geologica Sinica,2011,85(4):516-525.
47 李向东,何幼斌,罗进雄,等. 宁夏香山群徐家圈组基本沉积单元[J]. 地质学报,2011,85(4):516-525.
48 MORSILLI M,POMAR L. Internal waves vs surface storm waves:A review on the origin of hummocky cross-stratification[J]. Terra Nova,2012,24(4):273-282.
49 RAUSHAN P K,SINGH S K,DEBNATH K,et al. Distribution of turbulent energy in combined wave current flow[J]. Ocean Engineering,2018,167:310-316.
50 SOUTHARD J B,LAMBIE J M,FEDERICO D C,et al. Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow,and the origin of hummocky cross-stratification[J]. Journal of Sedimentary Petrology,1990,60(1):1-17.
51 LECKIE D. Wave-formed,coarse-grained ripples and their relationship to hummocky cross- stratification[J]. Journal of Sedimentary Petrology,1988,58(4):607-622.
52 CUMMINGS D I,DUMAS S,DALRYMPLE R W. Fine-grained versus coarse-grained wave ripples generated experimentally under large-scale oscillatory flow[J]. Journal of Sedimentary Research,2009,79(2):83-93.
53 MIDTGAARD H. Inner-shelf to lower-shoreface hummocky sandstone bodies with evidence for geostrophic influenced combined flow,Lower Cretaceous,West Greenland[J]. Journal of Sedimentary Research,1996,66(2):343-353.
54 QUIN J M. Is most hummocky cross-stratification formed by large-scale ripples?[J]. Sedimentology,2011,58(6):1 414-1 433.
55 ZHONG Jianhua,NI Liangtian,SHAO Zhufu,et al. Tempestites and storm deposites in the Lower Cretaceous from Lingshan Island, Qingdao[J]. Journal of Palaeogeography,2016,18(3):381-398.
55 钟建华,倪良田,邵珠福,等. 青岛灵山岛下白垩统风暴岩与风暴沉积的发现及意义[J]. 古地理学报,2016,18(3):381-398.
56 XU Antao,LI Fengjie,LIU Kui,et al. The characteristics and sedimentary model of storm deposits in the Lower Devonian strata of Beichuan[J]. Geology in China,2018,45(5):1 049-1 062.
56 许安涛,李凤杰,刘奎,等. 北川甘溪下泥盆统风暴岩沉积特征及其沉积模式[J]. 中国地质,2018,45(5):1 049-1 062.
57 NI?O Y,LOPEZ F,GARCIA M. Threshold for particle entrainment into suspension[J]. Sedimentology,2003,50(2):247-263.
58 YANG B,DALRYMPLE R W,CHUN S. The significance of Hummocky Cross-Stratification (HCS) wavelengths: Evidence from an open-coast tidal flat, South Korea[J]. Journal of Sedimentary Research,2006,76(1): 2-8.
59 COTTER E. Gravel-topped offshore bar sequences inthe Lower Carboniferous of southern Ireland[J]. Sedimentology,1985,32(2):195-213.
60 ALLEN P A,UNDERHILL J R. Reply on swaley cross-stratification produced by unidirectional flows,Bencliff Grit (Upper Jurassic),Dorset,UK[J]. Journal of the Geological Society London,1990,147(3):398-400.
61 ARNOTT R W C. Ripple cross-stratification in swaley crossstratified sandstones of the Chungo Member,Mount Yamnuska,Alberta[J]. Canadian Journal of Earth Science,1992,29(8):1 802-1 805.
62 CASAS J E,WALKER R G. Sedimentology and depositional history of Units C and D of the Falher Member,Spirit River Formation,west-central Alberta[J]. Bulletin of Canadian Petroleum Geology,1997,45(2):218-238.
63 JOHNSON M E,da SILVA C M,SANTOS A,et al. Rhodolith transport and immobilization on a volcanically active rocky shore:Middle Miocene at Cabe?o das Laranjas on Ilhéu de Cima (Madeira Archipelago, Portugal)[J]. Palaeogeography Palaeoclimatology Palaeoecology,2011,300(1/4):113-127.
64 ZHANG Lijun. Lower Devonian tempestites in western Yangtze, South China:Insight from Zoophycos ichnofabrics[J].Geological Journal,2014,49(2):177-187.
65 MCCRORY V L C,WALKER R G. A storm and tidally-influenced prograding shoreline-Upper Cretaceous Milk River Formation of southern Alberta,Canada[J]. Sedimentology,1986,33(1):47-60.
66 DATTA B,SARKAR S,CHAUDHURI A K. Swaley cross-stratification in medium to coarse sandstone produced by oscillatory and combined flows:Examples from the Proterozoic Kansapathar Formation,Chhattisgarh Basin,M. P.,India[J]. Sedimentary Geology,1999,129(1/2):51-70.
67 PAYENBERG T H D,BRAMAN D R,MILL A D. Depositional environments and stratigraphic architecture of the Late Cretaceous Milk River and Eagle formations,southern Alberta and north-central Montana:Relationships to shallow biogenic gas[J]. Bulletin of Canadian Petroleum Geology,2003,51(2):155-176.
68 MATHESON E J,DALRYMPLE R W,JAMES N P. Swell-dominated carbonates on a Mississippian ramp in the Canadian rocky mountain front ranges[J]. Journal of Sedimentary Research,2016,86(8):843-862.
69 ALLEN P A,UNDERHILL J R. Swaley cross-stratification produced by unidirectional flows,Bencliff Grit (Upper Jurassic),Dorset,UK[J]. Journal of the Geological Society London,1989,146(2):241-252.
70 MOUNT J F,KIDDER D. Combined flow origin of edgewise intraclast conglomerates:Sellick Hill Formation (Lower Cambrian),South Australia[J]. Sedimentology,1993,40(2):315-329.
71 ABDI A,GHARAIE M H M,BáDENAS B. Internal wave deposits in Jurassic Kermanshah pelagic carbonates and radiolarites (Kermanshah area,West Iran)[J]. Sedimentary Geology,2014,314:47-59.
72 DAVIES A G,SOULSBY R L,KING H L. A numerical model of the combined wave and current bottom boundary layer[J]. Journal of Geophysical Research,1988,93(C1):491-508.
73 DUKE W L. Geostrophic circulation or shallow marine turbidity currents? The dilemma of paleoflow patterns in storminfluenced prograding shoreline systems[J].Journal of Sedimentary Petrology,1990,60(6):870-883.
74 MARTEL A T,GIBLING M R. Combined-flow generation of sole structures,including recurved groove casts,associated with lower Carboniferous lacustrine storm deposits in Nova Scotia,Canada[J]. Journal of Sedimentary Research,1994,A64(3):480-498.
75 SARKAR S,BANERJEE S,CHAKRABORTY S,et al. Shelf storm flow dynamics: Insight from the Mesoproterozoic Rampur shale,central India[J]. Sedimentary Geology,2002,147(1/2):89-104.
76 BEUKES N J. Sole marks and combined-flow storm event beds in the Brixton Formation of the siliciclastic Archean Witwatersread Supergroup,South Africa[J]. Journal of Sedimentary Research,1996,66(3):567-576.
77 BHATTACHARYA H N,BHATTACHARYA B,CHAKRABORTY I,et al. Sole marks in storm event beds in the Permo-Carboniferous Talchir Formation,Raniganj Basin,India[J]. Sedimentary Geology,2004,166(3/4):209-222.
78 LIN Mian,YUAN Zhida. nvestigation of characteristics of fluid field over wavy beds under oscillatory flow[J]. Chinese Journal of Geophysics,2005,48(6):1 466-1 474.
78 林缅,袁志达.振荡流作用下波状底床上流场特性的实验研究[J].地球物理学报,2005,48(6):1 466-1 474.
79 SINGH S K,DEBNATH K. Combined effects of wave and current in free surface turbulent flow[J]. Ocean Engineering,2016,127:170-189.
80 LU J, WANG X H,BABANIN A V,et al. Modeling of suspended sediment concentrations under combined wave-current flow over rippled bed[J]. Estuarine,Coastal and Shelf Science,2017,199:59-73.
81 SMITH E,DANILLER-VARGHESE M S,MYROW P M,et al. Experimental investigations of combined flow sediment transport[J]. Journal of Sedimentary Research,2019,89(8):808-814.
82 PEAKALL J,BEST J,BAAS J H,et al. An integrated process-based model of flutes and tool marks in deep-water environments:implications for palaeohydraulics,the Bouma sequence and hybrid event beds[J]. Sedimentology,2020,67(4):1 601-1 666.
83 YAMAGUCHI N,SEKIGUCHI H. Effects of settling and preferential deposition of sediment on ripple roundness under shoaling waves[J]. Journal of Sedimentary Research,2010,80(9):781-790.
84 CHAUDHURI A K. Climbing ripple structure and associated storm-lamination from a Proterozoic carbonate platform succession:Their environmental and petrogenetic significance[J]. Journal of Earth System Science,2005,114(3):199-209.
[1] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[2] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[5] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[6] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[7] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[8] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[9] 王圣杰, 张明军, 李忠勤, 王飞腾, 张晓宇, 李亚举. 天山乌鲁木齐河源1号冰川雪层中NO-3的演化过程[J]. 地球科学进展, 2011, 26(8): 897-904.
[10] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[11] 时钟,陈吉余,虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996, 11(6): 555-562.