地球科学进展 ›› 2012, Vol. 27 ›› Issue (8): 828 -846. doi: 10.11867/j.issn.1001-8166.2012.08.0828

综述与评述 上一篇    下一篇

简星 1, 关平 1*, 张〓巍 1,2   
  1. 1.北京大学造山带与地壳演化教育部重点实验室,地球与空间科学学院,北京 100871; 2.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2012-04-02 修回日期:2015-05-18 出版日期:2012-08-10
  • 通讯作者: 关平(1960-),男,江苏南京人,教授,主要从事沉积地球化学和石油与天然气地质研究. E-mail:pguanl@pku.edu.cn
  • 基金资助:


Rutile: A Sediment Provenance Indicator

Jian Xing 1, Guan Ping 1, Zhang Wei 1,2   

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2012-04-02 Revised:2015-05-18 Online:2012-08-10 Published:2012-08-10


关键词: font-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman', mso-hansi-font-family: 'Times New Roman', mso-bidi-font-family: 'Times New Roman', mso-bidi-theme-font: minor-bidi">金红石, 物源分析, font-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-bidi-theme-font: minor-bidi, mso-fareast-font-family: 宋体" lang="EN-US">Cr-Nbfont-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman', mso-hansi-font-family: 'Times New Roman', mso-bidi-font-family: 'Times New Roman', mso-bidi-theme-font: minor-bidi">判别图解, font-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-bidi-theme-font: minor-bidi, mso-fareast-font-family: 宋体" lang="EN-US">Zrfont-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman', mso-hansi-font-family: 'Times New Roman', mso-bidi-font-family: 'Times New Roman', mso-bidi-theme-font: minor-bidi">温度计, font-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-bidi-theme-font: minor-bidi, mso-fareast-font-family: 宋体" lang="EN-US">U-Pbfont-size: 10.5pt, mso-bidi-font-size: 12.0pt, mso-ansi-language: EN-US, mso-fareast-language: ZH-CN, mso-bidi-language: AR-SA, mso-ascii-font-family: 'Times New Roman', mso-hansi-font-family: 'Times New Roman', mso-bidi-font-family: 'Times New Roman', mso-bidi-theme-font: minor-bidi">定年

Abstract:Rutile has a wide range of applications in earth sciences. In recent years, more and more attention has been paid to the investigation of rutile. Detrital rutile is one of the chemically and physically most stable heavy minerals in sedimentary cycle, and the trace elements in rutile, such as Cr, Nb, Zr, are widely used as monitors of formation conditions and processes of parent-rocks. Therefore, detrital rutile could be used as a reliable provenance indicator and may serve as a key heavy mineral in sediment provenance analysis, especially for the highly diagenetic sandstones. This paper aims to provide an overview of the applications of rutile in provenance analysis. After giving a summary of basic features of rutile and various rutilebearing rocks, four aspects of the applications have been discussed: ① Heavy mineral ratios concerned rutile. For instance, ZTR (the ratio of zircon, tourmaline and rutile in the total nonopaque heavy minerals) and RuZi (the ratio of rutile and zircon) Index. ZTR Index could be used to evaluate the maturity of sandstones, while RuZi Index indicates the source lithology. ② Modified Nb-Cr discrimination diagram for distinguishing detrital rutile from metamafic rocks or metapelitic rocks. The details are described as follows: The lower limit of Nb in metapelitic rutiles should be set at 600×10-6, and detrital rutiles with Cr<Nb + 660×10-6accompanied by Nb > 600×10-6 are interpreted to be derived from metapelitic rocks. ③ Zrinrutile thermometer for calculating the formation temperature of detrital rutiles. Based on the comparison of various published Zr-in-rutile thermometers and provenance analysis case study, we propose the preference of the thermometer of Watson et al. ④ U-Pb dating and (U-Th)/He thermochronology of rutile for understanding the cooling history of the parentrocks. Rutile from highgrade metamorphic rocks can contain sufficient uranium to allow U-Pb geochronology, and the U-Pb age of each detrital rutile represents the time when the rutile reached the closure temperature during the cooling of parent-rock. ⑤ Lu-Hf isotopes of rutile for tracing the history and evolution of the parentrock in the crustmantle system. In summary, the use of detrital rutile in provenance analysis is still in its preliminary stage, hence there are also some unresolved problems which could be the directions and goals of rutile provenance study in the future.


[1]Weltje G J, von Eynatten H. Quantitative provenance analysis of sediments: Review and outlook[J]. Sedimentary Geology, 2004, 171(1/4): 1-11.

[2]Morton A C. Heavy minerals in provenance studies[M]∥Zuffa G G ed. Provenance of Arenites. Reidel, Dordrecht, 1985: 249-277.

[3]Morton A C, Hallsworth C R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256.

[4]Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1/4): 3-29.

[5]Najman Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins[J]. Earth-Science Reviews, 2006, 74(1/2): 1-72.

[6]Wang Zhengjiang, Chen Hongde, Zhang Jinquan. The review and outlook of provenance analysis[J]. Sedimentary Geology and Tethyan Geology,2000, 20(4): 104-110.[汪正江, 陈洪德, 张锦泉. 物源分析的研究与展望[J]. 沉积与特提斯地质, 2000, 20(4): 104-110.]

[7]Zhao Hongge, Liu Chiyang. Approaches and prospects of provenance analysis [J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415.[赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3): 409-415.]

[8]Xu Yajun, Du Yuansheng, Yang Jianghai. Prospects of sediment provenance analysis[J]. Geological Science and Technology Information, 2007, 26(3): 26-32.[徐亚军, 杜远生, 杨江海. 沉积物物源分析研究进展[J]. 地质科技情报, 2007, 26(3): 26-32.]

[9]Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(2): 2 164-2 182.

[10]Mange M A, Morton A C. Geochemistry of heavy minerals[C]∥Mange M A, Wright D T,eds. Heavy Minerals in Use: Developments in Sedimentology, 2007, 58: 345-391.

[11]Wang Jian’gang, Hu Xiumian. Applications of geochemistry and geochronology of accessory minerals in sandstone to provenance analysis[J]. Geological Review,2008, 54(5): 670-678.[王建刚, 胡修棉. 砂岩副矿物的物源区分析新进展[J]. 地质论评,2008, 54(5): 670-678.]

[12]Morton A C, Hallsworth C R. Stability of detrital heavy minerals during burial diagenesis[C]∥Mange M, Wright D T,eds. Heavy Minerals in Use: Developments in Sedimentology, 2007, 58: 215-245.

[13]Force E R. The provenance of rutile[J].Journal of Sedimentary Petrology, 1980, 50(2): 485-488.

[14]Xiao Yilin, Huang Jian, Liu Lei, et al. Rutile: An important “reservoir” for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-416.[肖益林, 黄建, 刘磊, 等. 金红石:重要的地球化学“信息库”[J]. 岩石学报, 2011, 27(2): 398-416.]

[15]Zack T, Luvizotto G L. Application of rutile thermometry to eclogites [J]. Mineralogy and Petrology, 2006, 88(1/2): 69-85.

[16]Zack T, Kronz A, Foley S F, et al. Trace element abundances in rutiles from eclogites and associated garnet mica schists[J]. Chemical Geology, 2002, 184(1/2): 97-122.

[17]Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J].Contributions to Mineralogy and Petrology,2004, 148(4): 471-488.

[18]Zack T, von Eynatten H, Kronz A. Rutile geochemistry and its potential use in quantitative provenance studies[J].Sedimentary Geology, 2004, 171(1/4): 37-58.

[19]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile [J]. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433.

[20]Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers [J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.

[21]Tomkins H S, Powell R, Ellis D J. The pressure dependence of the zirconium-inrutile thermometer[J].Journal of Metamorphic Geology, 2007, 25(6): 703-713.

[22]Gao Xiaoying, Zheng Yongfei. On the Zr-in-rutile and Ti-in-zircon geothermometers[J]. Acta Petrologica Sinica, 2011, 27(2): 417-432.[高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-432.]

[23]Zhang Guibin, Zhang Lifei. The progress and some problems in the study of rutile in metamorphic rocks[J]. Earth Science Frontiers, 2011, 18(2): 26-32.[张贵宾, 张立飞.变质岩中金红石研究进展及存在问题[J]. 地学前缘, 2011, 18(2): 26-32.]

[24]Foley S F, Barth M G, Jenner G A. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938.

[25]Rudnick R L, Barth M, Horn I, et al. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle [J]. Science, 2000, 287(5 451): 278-281.

[26]Stendal H, Toteu S F, Frei R, et al. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa)[J]. Journal of African Earth Sciences, 2006, 44(4/5): 443-458.

[27]Triebold S, von Eynatten H, Luvizotto G L, et al. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany [J]. Chemical Geology, 2007, 244(3/4): 421-436.

[28]Meinhold G, Anders B, Kostopoulos D, et al. Rutile chemistry and thermometry as provenance indicator: An example from Chios Island, Greece[J]. Sedimentary Geology, 2008, 203(1/2): 98-111.

[29]Morton A, Chenery S. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic-Paleocene sandstones of the Norwegian Sea[J]. Journal of Sedimentary Research, 2009, 79(7): 540-553.

[30]Deer W A, Howie R A, Zussman J. An Introduction to the Rock-Forming Minerals (2nd)[M]. UK: Longman Group Ltd., 1992.

[31]Carruzzo S, Clarke D B, Pelrine K M, et al. Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia[J].Canadian Mineralogist,2006, 44(3): 715-729.

[32]Villaseca C, Orejana D, Paterson B A. Zr-LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr-LREE granitic melts?[J].Lithos,2007, 96(3/4): 375-386.

[33]Mposkos E D, Kostopoulos D K. Diamonds, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahighpressure metamorphic province established [J].Earth and Planetary Science Letters, 2001, 192(4): 497-506.

[34]Zhang J, Jin Z, Green H W, et al. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains[J].Chinese Science Bulletin, 2001, 46(7): 592-596.

[35]Meinhold G. Rutile and its applications in Earth sciences[J]. Earth-Science Reviews, 2010, 102(1/2): 1-28.

[36]Xiao Y L, Sun W D, Hoefs J, et al. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): 4 770-4 782.

[37]Jiao S, Guo J, Mao Q, et al. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton[J]. Contributions to Mineralogy and Petrology, 2011, 162(2): 379-393.

[38]Von Quadt A, Moritz R, Peytcheva I, et al. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria [J]. Ore Geology Reviews, 2005, 27(1/4): 95-126.

[39]Okrusch M, Hock R, Schüssler U, et al. Intergrown niobian rutile phases with Sc- and W-rich ferrocolumbite: An electron microprobe and Rietveld study[J]. American Mineralogist, 2003, 88(7): 986-995.

[40]Doroshkevich A G, Wall F, Ripp G S. Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths[J]. Mineralogy and Petrology, 2007, 90(1/2): 19-49.

[41]Downes P J, Wartho J A, Griffin B J. Magmatic evolution and ascent history of the Aries Micaceous Kimberlite, Central Kimberley Basin, western Australia: Evidence from zoned phlogopite Phenocrysts, and UV Laser 40Ar/39Ar analysis of phlogopite-biotite[J]. Journal of Petrology, 2006, 47(9): 1 751-1 783.

[42]Downes P J, Griffin B J, Griffin W L. Mineral chemistry and zircon geochronology of xenocrysts and altered mantle and crustal xenoliths from the Aries micaceous kimberlite: Constraints on the composition and age of the central Kimberley Craton, Western Australia[J]. Lithos, 2007, 93(1/2): 175-198.

[43]Choukroun M, O’Reilly S Y, Griffin W L, et al. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J].Geology, 2005, 33(1): 45-48.

[44]Clark J R, Williams-Jones A E. Rutile as a Potential Indicator Mineral for Metamorphosed Metallic Ore Deposits[R]. Rapport Final de DIVEX, Sous-projet SC2, Montréal, Canada, 2004: 1-17.

[45]Scott K M. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia[J]. Geochemistry: Exploration, Environment, Analysis,2005, 5(3): 247-253.

[46]Scott K M, Radford N W. Rutile compositions at the Big Bell Au deposit as a guide for exploration[J].Geochemistry: Exploration, Environment, Analysis, 2007, 7(4): 353-361.

[47]Cai Jianhui, Wang Liben, Li Jinping. Mineralogical features of retiles of different modes of occurrence and genetic types and their research significance[J]. Mineral Deposits, 2008, 27(4): 531-538.[蔡剑辉, 王立本, 李锦平. 不同产状和成因类型的金红石矿物学特征及其研究意义[J]. 矿床地质, 2008, 27(4): 531-538.]

[48]Zhao Yiming. Genetic types, distribution and main geological characteristics of rutile deposits [J]. Mineral Deposits, 2008, 27(4): 520-530. [赵一鸣. 金红石矿床的类型、分布及主要地质特征[J]. 矿床地质, 2008, 27(4): 520-530.]

[49]Clarke D B, Carruzzo S. Assimilation of country-rock ilmenite and rutile in the South Mountain Batholith, Nova Scotia, Canada[J].Canadian Mineralogist, 2007, 45(1): 31-42.

[50]Chen Z Y, Li Q L. Zr-in-rutile thermometry in eclogite at Jinheqiao in the Dabie orogen and its geochemical implications[J]. Chinese Science Bulletin, 2008, 53(5): 768-776.

[51]Luvizotto G L, Zack T. Nb and Zr behavior in rutile during high-grade metamorphismand retrogression: An example from the Ivrea Verbano Zone[J]. Chemical Geology, 2009, 261(3/4): 303-317.

[52]Zheng Y F, Gao X Y, Chen R X, et al. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism [J]. Journal of Asian Earth Sciences, 2011, 40(2): 427-451.

[53]Luvizotto G L, Zack T, Triebold S, et al. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: Example from the Erzgebirge, Germany[J]. Mineralogy and Petrology, 2009, 97(3/4) 233-249.

[54]Ye K, Cong B L, Ye D N. The possible subduction of continental material to depths greater than 200 km[J].Nature, 2000, 407(6 805): 734-736.

[55]Zhang Z M, Liou J G, Zhan X D, et al. Petrogenesis of Maobei rutile eclogites from the southern Sulu Ultrahigh-pressure Metamorphic Belt, eastern China[J]. Journal of Metamorphic Geology, 2006, 24(8): 727-741.

[56]Meyer M, John T, Brandt S, et al. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia) [J]. Lithos, 2011, 126(3/4): 388-401.

[57]Hill E, Day J M D, Davidson J, et al. Petrogenesis of Apollo 17 Mare Basalts—Revisited[R].Lunar and Planetary Science XXXVII, 2006: 2067.

[58]Hubert J F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Petrology, 1962, 32(3): 440-450.

[59]Morton A C, Whitham A G, Fanning C M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data[J]. Sedimentary Geology, 2005, 182(1/4): 3-28.

[60]Chen Zhenyu, Zeng Lingsen, Li Xiaofeng, et al. Trace elements of rutile in eclogites from CCSD main-hole: A LA-ICPMS study and its implication[J]. Acta Petrologica Sinica, 2009, 25(7): 1 645-1 657.[陈振宇, 曾令森, 李晓峰, 等. CCSD主动榴辉岩中金红石微量元素特征:LA-ICPMS分析及其意义[J]. 岩石学报, 2009, 25(7): 1 645-1 657.]

[61]Wang Rucheng, Wang Shuo, Qiu Jiansheng, et al. Rutile in the UHP eclogites from the CCSD main drill hole, Donghai, eastern China: Trace-element geochemistry and metallogenetic implications [J]. Acta Petrologica Sinica, 2005, 21(2): 465-474.[王汝成, 王硕, 邱检生, 等. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J]. 岩石学报, 2005, 21(2): 465-474.]

[62]Yu Jinjie, Chen Zhenyu, Wang Ping’an, et al. Trace elements geochemistry of eclogites in the northern Jiangsu province, eastern China [J]. Acta Petrologica Sinica, 2006, 22(7): 1 883-1 890.[余金杰, 陈振宇, 王平安, 等. 苏北榴辉岩中金红石的微量元素地球化学特征[J]. 岩石学报, 2006, 22(7): 1 883-1 890.]

[63]Yu Jinjie, Xu Jue, Chen Zhenyu, et al. Trace element geochemistry of retiles in the eclogites from the Chinese Continental Scientific Drilling Project main hole [J].Acta Geologica Sinica, 2006, 80(12): 1 835-1 841.[余金杰, 徐珏, 陈振宇, 等. 中国大陆科学钻探工程主孔榴辉岩中金红石微量元素地球化学特征[J]. 地质学报, 2006, 80(12): 1 835-1 841.]

[64]Wang Qinghai, Xu Wenliang, Pei Fuping, et al. Zr-in-rutile thermometry and geochemical characteristics of trace element in rutile from eclogite inclusions of Mesozoic intrusive complexes in Xuzhou-Huainian area, China [J]. Acta Petrologica Sinica, 2009, 25(9): 2 132-2 140.[王清海, 许文良, 裴福萍, 等.金红石中锆含量温度计及其微量元素地球化学特征——来自徐淮地区中生代侵入杂岩中榴辉岩类包体的信息[J]. 岩石学报, 2009, 25(9): 2 132-2 140.]

[65]Bakun-Czubarow N, Kusy D, Fiala J. Trace element abundances in rutile from eclogite-granulite rock series of the Zfote mountains in the Sudetes[J]. Mineralogical Society of Poland, Special Papers, 2005, 26: 132-136.

[66]Massonne H J, Czambor A. Geochemical signatures of Variscan eclogites from the Saxonian Erzgebirge, central Europe[J]. Chemie der Erde-Geochemistry, 2007, 67(1): 69-83.

[67]Sobolev N V, Yefimova E S. Composition and petrogenesis of Ti-oxides associated with diamonds[J]. International Geology Review, 2000, 42(8): 758-767.

[68]Degeling H S. Zr Equilibria in Metamorphic Rocks[D]. Canberra: Australian National University, 2003.

[69]Spear F S, Wark D A, Cheney J T, et al. Zr-in-rutile thermometry in blueschists from Sifnos, Greece [J]. Contributions to Mineralogy and Petrology, 2006, 152(3): 375-385.

[70]Zhang G B, Ellis D, Christy A, et al. Zr-in-rutile thermometry in HP/UHP eclogites from Western China [J]. Contributions to Mineralogy and Petrology, 2010, 160(3): 427-439.

[71]Mezger K, Hanson G N, Bohlen S R. High-precision U-Pb ages of metamorphic rutiles: Application to the cooling history of high-grade terranes[J]. Earth and Planetary Science Letters, 1989, 96(1/2): 106-118.

[72]Li Q, Li S, Zheng Y F, et al. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history[J]. Chemical Geology, 2003, 200(3/4): 255-265.

[73]Li Qiuli, Li Shuguang, Zhou Hongying, et al. U-Pb age of rutile in UHP eclogites: Evidence of rapid cooling[J]. Chinese Science Bulletin, 2001, 46(19): 1 655-1 658.[李秋立, 李曙光, 周红英, 等. 超高压榴辉岩中金红石U-Pb年龄:快速冷却的证据[J]. 科学通报, 2001, 46(19):1 655-1 658.]

[74]Allen C M, Campbell I H. Spot dating of detrital rutile by LA-Q-ICP-MS: A powerful provenance tool[C]∥GSA Denver Annual Meeting.2007: No. 196-12.

[75]Birch W D, Barron L M, Magee C, et al. Gold- and diamond-bearing White Hills Gravel, St Arnaud district, Victoria: Age and provenance based on U-Pb dating of zircon and rutile[J]. Australian Journal of Earth Sciences, 2007, 54(4): 609-628.

[76]Harrison T M, Trail D, Schmitt A K, et al. Rutile 207Pb-206Pb ages in the Jack Hills quartzite, Western Australia[J]. Geochimica et Cosmochimica Acta, 2007, 71 (15):A383.

[77]Meinhold G, Morton A C, Fanning C M, et al. U-Pb SHRIMP ages of detrital granulite-facies rutiles: Further constraints on provenance of Jurassic sandstones on the Norwegian margin[J]. Geological Magazine, 2011, 148(3): 473-480.

[78]Cherniak D J, Manchester J, Watson E B. Zr and Hf diffusion in rutile[J]. Earth and Planetary Science Letters, 2007, 261(1/2): 267-279.

[79]Okay N, Zack T, Okay A, et al. Sinistral transport along the Trans-European Suture Zone: Detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides[J]. Geological Magazine, 2011, 148(3): 380-403.

[80]Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530.

[81]Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3/4): 346-369.

[82]Cherniak D J. Pb diffusion in rutile[J]. Contribution to Mineralogy and Petrology, 2000, 139(2): 198-207.

[83]Vry J K, Baker J A. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile [J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1 807-1 820.

[84]Crowhurst P, Farley K, Ryan C, et al. Potential of rutile as a U-Th-He thermochronometer [J]. Geochimica et Cosmochimica Acta, 2002, 66 (Suppl. 1): A158.

[85]Stockli D F, Farley K A, Walker J D, et al. Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile[J]. Geochimica et Cosmochimica Acta, 2005, 69 (10): A8.

[86]Stockli D F, Wolfe M R, Blackburn T J, et al. He diffusion and (U-Th)/He thermochronometry of rutile[C]∥Eos, Transactions of the American Geophysical Union, Fall Meeting Supplement. 2007, Abstract V23C-1 548.

[87]Aulbach S, O’Reilly S Y, Griffin W L, et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1: 468-472.

[88]Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICPMS: Protocol and applications[J]. Chemical Geology, 2011, 281(1/2): 72-82.

[89]Valley J W. Oxygen isotopes in zircon[C]∥Hanchar J M, Hoskin P W O, eds. Zircon: Reviews in Mineralogy and Geochemistry, 2003, 53: 343-380.

[90]Valley J W, Lackey J S, Cavosie A J, et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150(6): 561-580.

[91]Agrinier P. The natural calibration of 18O/16O geothermometers: Application to the quartz-rutile mineral pair[J]. Chemical Geology, 1991, 91(1): 49-64.

[92]Zheng Y F. Calculation of oxygen isotope fractionation in metal oxides [J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2 299-2 307.

[93]Chacko T, Hu X, Mayeda T K, et al. Oxygen isotope fractionations in muscovite, phlogopite, and rutile[J].Geochimica et Cosmochimica Acta,1996, 60(14): 2 595-2 608.

[94]Zheng Y F, Fu B, Xiao Y, et al. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains [J].Lithos,1999, 46(4): 677-693.

[95]Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime[J].Earth-Science Reviews, 2003, 62(1/2): 105-161.

[1] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[2] 方伟华,石先武. 面向灾害风险评估的热带气旋路径及强度随机模拟综述[J]. 地球科学进展, 2012, 27(8): 866-875.
[3] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.