[1]Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1-11.
[2]Morton A C. Heavy minerals in provenance studies[M]∥Zuffa G G ed. Provenance of Arenites. Reidel, Dordrecht, 1985: 249-277.
[3]Morton A C, Hallsworth C R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.
[4]Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/4): 3-29.
[5]Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2): 1-72.
[6]Wang Zhengjiang, Chen Hongde, Zhang Jinquan. The review and outlook of provenance analysis[J]. Sedimentary Geology and Tethyan Geology,2000, 20(4): 104-110.[汪正江, 陈洪德, 张锦泉. 物源分析的研究与展望[J]. 沉积与特提斯地质, 2000, 20(4): 104-110.]
[7]Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis [J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.[赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3): 409-415.]
[8]Xu Yajun, Du Yuansheng, Yang Jianghai. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 2007, 26(3): 26-32.[徐亚军, 杜远生, 杨江海. 沉积物物源分析研究进展[J]. 地质科技情报, 2007, 26(3): 26-32.]
[9]Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(2): 2 164-2 182.
[10]Mange M A, Morton A C. Geochemistry of heavy minerals[C]∥Mange M A, Wright D T,eds. Heavy Minerals in Use: Developments in Sedimentology, 2007, 58: 345-391.
[11]Wang Jian’gang, Hu Xiumian. Applications of geochemistry and geochronology of accessory minerals in sandstone to provenance analysis[J]. Geological Review,2008, 54(5): 670-678.[王建刚, 胡修棉. 砂岩副矿物的物源区分析新进展[J]. 地质论评,2008, 54(5): 670-678.]
[12]Morton A C, Hallsworth C R. Stability of detrital heavy minerals during burial diagenesis[C]∥Mange M, Wright D T,eds. Heavy Minerals in Use: Developments in Sedimentology, 2007, 58: 215-245.
[13]Force E R. The provenance of rutile[J].Journal of Sedimentary Petrology, 1980, 50(2): 485-488.
[14]Xiao Yilin, Huang Jian, Liu Lei, et al. Rutile: An important “reservoir” for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-416.[肖益林, 黄建, 刘磊, 等. 金红石:重要的地球化学“信息库”[J]. 岩石学报, 2011, 27(2): 398-416.]
[15]Zack T, Luvizotto G L. Application of rutile thermometry to eclogites [J]. Mineralogy and Petrology, 2006, 88(1/2): 69-85.
[16]Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists[J]. Chemical Geology, 2002, 184(1/2): 97-122.
[17]Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J].Contributions to Mineralogy and Petrology,2004, 148(4): 471-488.
[18]Zack T, von Eynatten H, Kronz A. Rutile geochemistry and its potential use in quantitative provenance studies[J].Sedimentary Geology, 2004, 171(1/4): 37-58.
[19]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile [J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433.
[20]Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers [J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.
[21]Tomkins H S, Powell R, Ellis D J. The pressure dependence of the zirconium-inrutile thermometer[J].Journal of Metamorphic Geology, 2007, 25(6): 703-713.
[22]Gao Xiaoying, Zheng Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.[高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-432.]
[23]Zhang Guibin, Zhang Lifei. The progress and some problems in the study of rutile in metamorphic rocks[J]. Earth Science Frontiers, 2011, 18(2): 26-32.[张贵宾, 张立飞.变质岩中金红石研究进展及存在问题[J]. 地学前缘, 2011, 18(2): 26-32.]
[24]Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938.
[25]Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle [J]. Science, 2000, 287(5 451): 278-281.
[26]Stendal H, Toteu S F, Frei R, et al. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa)[J]. Journal of African Earth Sciences, 2006, 44(4/5): 443-458.
[27]Triebold S, von Eynatten H, Luvizotto G L, et al. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany [J]. Chemical Geology, 2007, 244(3/4): 421-436.
[28]Meinhold G, Anders B, Kostopoulos D, et al. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece[J]. Sedimentary Geology, 2008, 203(1/2): 98-111.
[29]Morton A, Chenery S. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea[J]. Journal of Sedimentary Research, 2009, 79(7): 540-553.
[30]Deer W A, Howie R A, Zussman J. An Introduction to the Rock-Forming Minerals (2nd)[M]. UK: Longman Group Ltd., 1992.
[31]Carruzzo S, Clarke D B, Pelrine K M, et al. Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia[J].Canadian Mineralogist,2006, 44(3): 715-729.
[32]Villaseca C, Orejana D, Paterson B A. Zr-LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr-LREE granitic melts?[J].Lithos,2007, 96(3/4): 375-386.
[33]Mposkos E D, Kostopoulos D K. Diamonds, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahighpressure metamorphic province established [J].Earth and Planetary Science Letters, 2001, 192(4): 497-506.
[34]Zhang J, Jin Z, Green H W, et al. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains[J].Chinese Science Bulletin, 2001, 46(7): 592-596.
[35]Meinhold G. Rutile and its applications in Earth sciences[J]. Earth-Science Reviews, 2010, 102(1/2): 1-28.
[36]Xiao Y L, Sun W D, Hoefs J, et al. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4 770-4 782.
[37]Jiao S, Guo J, Mao Q, et al. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 379-393.
[38]Von Quadt A, Moritz R, Peytcheva I, et al. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria [J]. Ore Geology Reviews, 2005, 27(1/4): 95-126.
[39]Okrusch M, Hock R, Schüssler U, et al. Intergrown niobian rutile phases with Sc- and W-rich ferrocolumbite: An electron microprobe and Rietveld study[J]. American Mineralogist, 2003, 88(7): 986-995.
[40]Doroshkevich A G, Wall F, Ripp G S. Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths[J]. Mineralogy and Petrology, 2007, 90(1/2): 19-49.
[41]Downes P J, Wartho J A, Griffin B J. Magmatic evolution and ascent history of the Aries Micaceous Kimberlite, Central Kimberley Basin, western Australia: Evidence from zoned phlogopite Phenocrysts, and UV Laser 40Ar/39Ar analysis of phlogopite-biotite[J]. Journal of Petrology, 2006, 47(9): 1 751-1 783.
[42]Downes P J, Griffin B J, Griffin W L. Mineral chemistry and zircon geochronology of xenocrysts and altered mantle and crustal xenoliths from the Aries micaceous kimberlite: Constraints on the composition and age of the central Kimberley Craton, Western Australia[J]. Lithos, 2007, 93(1/2): 175-198.
[43]Choukroun M, O’Reilly S Y, Griffin W L, et al. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J].Geology, 2005, 33(1): 45-48.
[44]Clark J R, Williams-Jones A E. Rutile as a Potential Indicator Mineral for Metamorphosed Metallic Ore Deposits[R]. Rapport Final de DIVEX, Sous-projet SC2, Montréal, Canada, 2004: 1-17.
[45]Scott K M. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia[J]. Geochemistry: Exploration, Environment, Analysis,2005, 5(3): 247-253.
[46]Scott K M, Radford N W. Rutile compositions at the Big Bell Au deposit as a guide for exploration[J].Geochemistry: Exploration, Environment, Analysis, 2007, 7(4): 353-361.
[47]Cai Jianhui, Wang Liben, Li Jinping. Mineralogical features of retiles of different modes of occurrence and genetic types and their research significance[J]. Mineral Deposits, 2008, 27(4): 531-538.[蔡剑辉, 王立本, 李锦平. 不同产状和成因类型的金红石矿物学特征及其研究意义[J]. 矿床地质, 2008, 27(4): 531-538.]
[48]Zhao Yiming. Genetic types, distribution and main geological characteristics of rutile deposits [J]. Mineral Deposits, 2008, 27(4): 520-530. [赵一鸣. 金红石矿床的类型、分布及主要地质特征[J]. 矿床地质, 2008, 27(4): 520-530.]
[49]Clarke D B, Carruzzo S. Assimilation of country-rock ilmenite and rutile in the South Mountain Batholith, Nova Scotia, Canada[J].Canadian Mineralogist, 2007, 45(1): 31-42.
[50]Chen Z Y, Li Q L. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications[J]. Chinese Science Bulletin, 2008, 53(5): 768-776.
[51]Luvizotto G L, Zack T. Nb and Zr behavior in rutile during high-grade metamorphismand retrogression: An example from the Ivrea Verbano Zone[J]. Chemical Geology, 2009, 261(3/4): 303-317.
[52]Zheng Y F, Gao X Y, Chen R X, et al. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism [J]. Journal of Asian Earth Sciences, 2011, 40(2): 427-451.
[53]Luvizotto G L, Zack T, Triebold S, et al. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: Example from the Erzgebirge, Germany[J]. Mineralogy and Petrology, 2009, 97(3/4) 233-249.
[54]Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km[J].Nature, 2000, 407(6 805): 734-736.
[55]Zhang Z M, Liou J G, Zhan X D, et al. Petrogenesis of Maobei rutile eclogites from the southern Sulu Ultrahigh-pressure Metamorphic Belt, eastern China[J]. Journal of Metamorphic Geology, 2006, 24(8): 727-741.
[56]Meyer M, John T, Brandt S, et al. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia) [J]. Lithos, 2011, 126(3/4): 388-401.
[57]Hill E, Day J M D, Davidson J, et al. Petrogenesis of Apollo 17 Mare Basalts—Revisited[R].Lunar and Planetary Science XXXVII, 2006: 2067.
[58]Hubert J F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Petrology, 1962, 32(3): 440-450.
[59]Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sedimentary Geology, 2005, 182(1/4): 3-28.
[60]Chen Zhenyu, Zeng Lingsen, Li Xiaofeng, et al. Trace elements of rutile in eclogites from CCSD main-hole: A LA-ICPMS study and its implication[J]. Acta Petrologica Sinica, 2009, 25(7): 1 645-1 657.[陈振宇, 曾令森, 李晓峰, 等. CCSD主动榴辉岩中金红石微量元素特征:LA-ICPMS分析及其意义[J]. 岩石学报, 2009, 25(7): 1 645-1 657.]
[61]Wang Rucheng, Wang Shuo, Qiu Jiansheng, et al. Rutile in the UHP eclogites from the CCSD main drill hole, Donghai, eastern China: Trace-element geochemistry and metallogenetic implications [J]. Acta Petrologica Sinica, 2005, 21(2): 465-474.[王汝成, 王硕, 邱检生, 等. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J]. 岩石学报, 2005, 21(2): 465-474.]
[62]Yu Jinjie, Chen Zhenyu, Wang Ping’an, et al. Trace elements geochemistry of eclogites in the northern Jiangsu province, eastern China [J]. Acta Petrologica Sinica, 2006, 22(7): 1 883-1 890.[余金杰, 陈振宇, 王平安, 等. 苏北榴辉岩中金红石的微量元素地球化学特征[J]. 岩石学报, 2006, 22(7): 1 883-1 890.]
[63]Yu Jinjie, Xu Jue, Chen Zhenyu, et al. Trace element geochemistry of retiles in the eclogites from the Chinese Continental Scientific Drilling Project main hole [J].Acta Geologica Sinica, 2006, 80(12): 1 835-1 841.[余金杰, 徐珏, 陈振宇, 等. 中国大陆科学钻探工程主孔榴辉岩中金红石微量元素地球化学特征[J]. 地质学报, 2006, 80(12): 1 835-1 841.]
[64]Wang Qinghai, Xu Wenliang, Pei Fuping, et al. Zr-in-rutile thermometry and geochemical characteristics of trace element in rutile from eclogite inclusions of Mesozoic intrusive complexes in Xuzhou-Huainian area, China [J]. Acta Petrologica Sinica, 2009, 25(9): 2 132-2 140.[王清海, 许文良, 裴福萍, 等.金红石中锆含量温度计及其微量元素地球化学特征——来自徐淮地区中生代侵入杂岩中榴辉岩类包体的信息[J]. 岩石学报, 2009, 25(9): 2 132-2 140.]
[65]Bakun-Czubarow N, Kusy D, Fiala J. Trace element abundances in rutile from eclogite-granulite rock series of the Zfote mountains in the Sudetes[J]. Mineralogical Society of Poland, Special Papers, 2005, 26: 132-136.
[66]Massonne H J, Czambor A. Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe[J]. Chemie der Erde-Geochemistry, 2007, 67(1): 69-83.
[67]Sobolev N V, Yefimova E S. Composition and petrogenesis of Ti-oxides associated with diamonds[J]. International Geology Review, 2000, 42(8): 758-767.
[68]Degeling H S. Zr Equilibria in Metamorphic Rocks[D]. Canberra: Australian National University, 2003.
[69]Spear F S, Wark D A, Cheney J T, et al. Zr-in-rutile thermometry in blueschists from Sifnos, Greece [J]. Contributions to Mineralogy and Petrology, 2006, 152(3): 375-385.
[70]Zhang G B, Ellis D, Christy A, et al. Zr-in-rutile thermometry in HP/UHP eclogites from Western China [J]. Contributions to Mineralogy and Petrology, 2010, 160(3): 427-439.
[71]Mezger K, Hanson G N, Bohlen S R. High-precision U-Pb ages of metamorphic rutiles: Application to the cooling history of high-grade terranes[J]. Earth and Planetary Science Letters, 1989, 96(1/2): 106-118.
[72]Li Q, Li S, Zheng Y F, et al. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history[J]. Chemical Geology, 2003, 200(3/4): 255-265.
[73]Li Qiuli, Li Shuguang, Zhou Hongying, et al. U-Pb age of rutile in UHP eclogites: Evidence of rapid cooling[J]. Chinese Science Bulletin, 2001, 46(19): 1 655-1 658.[李秋立, 李曙光, 周红英, 等. 超高压榴辉岩中金红石U-Pb年龄:快速冷却的证据[J]. 科学通报, 2001, 46(19):1 655-1 658.]
[74]Allen C M, Campbell I H. Spot dating of detrital rutile by LA-Q-ICP-MS: A powerful provenance tool[C]∥GSA Denver Annual Meeting.2007: No. 196-12.
[75]Birch W D, Barron L M, Magee C, et al. Gold- and diamond-bearing White Hills Gravel, St Arnaud district, Victoria: Age and provenance based on U-Pb dating of zircon and rutile[J]. Australian Journal of Earth Sciences, 2007, 54(4): 609-628.
[76]Harrison T M, Trail D, Schmitt A K, et al. Rutile 207Pb-206Pb ages in the Jack Hills quartzite, Western Australia[J]. Geochimica et Cosmochimica Acta, 2007, 71 (15):A383.
[77]Meinhold G, Morton A C, Fanning C M, et al. U-Pb SHRIMP ages of detrital granulite-facies rutiles: Further constraints on provenance of Jurassic sandstones on the Norwegian margin[J]. Geological Magazine, 2011, 148(3): 473-480.
[78]Cherniak D J, Manchester J, Watson E B. Zr and Hf diffusion in rutile[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 267-279.
[79]Okay N, Zack T, Okay A, et al. Sinistral transport along the Trans-European Suture Zone: Detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides[J]. Geological Magazine, 2011, 148(3): 380-403.
[80]Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530.
[81]Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3/4): 346-369.
[82]Cherniak D J. Pb diffusion in rutile[J]. Contribution to Mineralogy and Petrology, 2000, 139(2): 198-207.
[83]Vry J K, Baker J A. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile [J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1 807-1 820.
[84]Crowhurst P, Farley K, Ryan C, et al. Potential of rutile as a U-Th-He thermochronometer [J]. Geochimica et Cosmochimica Acta, 2002, 66 (Suppl. 1): A158.
[85]Stockli D F, Farley K A, Walker J D, et al. Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile[J]. Geochimica et Cosmochimica Acta, 2005, 69 (10): A8.
[86]Stockli D F, Wolfe M R, Blackburn T J, et al. He diffusion and (U-Th)/He thermochronometry of rutile[C]∥Eos, Transactions of the American Geophysical Union, Fall Meeting Supplement. 2007, Abstract V23C-1 548.
[87]Aulbach S, O’Reilly S Y, Griffin W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1: 468-472.
[88]Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICPMS: Protocol and applications[J]. Chemical Geology, 2011, 281(1/2): 72-82.
[89]Valley J W. Oxygen isotopes in zircon[C]∥Hanchar J M, Hoskin P W O, eds. Zircon: Reviews in Mineralogy and Geochemistry, 2003, 53: 343-380.
[90]Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580.
[91]Agrinier P. The natural calibration of 18O/16O geothermometers: Application to the quartz-rutile mineral pair[J]. Chemical Geology, 1991, 91(1): 49-64.
[92]Zheng Y F. Calculation of oxygen isotope fractionation in metal oxides [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2 299-2 307.
[93]Chacko T, Hu X, Mayeda T K, et al. Oxygen isotope fractionations in muscovite, phlogopite, and rutile[J].Geochimica et Cosmochimica Acta,1996, 60(14): 2 595-2 608.
[94]Zheng Y F, Fu B, Xiao Y, et al. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains [J].Lithos,1999, 46(4): 677-693.
[95]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime[J].Earth-Science Reviews, 2003, 62(1/2): 105-161. |