[1]Heurley R M, Rand J R. Pre-drift continental nuclei[J]. Science, 1968,164:1 229-1 242. [2]Raymer A, Schubert G. Phamerozoic addition reates to the continental crust and crust growth[J]. Tectonics, 1984,3, 63-77. [3]Armstrong R L. A model for the evolution of strontium and lead isotopes in a dynamic Earth[J]. Review of Geophysics,1968, 6: 175-199. [4]McCulloch M T, Bennett V C.Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints[J]. Geochimca et Cosmochimca Acta,1994, 58: 197-214. [5]Collerson K D, Kamber B S. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle[J]. Science, 1999, 283: 1 519-1 522. [6]Armstrong R L. Comment on “crustal growth and mantle evolution: Inferred from models of element transport and Nd and Sr isotopes”[J]. Geochimca et Cosmochimca Acta,1981, 45: 1 251. [7]Sylvester P J, Campbell I H, Bowyer D A. Niobium/Uranium evidence for early formation of the continental crust[J]. Science, 1997,275: 521-523. [8]Abbott D, Spakers D, Herzberg C, et al. Quantifying Precambrian crustal extraction: The root is the answer[J]. Tectonophysics, 2000,322:163-190. [9]Abbott D H, Isley A E. The intensity, occurrence, and duration of superplume events and eras over geological time[J]. Journal of Geodynamics, 2002,34:265-307. [10]Blicher-Toft J, Albarede F. The LuHf isotope geochemistry of chondrites and evolution of the crust-mantle system[J]. Earth and Planetary Science Letters,1997, 148: 243-258. [11]Blicher-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysisof a rock samples by magnetic sector-multiple collector ICP-MS[J]. Contribution to Mineralogy and Petrology, 1997,127: 248-260. [12]Taylor S R. Growth of planetary crust[J]. Tectonophysics, 1989, 161: 147-156. [13]Amelin Y, Lee D, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999,399:252-255. [14]Moser D E, Flowers R M, Hart R J. Birth of the Kaapvaal tectosphere 3.08 billion years ago[J]. Science, 2001, 291:465-468. [15]Fenglin Niu, David E J. Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution[J]. Earth and Planetary Science Letters, 2002, 200 (1~2):121-130. [16]Green M G, Sylvester P J, Buick R. Growth and recycling of early Archaean continental crust: Geochemical evidence from the Coonterunah and Warrawoona Groups, Pilbara Craton, Australia[J]. Tectonophysics, 2000, 322: 69-88. [17]Henry Philippe, Stevenson R K, Larbi Y, et al. Nd isotopic evidence for early to late Archaean(3.4-2.7Ga) crustal growth in the Western Superior Province (Ontario, Canada)[J]. Tectonophysics, 2000, 322: 135-151. [18]Vervoort J D, Patchett P J, Gehrels G E, et al. Contraints on the early Earth differentiation from hafnium and neodymium isotopes[J]. Nature, 1996, 379: 624-627. [19]Bowring S A, Housh T B. The Earth's early evolution[J]. Science, 1995,269:1 535-1 540. [20]Vervoort J D, Blicher-Toft J. Evolution of the depleted mantle: Hf isotope evidence from jurenile rocks through time[J]. Geochimca et Cosmochimca Acta,1999, 63: 533-556. [21]Djomani Y H P, O'Reilly S Y, Griffin W L, et al. The density structure of subcontinental lithosphere through time[J]. Earth and Planetary Science Letters, 2001, 184: 605-621. [22]Pearson D G. The age of continental roots[J]. Lithos, 1999, 48:171-194. [23]Brown R W, Gallagher K, Griffin W L, et al. Kimberlites, Accelerated Erosion and Evolution of the Lithospheric Mantle Beneath the Kaapvaal Craton during the Mid-Cretaceous[C]. Extra Abstract 7th International Kimberlite Conference, 1999.105-107. [24]Yuan X. Velocity structure of the Qinling lithosphere and mushroom cloud model[J]. Sciencein China(D), 1996, 39: 235-244. [25]Nguuri T K. Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvall and Zimbabwe cratons[J]. Geophysics Research Letters, 2001, 28:2 501-2 504. [26]Taylor S R, McLennan S M.The geochemical evolution of the continental crust[J]. Review of Geophysics, 1995, 33: 241-265. [27]McCulloch M T, Bennett V C. Evolution of the early Earth: Constraints from 143Nd-142Nd isotopic systematics[J]. Lithos, 1993,30:237-255. [28]Armstrong R L.The persistent myth of crustal growth[J]. Australian Journal of Earth Science, 1991, 38: 613-640. [29]Bowring S A, Housh T. The Earth's early evolution[J]. Science, 1995,269:1 535-1 540. [30]Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46: 95-101. [31]Krapez B, Brown S J A, Hand J, et al. Age constraints on recycled crustal and supracrustal sources of Archaean metasedimentary sequences, Eastern Goldfields Province, Western Australia: Evidence from SHRIMP zircon dating[J]. Tectonophysics, 2000, 322: 89-133. [32]Plank T, Langmuir C W. An evalution of the global variations in the major element chemistry of arc basalts[J]. Earth and Planetary Science Letters, 1988, 90: 349-370. [33]Richardson S H, Shirey S B, Harris J W, et al. Archaean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kiberley diamonds[J]. Earth and Planetary Science Letters, 2001, 191: 257-266. [34]Kerrich R, Wyman D, Fan J, et al. Boninite series: Low-Ti tholeiite associations from the 2.7Ga Abitibi greenstone belt[J]. Earth and Planetary Science Letters, 1998, 164: 303-316. [35]Hollings P, Wyman D, Kerrich R. Komatiite-basalt-rhyolite volcanic associations in Northern Superior Province greenstone belt: Significance of plumearc interaction in the generation of the proto continental Superior Province[J].Lithos, 1999, 46: 137-161. [36]Abouchami W, Boher M, Michard A, et al. A major 2.1Ga event of mafic magmatism in West Africa: An early stage of crustal accretion[J].Journal of Geophysics Research, 1990, 95: 17 605-17 629. [37]Boher M, Abouchami W, Michard A,et al. Crustal growth in West Africa at 2.1Ga[J]. Journal of Geophysics Research, 1992, 97: 345-369. [38]Stein M, Goldstein S T. From plume head to continental lithosphere in the Arabian Nubian Shield[J].Nature, 1996, 382: 773-777. [39]Mann P, Gahagan L, Coffin M, et al. Regional tectonic effects resulting from the progressive east-to-west collosion of the Ontong Java Plateau with the Melanesian Arc system[J]. EOS(Transactions, American Geophysics Union), 1997,77: 712. [40]Pettterson M G, Neal C R, Mahchey J J, et al. Structure and deformation of north and central Malaita, Sosomon Island: Tectonic implications for the Ontong Java PleteauSosomon arc collision, and for the fate of oceanic plateaus[J]. Tectonophysics, 1997, 283:1-33. [41]Abbott D H. Plumes and hotspots as sources of greenstone belts[J]. Lithos, 1996, 37: 113-127. [42]Gurnis M, Davies G F. Apparent episodic crustal growth arising from a smoothly evolving mantle[J]. Geology, 1986, 14: 396-399. [43]Stein M, Hofmann A W. Mantle plume and episodic crustal growth[J]. Nature, 1994, 372: 63-68. [44]Condie K C. Episodic continental growth models: Afterthoughts and extensions[J]. Tectonophysics, 2000, 322: 153-162. [45]Condie K C. Continental growth during a 1.9Ga superplume event[J]. Journal of Dynamics, 2002,34: 249-264. [46]Condie K C, Chomiak B. Continental accretion: Contrasting Mesozoic and Early Proterozoic tectonic regimes in north America[J]. Tectonophysics,1996,265: 101-126. [47]McCullon M T, Bennett V C. Pregressive growth of the Earth's continental crust and depleted mantle:Geochemical contraints[J]. Geochimca et Cosmochimca Acta, 1994, 58: 4 717-4 738. [48]Worsly T R, Nance R D, Moody J B. Tectonic styles and the history of the Earth's biochemical and paleoceanographic record[J]. Paleoceanography, 1986,1: 233-263. [49]Nance R D, Worsly T R, Moody J B. The supercontinental cycle[J]. Scientific American, 1988, 259: 44-52. [50]Davies G F. Punctuated tectonic evolution of the Earth[J]. Earth and Planetary Science Letters, 1995, 136: 363-379. [51]Condie K C. Episodic continental growth and supercontinenets: A mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163: 97-108. [52]Condie K C. Continental growth during formation of Rodinia at 1.35-0.9Ga[J]. Gondwana Research, 2001,4: 5-16. [53]Ernst R E, Buchan K L. Maximum size and distribution in time and space of mantle plume: Evidence from large igneous provinces[J]. Journal of Geodynamics, 2002, 34: 309-342. [54]Fukao Y, Marugama S, Obayashi M, et al. Geological implication of the whole mantle P-wave tomography[J]. Journal of the Geological Society of Japan, 1994, 100: 4-23. [55]Maruyama S. Plume tectonics[J]. Journal of the Geological Society of Japan, 1994, 100: 24-29. [56]Hames W E, Renne P R, Ruppel C. New evidence for geologically instantaneous emplacement of earliest Jurassic central Atlantic magmatic province basalts on the north American margin[J]. Geology, 2000, 28: 859-862. [57]Marzoli A, Renne P R, Piccirillo E M, et al. Extensive 200-million-year-old continental flood basalts of the central Atlantic magmatic province[J]. Science, 1999, 284: 616-618. [58]Eriksson P G, Condie K C, Westhuizen W, et al. Late Archaean superplume events: A Kaapvaal-Pilbara perspective[J]. Journal of Geodynamics, 2002, 34: 207-247. [59]Althoff F, Barbey P, Boullier A M. 2.8~3.0Ga plutonism and deformation in the SE Amazonian craton: The Archaean granitoids of Marajora[J]. Precambrian Research, 2000,104(3~4): 187-206. [60]Li Jianghai(李江海), Hou Guiting(侯贵廷), Huang Xiongnan(黄雄南), et al. The contraint for the supercontinental cycles: Evidence from Precambrian geology of North China block[J].Acta Petrologica Sinica(岩石学报), 2001, 17(2): 177-186(in Chinese). [61]Leybourne M I. Chemical stratigraphy and petrogenesis of the early Proterozoic Amisk lake volcanic sequence, Flin Flon-Snow Lake greenstone belt, Canada[J]. Journal of Petrology,1997, 38(11):1 541-1 564. [62]Ansdell K M. Kisseynew metasedimentary gneiss belt, Trans-Hudson orogen (Canada): Back arc origin and collisional inversion[J]. Geology,1995,23(11):1 039-1 043. [63]Hanmer S, Greene D C. A modern structural regime in the Paleoarchaean (~3.64Ga): Isua Greenstone Belt, southern West Greenland[J]. Tectonophysics, 2002, 346: 201-222. [64]Scott D J, St-onge M R, Lucas S B, et al. The 1988Ma Purtaniq ophiolite: imbricated and metamorphosed oceanic crust in the Cape Smith thrust belt, northern Quebec[J]. Geoscience Canada, 1989, 16: 144-148. [65]Peltonen P, Kontient A, Huham H. Petrology and geochemistry of metabasalts from the 1.95Ga Jormua ophiolite, northeastern Finland[J]. Journal of Petrology, 1996, 37: 1 359-1 383. [66]Dann J C. Early Proterozoic ophiolite, central Arizona[J]. Geology, 1991, 19: 590-593. [67]Dann J C, Chamberlain R, Bowring S A. An early proterozoic ophiolite, central Arizona: U-Pb zircon constraints on its structure and development[J]. Geological Society of America Abstracts with Programs, 1989, 21: 23. [68]Li Jianghai(李江海), Kusky T, Huang Xiongnan(黄雄南), et al. The geological occurrence of Eastern Hebei Neoarchean ophiolite[J].Acta Petrologica Sinica(岩石学报), 2001, 17(3): 422-424(in Chinese). [69]Barley M E, Pickard A L. An extensive, crustal derived, 3325 to 3310 Ma silic volcanoplutonic suite in the eastern Pilbara Craton: Evidence from the Kelly Belt, McPhee Dome and Corunna Downs Batholith[J]. Precambrain Research, 1999, 96: 41-62. [70]Collerson K D, Kamber B S. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle[J]. Science, 1999, 283: 1 519-1 522. [71]Rudnick R L, Barth M, Horn I, et al. Rutilebearing refractory eclogites: Missing link between continents and depleted mantle[J].Science, 2000, 287: 278-281. |