地球科学进展 ›› 2012, Vol. 27 ›› Issue (8): 815 -827. doi: 10.11867/j.issn.1001-8166.2012.08.0815

综述与评述    下一篇

碎屑流与浊流的流体性质及沉积特征研究进展
高红灿 ,郑荣才 ,魏钦廉 ,陈发亮 ,陈 君 ,朱登锋 ,刘 云   
  1. 1. 中国石化中原油田分公司物探研究院,河南 濮阳 457001;
    2. 成都理工大学油气藏地质及开发工程国家重点实验室,四川〓成都〓610059;
    3. 西安石油大学油气资源学院,陕西西安 710065
  • 收稿日期:2011-12-02 修回日期:2012-05-27 出版日期:2012-08-10
  • 基金资助:

    (]油气藏地质及开发工程国家重点实验室(成都理工大学)开放基金项目“东濮凹陷古近系沙河街组盐岩沉积及其与隐蔽油气藏的关系”(编号:PLC201007);中国博士后科学基金项目“东濮凹陷古近系沙河街组盐岩成因研究”(编号:20080440125)和“东濮断陷盐湖盆地充填序列研究”(编号:201003403)资助

Reviews on Fluid Properties and Sedimentary Characteristics of Debris Flows and Turbidity Currents

Gao Hongcan 1,Zheng Rongcai 2,Wei Qinlian 3,Chen Faliang 1,Chen Jun 1,Zhu Dengfeng 1,Liu Yun 1   

  1. 1. Geophysical Research Institute of Zhongyuan Oilfield Company, SINOPEC, Puyang〓457001, China;
    2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploration,Chengdu University of Technology,Chengdu〓610059, China;
    3.School of Petroleum Resources,Xi’an Petroleum University,Xi’an〓710065,China)[JZ)]
  • Received:2011-12-02 Revised:2012-05-27 Online:2012-08-10 Published:2012-08-10

受浊流沉积模式(即鲍马序列和浊积扇模式)的驱动和浊积岩思维定势的影响,自1970s浊流与浊积岩的概念逐渐扩大,特别是通过“高密度浊流”术语的引入,以及将水下浊流与陆上河流的错误类比,使得一部分碎屑流与底流的沉积被认为是浊积岩。随着现代观测设备的应用以及详细的岩芯观察,碎屑流(特别是砂质碎屑流)和浊流被重新认识。浊流是一种具牛顿流变性质和紊乱状态的沉积物重力流,其沉积物支撑机制是湍流。碎屑流是一种具塑性流变性质和层流状态的沉积物重力流,其沉积物支撑机制主要是基质强度和颗粒间的摩擦强度。浊流沉积具特征的正粒序韵律结构,底部为突变接触而顶部为渐变接触;碎屑流沉积一般具上、下两层韵律结构,即下部发育具平行碎屑结构的层流段,上部发育具块状层理的“刚性”筏流段。但当碎屑流被周围流体整体稀释改造且改造不彻底时,强碎屑流可变为中—弱碎屑流,相应自下而上可形成逆—正粒序的沉积韵律结构,其中发育有呈漂浮状的石英颗粒和泥质撕裂屑等碎屑颗粒,明显区别于浊流沉积单一的正粒序韵律结构特征。碎屑流沉积顶、底部均为突变接触。浊流的沉积模式为简单的具平坦盆底的坡底模式,而碎屑流则为复杂的斜坡模式。

Influenced by the sedimentary models of turbidity currents and the turbidite mind set, the concepts of turbidity currents and turbidites have been expanded gradually since 1970s. Specially, Some deposition of debris flows and bottom flows are considered as turbidites by the introduction of the term “highdensity turbidity currents” and the incorrect comparison of subaerial rive currents and subaqueous turbidity currents. Turbidity currents and debris flows, especially sandy debris flows, have been rerecognized with application of modern observation facilities and detailed description of conventional cores. Turbidity currents are sedimentgravity flows with Newtonian rheology and turbulent state in which sediment is supported by fluid turbulence. Debris flows are sedimentgravity flows with plastic rheology and laminar state in which sediment is mainly  supported by matrix strength and frictional strength (caused by interlocking of grains and clasts). The normal grading is the main sedimentary rhythm of turbidites. The basal contacts of turbidites are invariably sharp or erosive, and the top contacts are gradational. Generally, the sedimentary rhythm of debris flows consist of the rigid raft with massive bedding in the upper part and the laminar flow zone with planar clast fabrics in the lower part.  When debris flows undergo only partial transformation by assimilation of ambient fluids (i.e., the diluteion effect), strongly coherent debris flows can transform into moderately coherent and weakly coherent debris flows, and its depositions from the bottom to the top are characterized by inverse to normal grading with complications (such as floating quartzose granules, mudstone clasts and so on), which distinguish from the turbidites with simple normal grading. Both basal and top contacts of debris flows are sharp. Depositional models of turbidity currents are simple baseofslope models with smooth basin floors, whereas the debris flows are complex slope models.

中图分类号: 

[1]Kuenen Ph H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology, 1950,58:91-127.

[2]Bouma A H. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amsterdam: Elsevier, 1962:88-123.

[3]Seilacher A. Fault-graded beds interpreted as seismites[J]. Sedimentology, 1969,13(1/2):155-159.

[4]Kelling G, Mullin P R. Graded limestones and limestone quartzite couplets: Possible storm-sediments from the Pleistocene of Massachusetts[J]. Petrology, 1975,38:971-984.

[5]Li Xianghui, Wang Chengshan, Jin Wei, et al. A review on deep-sea sedimentation theory: Significances to oil-gas exploration[J]. Acta Sedimentologica Sinica, 2009,27(1):77-86.[李祥辉,王成善,金玮,等.深海沉积理论发展及其在油气勘探中的意义[J].沉积学报,2009,27(1):77-86.]

[6]Zheng Rongcai, Wen Huaguo, Han Yonglin, et al. Discovery and significance of sublacustrine slump turbidite fans in Chang 6 oil-bearing Formation of Baibao region in Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006,33(6):566-575.[郑荣才,文华国,韩永林,等. 鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义[J]. 成都理工大学学报:自然科学版,2006,33(6):566-575.]

[7]Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica,2009,27(6):1 065-1 075.[邹才能,赵政璋,杨华,等.陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J].沉积学报,2009,27(6):1 065-1 075.]

[8]Sun Longde, Fang Chaoliang, Li Feng, et al. Petroleum exploration and development practices of sedimentary basin in China and research progress of sedimentology[J]. Petroleum Exploration and Development, 2010,37(4):385-396.[孙龙德,方朝亮,李峰,等.中国沉积盆地油气勘探开发实践与沉积学研究进展[J].石油勘探与开发,2010,37(4):385-396.]

[9]Li Xiangbo, Fu Jinhua, Chen Qilin, et al. The concept of sandy debris flow and its application in the Yanchang Formation deep water sedimentation of the Ordos Basin[J]. Advances in Earth Science,2011,26(3):286-294.[李相博,付金华,陈启林,等.砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J].地球科学进展, 2011,26(3):286-294.]

[10]Peng Dajun, Chen Changmin, Pang Xiong, et al. Discovery of deep-water fan system in South China Sea[J]. Acta Petrolei Sinica,2004,25(5):17-23.[彭大均,陈长民,庞雄,等.南海珠江口盆地深水扇系统的发现[J].石油学报,2004,25(5):17-23.]

[11]Li Yun, Zheng Rongcai, Gao Boyu, et al. Reviews and prospects on submarine fan deposition—A case study of Zhujiang submarine fan system in Baiyun Depression, Pearl River Mouth Basin[J]. Geological Review, 2010,56(4):549-560.[李云,郑荣才,高博禹,等.深水扇沉积研究现状和展望——以珠江口盆地白云凹陷珠江深水扇系统为例[J].地质论评,2010,56(4):549-560.]

[12]Li Yun, Zheng Rongcai, Zhu Guojin, et al. Reviews on sediment gravity flow[J]. Advances in Earth Science, 2011,26(2):157-165.[李云,郑荣才,朱国金,等.沉积物重力流研究进展综述[J].地球科学进展, 2011,26(2):157-165.]

[13]Wang Changyong, Zheng Rongcai, Gao Boyu, et al. Deepwater fan sedimentary characteristics of Zhujiang Formation in Liwan area of Zhujiang River Mouth Basin[J]. Geology in China, 2010,37(6):1 628-1 637.[王昌勇,郑荣才,高博禹,等. 珠江口盆地荔湾井区珠江组深水扇沉积特征[J].中国地质,2010,37(6):1 628-1 637.]

[14]Li Yun, Zheng Rongcai, Zhu Guojin, et al. Facies and depositional model of a deepwater fan in the Zhujiang Formation, Liwan 3-1 Gasfield, Baiyun Sag, Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2011, 29(4): 665-676.[李云,郑荣才,朱国金,等.珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析[J].沉积学报, 2011, 29(4): 665-676.]

[15]Dott R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963,47:104-128.

[16]Shanmugam G. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models—A critical perspective[J]. Marine and Petroleum Geology, 2000,17(2):285-342.

[17]Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[C]∥Middleton G V, Bouma A H,eds. Turbidites and Deep-Water Sedimentation. Los Angeles, California: SEPM Pacific Section, 1973:1-38.

[18]Lowe D R. Sediment gravity flows: Their classification, and some problems of application to natural flows and deposits[C]∥Doyle L J, Pilkey O H, eds. Geology of Continental Slopes. SEPM Special Publication, 1979,27: 75-82.

[19]Lowe D R. Sediment gravity flows: Ⅱ Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Petrology, 1982,52:279-297.

[20]Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996,66: 2-10.

[21]Shanmugam G, Bloch R B, Mitchell S M, et al. Basin-floor fans in the North Sea: Sequence stratigraphic models vs sedimentary facies[J]. AAPG Bulletin, 1995,79:477-512.

[22]Walker R G. The origin and significance of the internal sedimentary structures of turbidites[J].Proceedings of the Yorkshire Geological Society,1965,35:1-32.

[23]Mutti E, Ricci Lucchi F. Turbidites of the northern Apennines: Introduction to facies analysis[J]. International Geology Review, 1972,20:125-166.

[24]Middleton G V, Hampton M A. Subaqueous sediment transport and deposition by sediment gravity flows[C]∥Stanley D J, Swift D J P, eds. Marine Sediment Transport and Environmental Management. New York: Jhon Wiley, 1976:197-218.

[25]Pickering K T, Hilton V. Turbidite Systems of Southeast France[M]. London: Vallis Press, 1998:229.

[26]Stanley D J, Palmer H D, Dill R F. Coarse sediment transport by mass flow and turbidity current processes and downslope transformations in Annot Sandstone canyon-fan valley systems[C]∥Stanley D J, Kelling G, eds. Sedimentation in Submarine Canyons, Fans, and Trenches. Stroudsburg, Pennsylvania: Hutchinson and Ross, 1978:85-113.

[27]Shanmugam G. Deep-water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs[M]. New York: Elsevier, 2006.

[28]Shanmugam G. The Bouma sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997,42(4):201-229.

[29]Shanmugam G. Ten turbidite myths[J]. Earth-Science Reviews, 2002,58(3/4):311-341.

[30]Kuenen Ph H. Experimental turbidite lamination in a circular flume[J]. Journal of Geology, 1966,74:523-545.

[31]Middleton G V. Experiments on density and turbidity currents: Ⅲ. Deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967,4(3):475-505.

[32]Luthi S. Experiments on non-channelized turbidity currents and their deposits[J]. Marine Geology, 1981,40(3/4): M59-M68.

[33]Sanders J E. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[C]∥Middleton G V ed. Primary Sedimentary Structures and Their Hydrodynamic Interpretation. SEPM Special Publication,1965,12:192-219.

[34]Hsü K J. Physical Principles of Sedimentology[M]. New York: Springer-Verlag, 1989:233.

[35]Zhang Xingyang, Luo Shunshe, He Youbin. Deposit assemblage of gravity flow and traction current in deep water—A study of the multiple interpretation of the Bouma Sequence[J]. Journal of Jianghan Petroleum Institute, 2001,23(1):1-4.[张兴阳,罗顺社,何幼斌.沉积物重力流—深水牵引流沉积组合——鲍马序列多解性探讨[J].江汉石油学院学报, 2001,23(1):1-4.]

[36]Normark W R. Growth patterns of deep sea fans[J]. AAPG Bulletin,1970,54:2 170-2 195.

[37]Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978,62:932-966.

[38]Bagnold R A. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear[J].Proceedings of the Royal Society of London (A),1954,225: 49-63.

[39]Bagnold R A. The flow of cohesionless grains in fluids[J]. Philosophical Transactions of the Royal Society of London, Series A. Mathematical and Physical Sciences, 1956,249:235-297.

[40]Pettijohn F J. Sedimentary Rock (2nd) [M]. New York: Harper & Brothers, 1957:718.

[41]Sullwold H H. Tarzana fan, deep submarine fan of Late Miocene age, Los Angeles county, California[J]. AAPG Bulletin, 1960,44:433-457.

[42]Sullwold H H. Turbidites in oil exploration[C]∥Peterson J A, Osmond J C,eds. Geometry of Sandstone Bodies. AAPG, Tulsa, Oklahoma, 1961:64-66.

[43]Middleton G V. Sediment deposition from turbidity currents[J]. Annual Review Earth Planetary Sciences, 1993,21:89-114.

[44]McCave I N, Jones K P N. Deposition of ungraded muds from high-density non-turbulent turbidity currents[J]. Nature,1988,333(6 170):250-252.

[45]Vrolijk P J, Southard J B. Experiments on rapid deposition of sand from high-velocity flows[J]. Geoscience Canada, 1997,24(1):45-54.

[46]Kneller B, Buckee C. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geologic implicateons[J].Sedimentology,2000,47(Suppl.): 62-94.

[47]Mutti E, Tinterri R, Benvelli G, et al. Deltaic,mixed and turbidite sedimentation of ancient foreland basins[J]. Marine and Petroleum Geology, 2003,20(6/8): 733-755.

[48]Kneller B. Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir prediction[C]∥Hartley A J, Prosser D J, eds. Characterization of Deep-Marine Clastic Systems. Geological Society Special Publication, 1995,94:31-49.

[49]Mulder T, Migeon S, Savoye B, et al. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents?[J]. Geo-Marine Letters, 2001,21:86-93.

[50]Harms J C, Fahnestock R K. Stratification, bed forms, and flow phenolmena (with an example from the Rio Grande)[C]∥Middleton G V ed. Primary Sedimentary Structures and Their Hydrodynamic Interpretation. SEPM Special Publication, 1965,12:84-115.

[51]Mitchum R M, Sangree J B, Vail P R, et al. Sequence stratigraphy in Late Cenozoic expanded sections, Gulf of Mexico[C]∥Proceedings of 11th Annual Reseach Conference. Gulf Coast SEPM Foundation, 1990:237-256.

[52]Mitchum R M, Sangree J B, Vail P R, et al. Recognizing sequences and systems tracts from well logs, seismic data, and biostratigraphy: Examples from Late Cenozoic of the Gulf of Mexico[C]∥Weimer P, Posamentier H W, eds. Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58, 1993:163-197.

[53]Shanmugam G, Bloch R B, Mitchell S M, et al. Slump and debris-flow dominated basin-floor fans in the North Sea: An evaluateon of conceptuall sequence-stratigraphical models based on conventional core data[C]∥Hesselbo S P, Parkinson D N, eds. Sequence Stratigraphy in British Geology. Geological Society Special Publication, 1996,103: 145-176.

[54]Shanmugam G, Lehtonen L R, Straume T, et al. Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61°-67°N): Implications for sand distribution[J].AAPG Bulletin,1994,78:910-937.

[55]Shanmugam G, Hermance W E, Olaifa J O, et al. Slump dominated upper slope reserveoir facies, Intra Qua Iboe (Pliocene), Edop Field, Offshore Nigeria (abs.)[C]∥AAPG Annual Convention. Houston, Texas, 1995:88.

[56]Famakinwa S B, Shanmugam G, Hodgkinson R K, et al. Deep-water slump and debris-flow dominated reservoirs of the Zafiro field area, offshore Equatorial Guinea[C]∥AAPG Annual Convention. Dallas, Texas, 1997:34.

[57]Shanmugam G, Spalding T D, Rofheart D H. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico[J]. AAPG Bulletin, 1993,77:1 241-1 259.

[58]Shanmugam G, Zimbrick G. Core-based evidence for sandy slump and sandy debris flow facies in the Pliocene and Pleistocene of the Gulf of Mexico: Implications for submarine fan models[C]∥AAPG Annual Convention San Diego, CA. 1996,5:129.

[59]Shanmugam G, Moiola R J. An unconventional model for the deep-water sandstones of the Jackfork Group (Pennsylvanian), Ouachita Mountains, Arkansas and Oklahoma[C]∥Weimer P, Bouma A H, Perkins B F, eds. Submarine Fans and Turbidite Systems. Houston: Gulf Coast Section SEPM Foundation 15th Annual Research Conference, 1994:311-326.

[60]Shanmugam G, Moiola R J. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma[J]. AAPG Bulletin,1995,79:672-695.

[61]Shanmugam G. Perception vs reality in deep-water exploration[J].World Oil, 1996,217:37-41.

[62]Mutti E. Turbidite Sandstones[M]∥Italy: AGIP Special Publication, 1992.

[63]Kneller B. When is a turbidity current not a turbidity current? A question of mobility[C]∥AAPG 1996 Annual Meeting Abstracts. 1996:76.

[64]Mutti E, Tinterri R, Remacha E, et al. An introduction to the analysis of ancient turbidite basins from an outcrop perspective[C]∥AAPG Continuing Education Course Note Seties. Tulsa, Oklahoma, 1999,39:61.

[65]Kuenen Ph H. Turbidity currents of high density[C]∥18th International Geological Congress. London, 1950, 8:44-52.

[66]Kuenen Ph H. Properties of turbidity currents of high density[C]∥Hough J L ed. Turbidity Currents and the Transportation of Coarse Sediments to Deep Water: A Symposium. SEPM Special Publication 2, 1951:14-33.

[67]Pickering K T, Hodgson D M, Platzman E, et al. A new type of bedform produced by backfilling processes in a submarine channel, Late Miocene, Tabernas-Sorbas Basin, SE Spain[J]. Journal of Sedimentary Research, 2001,71:692-704.

[68]Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: A mechanism for their emplacement[J]. Sedimentary Geology, 1988,58(1):47-61.

[69]Dzulynski S, Ksiazkiewicz M, Kuenen Ph H. Turbidites in flysch of the Polish Carpathian Mountains[J]. Geological Society of America Bulletin, 1959,70:1 089-1 118.

[70]Norem H, Locat J, Schieldrop B. An approach to the physics and the modeling of submarine flowslides[J]. Marine Geotechnology, 1990,9(2):93-111.

[71]Carter R M. A discussion and classification of subaqueous mass-transport with particular application to grain flow, slurry flow, and fluxoturbidites[J]. Earth-Science Reviews, 1975,11(2):145-177.

[72]Oakeshott J M D. Aspects of Depositional Mechanisms of High Concentrateion Sediment Gravity Flows[M]. Keele: University of Keele, 1989:502.

[73]Arnoot R W C, Hand B M. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain[J]. Journal of Sedimentary Petrology, 1989,59:1 062-1 069.

[74]Sanders J E, Friedman G M. Historry of petroleum exploration in turbidites and related deep-water deposits[J]. Northeastern Geology and Environmental Sciences, 1997,19(1/2):67-102.

[75]Mutti E, Ricci Lucchi F, Seguret M, et al. Seismoturbidites: A new group of resedimented deposits[C]∥Cita M B, Ricci Lucchi F, eds. Seismicity and Sedimentation. Amsterdam: Elsevier Scientific Publication, 1984:103-116.

[76]Labaume P, Mutti E, Seguret M. Megaturbidites: A depositinal model from the Eocene of the SW-Pyrenean foreland basin, Spain[J].Geo-Marine Letters, 1987,7:91-101.

[77]Abreu V, Sullivan M, Pirmez C, et al. Lateral Accretion Packages (LAPs): An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology, 2003,20:631-648.

[78]Bouma A H, Coleman J M. Peira Cava turbidite system, France[C]∥Bouma A H, Normark W R, Barnes N E, eds. Submarine Fans and Related Turbidite Systems. New York: Springer-Verlag, 1985:217-222.

[79]Chikita K. A field study on turbidity currents initiated from spring runoffs[J]. Water Resources Research, 1989,25(2):257-271.

[80]Galloway W E. Siliciclastic slope and base-of-slope depositional systems: Component facies, stratigraphic architecture, and classification[J]. AAPG Bulletin, 1998,82: 569-595.

[81]Southard J B. Bed configutations[C]∥Harms J C, Southard J B, Spearing D R, eds. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences. Dallas, Texas, Lecture Notes for SEPM Short Course, 1975,2:5-43.

[82]Allen J R L. Phase differents between bed configuration and flow in natural environments, and their geological relevance[J]. Sedimentology, 1973,20:323-329.

[83]Simons D B, Richardson E V, Nordin C F. Sedimentary structures generated by flow in alluvial channels[C]∥Middleton G V ed. Primary Sedimentary Structures and Their Hydrodynamic Interpretation. SEPM Special Publication, 1965,12:34-52.

[84]Normark W R. Turbidite elements and the obsolescence of the suprafan concept[J]. Giornale di Geologia,  1991,53(2):1-10.

[85]Walker R G. Turbidites and submarinee fans[C]∥Walker R G, James N P,eds. Facies Models: Response to Sea Level Change. Geological Association of Canada, 1992:239-263.

[86]Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows[C]∥Supplement to EOS Transactions, AGU Fall Meeting. San Francisco, 78, Number 46, 1997:F347.

[87]Marr J G, Harff P A, Shanmugam G, et al. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures[J]. Geological Society of America Bulletin, 2001,113:1 377-1 386.

[88]Pierson T C, Costa J E. A rheologic classification of subaerial sediment-water flows[C]∥Costa J E, Wieczorek G F,eds. Debris Flows/avalanches: Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, 1987,7:1-12.

[89]Wallis G B. One-dimensional Two-phase Flow[M]. New York: McGraw-Hill, 1969:408.

[90]Shultz A W. Subaerial debris-flow deposition in the Upper Paleozoic Cutler Formation, western Colorado[J]. Journal of Sedimentary Petrology, 1984,54:759-772.

[91]Coussot P, Meunier M. Recognition, classification and mechanical description of debris flows[J]. Earth-Science Reviews, 1996,40(3/4):209-227.

[92]Johnson A M. Physical Processes in Geology[M]. San Francisco: Freeman, 1970:577.

[93]Middleton G V, Wilcock P R. Mechanics in the Earth and Environmental Sciences[M]. Cambridge: Cambridge University Press, 1994:459.

[94]Nardin T R, Hein F J, Gorsline D S, et al. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems[C]∥Doyle L J, Pilkey O H,eds. Geology of Continental Slopes. SEPM Special Publication, 1979,27:61-73.

[95]Shanmugam G, Moiola R J. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: Reply[J]. AAPG Bulletin, 1997,81:476-491.

[96]Wang Deping. The sedimentation and formation mechanism of lacustrine endogenic debris flow[J]. Acta Geologica Sinica, 1991,65(4):299-316.[王德坪.湖相内成碎屑流的沉积及形成机制[J].地质学报, 1991,65(4):299-316.]

[97]Wang Deping, Liu Shouyi. Debris flow sediments of sandy clastic on the gentle slope area of prodelta in Oligocene, Dongying Basin[J]. Acta Sedimentologica Sinica,1987,5(4):14-24.[王德坪,刘守义.东营盆地渐新世早期前三角洲缓坡区的泥石流砂质碎屑沉积[J].沉积学报, 1987,5(4):14-24.]

[98]Hampton M. Competence of fine-grained debris flows[J]. Journal of Sedimentary Petrology, 1975,45:834-844.

[99]Rodine J D, Johnson A M. The ability of debris, heavily freighted with coarse clastic material, to flow on gentle slopes[J]. Sedimentology, 1976,23(2):213-234.

[100]Walton E K. The sequence of internal structures in turbidites[J]. Scottish Journal of Geology, 1967,3(2):306-317.

[101]Postma G. Classification of sediment gravity-flow deposits based on flow conditions during sedimentation[J]. Geology, 1986,14:291-294.

[102]Hiscott R N, Middleton G V. Depositional mechanics of thick-bedded sandstones at the base of a submarine slope, Tourelle Formation (Lower Ordovician), Quebec, Canada[C]∥Doyle L J, Pilkey O H,eds. Geology of Continental Slopes. SEPM Special Publication, 1979,27:307-326.

[103]Myrow P M, Southard J B. Tempestite deposition[J]. Journal of Sedimentary Research, 1996,66:875-887.

[104]Klein G deVries. Dispersal and petrology of sandstones of Stanley-Jackfprk boundary, Ouachita fold belt, Arkansas and Oklahoma[J]. AAPG Bulletin, 1966,50:308-326.

[105]Li Xianghui, Wang Chengshan, Hu Xiumian. Sedimention of sandy debris-flow in deep-sea environment—Verification from massive sandstone of the Upper Jurassic-Lower Cretaceous in Tibetan Tethys Himalayas [J]. Journal of Mineralogy and Petrology,2000,20(1):45-51.[李祥辉,王成善,胡修棉.深海相中的砂质碎屑流沉积——以西藏特提斯喜马拉雅侏罗—白垩系为例[J].矿物岩石, 2000,20(1):45-51.]

[106]Kuenen Ph H. Deep-sea sands and ancient turbidites[C]∥Bouma A H, Brouwer A,eds. Turbidites: Developments in Sedimentology 3. Amsterdam: Elsevier, 1964:3-33.

[107]Kuenen Ph H. Emplacement of flysch-type sand beds[J]. Sedimentology, 1967,9(3):203-243.

[108]Bates R L, Jackson J A. Glossary of Geology (2nd) [M]. Virginia: American Geological Institute, 1980:751.

[109]Lowe D R, Guy M. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000,47(1): 31-70.

[110]Bridge J S, Demicco R V. Earth Surface Processes, Landforms and Sediment Deposits[M]. Cambridge: Cambridge University Press, 2008.

[111]Fisher R V. Features of coarse-grained, high-concentration fluids and their deposits[J]. Journal of Sedimentary Petrology, 1971,41: 916-927.

[112]Shanmugam G, Benedict G L. Fine-grained carbonate debris flow, Ordovician Basin margin, Southern Applalachians[J]. Journal of Sedimentary Petrology, 1978,48:1 233-1 240.

[113]Enos P. Flow regimes in debris flow[J]. Sedimentology, 1977,24:133-142.

[114]Mohrig D, Marr J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology, 2003, 20(6/8):883-899.

[115]Vallance J W, Scott K M. The Oseola mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow[J]. Geological Society of America Bulletin, 1997,109:143-163.

[116]Fisher R V, Mattinson J M. Wheeler Gorge turbidite-conglomerate series, California; inverse grading[J]. Journal of Sedimentary Petrology, 1968,38:1 013-1 023.

[117]Stow D A V, Reading H G, Collision J D. Deep Sea[C]∥Reading H G. Sedimentary Environments: Processes, Facies and Stratigraphy (3rd). Oxford: Wiley-Blackwell, 1996:395-453.

[118]Hein F J. Deep-sea and fluvial braided channel conglomerates: A comparison of two case studies[C]∥Koster E H, Steel R J, eds. Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists, Memoir, 1984,10:33-49.

[119]Lawson D E. Mobilization, movement and deposition of active subaerial sediment flows, Matanuska Glacier, Alaska[J]. Journal of Geology, 1981,90:279-300.

[120]Shepard F P, Dill R F, Vonrad U. Physiography and sedimentary processes of La Jolla submarine fan and fan-valley, California[J]. AAPG Bulletin, 1969,53:390-420.

[121]Mutti E, Nilson T H. Significance of intraformational rip-up clasts in deep-sea fan deposits[C]∥International Association of Sedimentologists 2nd European Regional Meeting Abstracts. Bologna, Italy, 1981:117-119.

[122]Nelson C H, Twichell D C, Schwab W C, et al. Upper Pleistocene turbidite sand beds and chaotic silt beds in the channelized, distal, outer-fan lobes of the Mississippi Fan[J]. Geology, 1992,20:693-696.

[123]Attewell P B, Farmer I W.  Principles of Engineering Geology[M]. The Engineering Department of Chengdu Institute of Geology translated. Beijing: China Building Industry Press, 1982.[Attewell P B, Farmer I W.工程地质学原理[M].成都地质学院工程教研室译.北京: 中国建筑工业出版社, 1982.]

[124]Dill R F. Sedimentation and erosion in Scripps submarine canyon head[C]∥Miller R L ed.Paper in Marine Geology.London, Macmillan,  1964:23-41.

[125]Dill R F. Sand flows and sand falls[C]∥Fairbridge R W ed. Encyclopedia of Oceanography. New York: Reinhold, 1966:763-765.

[126]Shepard F P, Dill R F. Submarine Canyons and Other Sea Valleys[M]. Chicago, Illinois: Rand McNally, 1966:381.

[127]Shepard F P. Mass movements in submarine canyon heads[J]. Transactions, American Geophysical Union,1951,32:405-418.

[128]Shepard F P. Currents in submarinee canyons and other sea valleys[C]∥Doyle L J, Pilkey O H, eds. Geology of Continental Slopes. SEPM Special Publication, 1979,27:85-94.

[129]Shanmugam G, Moiola R J, McPherson J G, et al. Comparison of turbidite facies associations in modern passive-margin Mississippi Fan with ancient active-margin fans[J]. Sedimentary Geology, 1988,58:63-77.

[130]Twichell D C, Schwab W C, Nelson C H, et al. Characteristics of a sandy depositional lobe on the outer Mississippi Fan from Sea MARC 1A sidescan sonar images[J]. Geology, 1992,20:689-692.

[131]Schwab W C, Lee H J, Twichell D C, et al. Sediment mass-flow processes on a depositional lobe, outer Mississippi Fan[J]. Journal of Sedimentary Research,1996,66:916-927.

[132]Li Lin, Qu Yongqiang, Meng Qingren, et al. Gravity flow sedimentation: Theoretical studies and field indentification[J]. Acta Sedimentologica Sinica,2011,29(4):677-688.[李林,曲永强,孟庆任,等.重力流沉积: 理论研究与野外识别[J]. 沉积学报, 2011,29(4):677-688.]

[133]Mohrig D, Ellis C, Parker G, et al. Hydroplaning of subaqueous debris flows[J]. Geological Society of America Bulletin, 1998,110:387-394.

[134]Masson D G, van Niel B, Weaver P P E. Flow processes and sediment deformation in the Canary Debris Flow on the NW African continental rise[J]. Sedimentary Geology, 1998,110(3/4):163-179.

[135]Pang Xiong, Chen Changmin, Zhu Ming, et al. Frontier of the deep-water deposition study[J]. Geological Review,2007,53(1):36-43.[庞雄,陈长民,朱明,等. 深水沉积研究前缘问题[J].地质论评,2007,53(1):36-43.]

[136]Famakinwa S B, Shanmugam G. Orderliness in the midst of chaos: Prediction of deep-water reservoir facies in a slump and debris-flow dominated system, Equatorial Guinea[C]∥1998 AAPG Annual Convention Extended Abstracts, 1998,2:192.

[137]Stow D A V, Faugères J C,Viana A R,et al. Contourites, turbidites and process interaction[J]. Sedimentary Geology(Special Issue), 1998,115:1-381.

[1] 李向东. 复合流沉积特征的谱系研究现状及其理论框架[J]. 地球科学进展, 2021, 36(4): 375-389.
[2] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[3] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[4] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[5] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[6] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[7] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[8] 林春明, 张霞, 徐振宇, 邓程文, 殷勇, 承秋泉. 长江三角洲晚第四纪地层沉积特征与生物气成藏条件分析[J]. 地球科学进展, 2015, 30(5): 589-601.
[9] 常玉光, 白万备, 齐永安, 孙凤余, 王敏. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.
[10] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[11] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[12] 李云,郑荣才,朱国金,胡晓庆. 沉积物重力流研究进展综述[J]. 地球科学进展, 2011, 26(2): 157-165.
[13] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[14] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.
阅读次数
全文


摘要