地球科学进展 ›› 2014, Vol. 29 ›› Issue (4): 456 -463. doi: 10.11867/j.issn.1001-8166.2014.04.0456

综述与评述 上一篇    下一篇

豫西寒武纪叠层石微生物化石组合及其沉积环境
常玉光, 白万备, 齐永安, 孙凤余, 王敏   
  1. 河南理工大学资源环境学院, 河南省生物遗迹与成矿过程重点实验室, 河南 焦作 454000
  • 收稿日期:2014-01-07 出版日期:2014-04-10
  • 基金资助:

    国家自然科学基金青年科学基金项目“豫西寒武纪叠层石形态变化与微生物席底变迁的环境与资源意义”(编号:41202071); 河南理工大学博士基金项目“豫西寒武纪叠层石演化机理研究”(编号:B2014-069)资助.

Microfossil Assemblage and Its Sedimentary Environment in Cambrian Stromatolites, Western He’nan

Chang Yuguang, Bai Wanbei, Qi Yongan, Sun Fengyu, Wang Min   

  1. Institute of Resources & Environment, Key Laboratory of Biogenic Traces &Sedimentary Minerals of He’nan Province, He’nan Polytechnic University, Jiaozuo 454000, China
  • Received:2014-01-07 Online:2014-04-10 Published:2014-04-10

叠层石的生物成因是地质学家长期争论的焦点之一, 以豫西寒武纪叠层石为研究对象, 以偏光显微镜和扫描电镜为手段, 发现了豫西寒武纪碳酸盐岩叠层石中赋存大量微生物化石, 形态特征明显, 为典型蓝细菌属的丝状葛万菌(Girvanella)和球状肾形菌(Renalcis), 且具有明显的组合特征, 分别表现为片状或席状组合、球状组合、蜂窝状组合和格网状组合等。研究发现叠层石微生物化石及其组合的分布状态与宏观形态和明暗纹层存在着十分密切的联系, 并建立了豫西寒武纪叠层石微生物化石及其4类10种组合的沉积环境分布模式, 同时表明, 叠层石的生长环境特别是水动力条件是叠层石微生物化石组合保存及其分布状态的重要影响因素之一。

Biogenic stromatolites is one of the focus of geologists for a long time. In this paper, the research object is Cambrian stromatolites of western He’nan. Abundant microbial fossils are discovered in Cambrian carbonate stromatolites of western Henan, which are Girvanella and Renalcis of cyanobacteria with filamentous and spherical features, by means of polarizing microscope and Scanning Electron Microscopy (SEM). They display the distinct characteristics of assemblage, such as the sheet or mat assemblage, the globular assemblage, the cellular and the grid assemblage. Study shows that there exists very close ties between the distribution of microbial fossils and microfossils assemblage and the macroscopic forms and their layers. The sedimentary environmental models of microbial fossils and 4 categories and 10 types of microfossils assemblage have been established. The growth environment, especially the hydrodynamic condition of stromatolites is one of the important effect factors of the microfossils assemblage preservation and distribution.

中图分类号: 

[1] Cao Ruiji, Yuan Xunlai. Stromatolites[M]. Hefei: University of Technology and Science Press, 2006. [曹瑞骥, 袁训来. 叠层石[M]. 合肥:中国科学技术大学出版社, 2006. ]
[2] Mei Mingxiang. Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5):222-234. [梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘, 2007, 14(5):222-234. ]
[3] Monty C L V. Evolving Concepts on the Nature and the Ecological Significance of Stromatolites[M]. Heidelberg: Springer-Verlag, 1977: 15-35.
[4] Flügel E, Kiessling W. A new look at ancient reefs[M]∥Kiessing W, Flügel E, Golonka J, eds. Phanerozoic Reef Patterns. California: Society for Sedimentary Geology, 2002.
[5] Andres M S, Reid R P. Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas[J]. Sedimentary Geology, 2006, 185(3): 319-328.
[6] Dupraz C, Pattisina R, Verrecchia E P. Translation of energy into morphology: Simulation of stromatolite morphospace using a stochastic model[J]. Sedimentary Geology, 2006, 185(3): 185-203.
[7] Allwood A C, Walter M R, Burch I W, et al. 3. 43 billion year old stromatolite reef from the Pilbara Craton of Western Australia: Ecosystem scale insight to early life on Earth[J]. Precambrian Research, 2007, 158(3/4):198-227.
[8] Jahnert R J, Collins L B. Significance of subtidal microbial deposits in Shark Bay, Australia[J]. Marine Geology, 2011, 286(1/4): 106-111.
[9] Bowlin E M, Klaus J S, Foster J S, et al. Environmental controls on microbial community cycling in modern marine stromatolites[J]. Sedimentary Geology, 2012, 263/264:45-55.
[10] Cónsole-Gonella C, Marquillas R A. Bioclaustration trace fossils in epeiric shallow marine stromatolites: The Cretaceous-Palaeogene Yacoraite Formation, Northwestern Argentina[J]. Lethaia, 2014, 47(1):107-119.
[11] Jia Zhihai, Hong Tianqiu, Wang Wei. The building process and influential factors of the stomatolite reefs in the neoproterozoic Jiuliqiao formation in Huainan region, Anhui[J]. Acta Palaeontologica Sinica, 2008, 47 (1) : 47-57. [贾志海, 洪天求, 王伟. 淮南地区新元古代九里桥组叠层石成礁过程及其影响因素[J]. 古生物学报, 2008, 47 (1) : 47-57. ]
[12] Cao Ruiji, Yuan Xunlai. Advances of stromatolite study in China[J]. Acta Palaeontologica Sinica, 2009, 48(3):314-332. [曹瑞骥, 袁训来. 中国叠层石研究进展[J]. 古生物学报, 2009, 48(3):314-332. ]
[13] Gao Weiyan, Li Jianghai, Bai Xiang, et al. Structural characterister of a huge Paleoproterozoic stomatolite in Mt. Wutai, and its genetic implication[J]. Acta Petrologica Sinica, 2009, 25(3):667-674. [高危言, 李江海, 白翔, 等. 五台山古元古代巨型叠层石的结构特征及成因意义[J]. 岩石学报, 2009, 25(3):667-674. ]
[14] Mu Xi’nan, Yan Huijun, Li Yue, et al. Temporal and spatial distribution of microbiolitic reefs of Middle Cambrian, Eastern North China craton[J]. Aeta Micropalaeontologica Sinica, 2003, 20(3): 279-285. [穆西南, 严惠君, 李越, 等. 华北地台东部中寒武世微生物礁的时空分布[J]. 微体古生物学报, 2003, 20(3):279-285. ]
[15] Mei Mingxiang, Guo Rongtao. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8):2 473-2 468. [梅冥相, 郭荣涛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报, 2011, 27(8):2 473-2 486. ]
[16] Mei Mingxiang. Microbial matsedimentology: A young branch from sedimentology[J]. Advances in Earth Science, 2011, 26(6):586-597. [梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展, 2011, 26(6):586-597. ]
[17] Liu Yinhuan, Wang Jianping, Zhang Haiqing, et al. The Cambrian and Ordovician Systems of He’nan Province[M]. Beijing: Geological Publishing House, 1991. [刘印环, 王建平, 张海清, 等. 河南的寒武系和奥陶系[M]. 北京:地质出版社, 1991. ]
[18] Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies Paleogeography of the Cambrian and Ordovician in China[M]. Beijing:Petroleum Industry Press, 2004. [冯增昭, 彭勇民, 金振奎, 等. 中国寒武纪和奥陶纪岩相古地理[M]. 北京:石油工业出版社, 2004. ]
[19] Chang Yuguang, Qi Yongan, Zheng Wei, et al. Sedimentary characteristics and paleoenvironmental significance on stromatolites of Mantou Formation in Cambrian, Western He’nan, China[J]. Acta Sedimentologica Sinica, 2013, 31(1): 11-19. [常玉光, 齐永安, 郑伟, 等. 中国豫西寒武系馒头组叠层石的沉积特征及其古环境意义[J]. 沉积学报, 2013, 31(1): 11-19. ]
[20] Wang Yinghua, Zhang Xiulian, Yang Chengyun. Petrology on Early Paleozoic Carbonate from North China[M]. Beijing: Seismological Press, 1988. [王英华, 张秀莲, 杨承运. 华北地台早古生代碳酸盐岩岩石学[M]. 北京:地震出版社, 1988. ]
[21] Daniela H, Reinhold L F, Jürke G, et al. Oncoids from the river Alz (southern Germany): Tiny ecosystems in a Phosphorus-limited environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237: 378-395.
[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[3] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[4] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[5] 由伟丰,张海清,校培喜,曹宣铎,胡云绪,谢从瑞. 北祁连山—阿拉善地区寒武纪构造—岩相古地理[J]. 地球科学进展, 2011, 26(10): 1092-1100.
[6] 王勇. “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006, 21(8): 857-862.
[7] 刘燕学;柳永清;旷红伟. 一种严格受控于环境和时间的特殊碳酸盐岩——臼齿构造碳酸盐岩[J]. 地球科学进展, 2005, 20(7): 710-716.
[8] 王金荣;翟新伟;边少之;李双文;董宁芳;王廷印. 地壳早期演化的研究进展[J]. 地球科学进展, 2004, 19(4): 591-598.
[9] 齐永安,吴贤涛. 中国前寒武纪痕迹化石的分布及其古生物学、地层学意义[J]. 地球科学进展, 1996, 11(1): 45-49.
[10] 王官福. 前寒武纪古地磁学的研究前景[J]. 地球科学进展, 1991, 6(4): 49-50.
阅读次数
全文


摘要