地球科学进展 ›› 2012, Vol. 27 ›› Issue (8): 847 -856. doi: 10.11867/j.issn.1001-8166.2012.08.0847

综述与评述 上一篇    下一篇

热液金矿金的溶解和迁移研究进展
胡庆成,吕新彪*,高奇,刘洪,朱江,杨恩林   
  1. 中国地质大学(武汉)资源学院,湖北 武汉 430074
  • 收稿日期:2012-03-19 修回日期:2012-05-25 出版日期:2012-08-10
  • 通讯作者: 吕新彪(1962-),男,湖北黄梅人,教授,博士生导师,主要从事矿床学、矿产普查及资源管理工程方面研究 E-mail:lvxb_01@163.com
  • 基金资助:

    “十二五”国家科技支撑计划项目“新疆重要成矿带战略性矿产资源预测与靶区评价”(编号:2011BAB06B00)资助

Dissolution and Migration of Au in Hydrothermal :Ore Deposit: A Review

Hu Qingcheng, Lü Xinbiao, Gao Qi, Liu Hong, Zhu Jiang, Yang Enlin   

  1. Faculty of Mineral Resources, China University of Geosciences, Wuhan 430074, China
  • Received:2012-03-19 Revised:2012-05-25 Online:2012-08-10 Published:2012-08-10

Au-S和Au-Cl配合物是金在热液中迁移的2种主要形式。近中性含硫热液中主要为Au(HS)-2,而Au-S二次中性配合物(如Au(H2S)HS0)可能是酸性热液中金的主要迁移载体。低硫高盐度高温热液中金主要以AuCl-2形式迁移。一些高温环境(如火山喷气)下,金可能以中性配合物如AuCl0和AuS·(H2O)m等形式进入气相流体。金以胶体形式运移可解释一些金矿空间上的大规模均匀展布。金也可能与As和Sb形成Au-S-As及Au-S-Sb的复合配合物协同迁移。指出了解成矿事实、改进实验设备、完善热力学参数、反应动力学及金的气相、表面过程迁移机制等将是今后研究的主要方面。

Au-S and Au-Cl complexes are the two main hydrothermal species that transport gold. The species Au(HS)-2 is dominant in near neutral solution while complexes such as Au(H2S)HS0 with twofold stoichiometry may be important in acidic conditions. In solution with low sulfur and high chloride concentration, AuCl-2 is predominant under elevated temperatures. In contrast, some other neutral compounds like AuCl0,AuS·(H2O)m are suggested to distribute in gaseous fluids with respect to high-temperature circumstances (e.g. volcanic exhalation). The promoted ore fluid’s capacity to retain gold in solution over large transport distances involved could be explained by the mechnism that gold is likely to dispersing and precipitating in soution by colloid grains. Moreover, gold has the potential to comigrate with As and Sb, which combine with Au and S to shape Au-S-As and Au-S-Sb compound complexes, respectively. Future prospects for study on dissolving and migrating of gold are suggested to focus on realizing the truth of gold ore-forming geologically, improving experimental apparatuses, complementing thermodynamics parameters, and investigating kinetics of metaldissolving reactions, as well as subjects about gold transporting by vapour compounds and surface-driven process.

中图分类号: 

[1]Yu Jianmin. A Handbook of Synthesis of Precious Metals Compounds and Complexes[M]. Beijing: Chemical Industry Press,2009:2.[余建民. 贵金属化合物及配合物合成手册[M]. 北京: 化学工业出版社出版,2009: 2.]

[2]Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85: 3 533-3 539.

[3]Liu Yingjun, Ma Dongsheng. Geochemistry of Gold[M]. Beijing: Science Press, 1991: 11-28.[刘英俊, 马东升.金的地球化学[M]. 北京: 科学出版社, 1991: 11-28.]

[4]Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37: 379-399.

[5]Shenberge D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53: 269-278.

[6]Hayashi K, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250-350 ℃[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 111-2 126.

[7]Pan P, Wood S A. Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. II. Results at 200 to 350 ℃ and saturated vapor pressure[J]. Mineralium Deposita, 1994, 29: 373-390.

[8]Benning L G, Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150~400 ℃ and 500~1 500 bar[J].Geochimica et Cosmochimica Acta, 1996, 60: 1 849-1 871.

[9]Baranova N N, Zotov A V. Stability of gold sulfide species (AuHS0(aq) and Au(HS)-2 (aq)) at 300, 350 ℃ and 500 bar: Experimental study[J]. Mineralogical Magazine, 1998, 62: 116-117.

[10]Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulfide complex of gold (AuHS0) at 350 to 450 ℃ and 500 bar[J]. Geochimica et  Cosmochimica Acta, 1998, 62: 2 931-2 947.

[11]Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J]. Science, 1999, 284: 2 159-2 163.

[12]Fleet M E, Knipe S W. Solubility of native gold in H-O-S fluids at 100-400 ℃ and high H2S content[J]. Journal of  Solution Chemistry, 2000, 29: 1 143-1 157.

[13]Dadze T P, Kashirtseva G A, Ryzhenko B N. Gold solubility and species in aqueous sulfide solutions at T=300 ℃[J]. Geochemistry International, 2000, 38: 708-712.

[14]Baranova N, Osadchii E, Gurevich V, et al. Experimental determination of the standard thermodynamic properties of solid phases in the Au-Ag-S system[J]. Geochimica et Cosmochimica Acta, 2002, 66: 50.

[15]Stefnsson A, Seward T M. Gold(I) complexing in aqueous sulphide solutions to 500 ℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 121-4 143.

[16]Tagirov B R, Salvi S, Schott J, et al. Experimental study of gold hydrosulphide complexing in aqueous solutions at 350-500 ℃, 500 and 1000 bar using mineral buffers[J]. Geochimica et  Cosmochimica Acta, 2005, 69: 2 119-2 132.

[17]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et  Cosmochimica Acta, 2009, 73: 5 406-5 427.

[18]Pan P, Wood S A. Gold-chloride complexes in very acidic aqueous solutions and at temperatures 25-300 ℃: A laser Raman spectroscopic study[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 365-2 371.

[19]Gammons C H, Williams-Jones A E. The disproportionation of gold(I) chloride complexes at 25 to 200 ℃[J]. Geochimica et  Cosmochimica Acta, 1997, 61: 1 971-1 983.

[20]Murphy P J, Stevens G, LaGrange M S. The effects of temperature and pressure on gold-chloride speciation in hydrothermal fluids: A Raman spectroscopic study[J]. Geochimica et  Cosmochimica Acta, 2000, 64: 479-494.

[21]Stefánsson A, Seward T M. Stability of chloride gold(I) complexes in aqueous solutions from 300 to 600 ℃ and from 500 to 1800 bar[J]. Geochimica et  Cosmochimica Acta, 2003, 67: 4 559-4 576.

[22]Pokrovski G S, Tagirov B R, Schott J, et al. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[J].Chemical Geology, 2009, 259: 17-29.

[23]Tossell J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et  Cosmochimica Acta, 1996, 60: 17-29.

[24]Liu X D, Lu X C, Wang R C, et al. Speciation of gold in hydrosulphide rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J]. Geochimica et Cosmochimica Acta, 2011, 75: 185-194.

[25]Render P J, Seward T M. The absorption of thiogold(Ⅰ) complexes by amorphous As2S3 and Sb2S3 at 25 and 90 ℃[J]. Geochim et Cosmochim Acta, 1989, 53: 255-267.

[26]Berndt M E, Buttram T, Earley D III, et al. The solubility of gold polysulfide complexes in aqueous sulfide solutions: 100 to 150 ℃ and 100 bar[J]. Geochimica et  Cosmochimica Acta, 1994, 58: 587-594.

[27]Pokrovski G S, Dubrovinsky L S. The S-3 ion is stable in geological fluid at elevated temperatures and pressures[J]. Science, 2011, 331: 1 052-1 054.

[28]Seward T M. The hydrothermal chemistry of gold and its implications for ore formation: Boiling and conductive cooling as examples[J]. Economic Geology, 1989, 6: 398-404.

[29]Chen X, Chu W S, Chen D L, et al. Correlation between local structure and molar ratio of Au (III) complexes in aqueous solution: An XAS investigation[J]. Chemical Geology, 2009, 268: 74-80.

[30]Leng Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore forming fluids and the vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review,2009,55(1): 100-112.[冷成彪, 张兴春, 王守旭, 等. 岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评,2009,55(1): 100-112.]

[31]Zezin D Yu, Migdisov A A, Anthony E, et al. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et  Cosmochimica Acta, 2011, 75(18): 5 140-5 153.

[32]Zhang Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor and related ore genesis [J].Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]

[33]Zezin D Yu, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et  Cosmochimica Acta, 2011, 71: 3 070-3 081.

[34]Herrington R J, Wilkinson J J. Colloidal gold and silica in mesothermal vein systems[J].Geology, 1983, 21: 539-542.

[35]Mikucki E J. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review[J]. Ore Geology Reviews, 1998, 13: 307-321.

[36]Kang Ruhua. Analysis of exploration prespectives of gold-antimony deposits in Baimashan-Longshan EW-striking structural zone, Hunan province[J].Geology and Mineral Resources of South China, 2002, 1: 57-61.[康如华. 湖南白马山—龙山东西向构造带金锑矿找矿前景分析[J]. 华南地质与矿产, 2002, 1: 57-61.]

[37]Pokrovski G S, Zakirov I V, Roux J, et al. Experimental study of arsenic speciation in vapor phase to 500 °C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 453-3 480.

[38]Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 3: 374-385.[聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 3: 374-385.]

[39]Zheng Shigan. Geolgical characteristics of longshan gold antimony deposit and resource forecast[J]. Geology and Mineral Resources of South China, 2006, 4: 14-18.[郑时干. 龙山金锑矿地质特征及深部找矿预测[J]. 华南地质与矿产, 2006, 4: 14-18.]

[40]Neiva A M R, Andras P, Ramos J M F. Antimony quartz and antimony-gold quartz veins from northern Portugal[J]. Ore Geology Reviews, 2008, 34: 533-546.

[41]Yin Huafeng, Liu Guangzhao, Liu Yufeng. Metallogenic regularities and ore Genesis of tungsten gold-antimony ore belt in Xuefengshan[J]. West-China Exploration Engineering, 2009, 21: 115-118.[尹华锋, 刘光昭, 刘玉峰. 雪峰山钨金锑矿带成矿规律和矿床成因[J]. 西部探矿工程, 2009, 21: 115-118.]

[42]Yang Z S, Hou Z Q, Meng X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogeny[J]. Ore Geology Reviews, 2009, 36: 194-212.

[43]Zhang Gangyang, Zheng Youye, Zhang Jianfang, et al. Ore-control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica,2011, 7: 2 143-2 149. [张刚阳, 郑有业, 张建芳,等. 西藏沙拉岗锑矿控矿构造及成矿时代约束[J]. 岩石学报, 2011, 7: 2 143-2 149.]

[44]Obolensky A A, Gushchina L V, Borisenko A S, et al. Computer thermodynamic modeling of the transport and deposition of Sb and Au during the formation of Au-Sb deposits[J]. Russian Geology and Geophysics, 2009, 50: 950-965.

[45]An F, Zhu Y F. Native antimony in the Baogutu gold deposit (west Junggar, NW China): Its occurrence and origin[J]. Ore Geology Reviews, 2010, 37: 214-223.

[46]Pokrovski G S, Kara S, Roux J. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids[J]. Geochimica et  Cosmochimica Acta, 2002, 66: 2 361-2 378.

[47]Helz G R, Tossell J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4 457-4 468.

[48]Spycher N F, Reed M H. As(III) and Sb(III) sulfide complexes: An evaluation of stoichiometry and stability from existing experimental data[J]. Geochimica et  Cosmochimica Acta, 1989, 53: 2 185-2 194.

[49]Mosselmans J F W, Helz G R, Pattrick R A D, et al. A study of speciation of Sb in bisulfide solutions by X-ray absorption spectroscope[J]. Applied Geochemistry, 2000, 15: 879-889.

[50]Shikina N D, Zotov A V. Solubility of stibnite (Sb2S3) in water and hydrogen sulfide solutions at temperature of 200-300 ℃ under vapor-saturated conditions and a pressure of 500 bar[J]. Geochemistry International, 1999, 37: 82-86.

[51]Zotov A V, Shikina N D, Akinfiev N N. Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3  at hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1 821-1 836.

[52]Krupp R E. Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constant from 25 ℃ to 350 ℃[J]. Geochimica et Cosmochimica Acta,1988, 52: 3 005-3 015.

[53]Tossell J A. The speciation of Sb in sulfidic solutions: A theoretical study[J]. Geochimica et  Cosmochimica Acta,1994, 58: 5 093-5 104.

[54]Wood S A. Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions. I. Speciation of Sb in alkaline sulfide solutions at 258 ℃[J]. Geochimica et  Cosmochimica Acta, 1989, 53: 237-244.

[55]Sherman D M, Ragnarsdottir K V, Oelkers E H. Antimony transport in hydrothermal solutions: An EXAFS study of antimony(V) complexation in alkaline sulfide and sulfide-chloride brines at temperatures from 25 °C to 300 °C at Psat[J]. Chemical Geology, 2000, 167: 161-167.

[56]Tossell J A. Calculation of the energies for oxidation of Sb(III) sulfides by elemental S and polysulfides in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2003, 67: 3 347-3 354.

[57]Pokrovski G S, Borisova A Yu, Roux J, et al. Antimony speciation in saline hydrothermal fluids: A combined  X-ray absorption fine structure and solubility study[J]. Geochimica et  Cosmochimica Acta, 2006, 70: 4 196-4 214.

[58]Williams-Jones A E, Norman C. Controls of mineral  parageneses in the system Fe-Sb-S-O[J]. Economic Geology, 1997, 92: 308-324.

[59]Smith R L J, Fang Z. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems[J]. Journal of Supercritical Fluids, 2009, 47: 431-446.

[60]Bassett W A, Anderson A J, Mayanovic R A, et al. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions[J]. Chemical Geology, 2000, 167: 3-10.

[1] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[2] 覃荣高,邱仁敏,黎明,曹广祝,王金生,仵彦卿. 包气带—含水层地下水污染风险评估研究进展[J]. 地球科学进展, 2020, 35(2): 111-123.
[3] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[4] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[5] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[6] 文新宇, 张虎才, 常凤琴, 李华勇, 段立曾, 吴汉, 毕荣鑫, 路志明, 张扬, 欧阳椿陶. 泸沽湖水体垂直断面季节性分层[J]. 地球科学进展, 2016, 31(8): 858-869.
[7] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[8] 黄小平, 张景平, 江志坚. 人类活动引起的营养物质输入对海湾生态环境的影响机理与调控原理[J]. 地球科学进展, 2015, 30(9): 961-969.
[9] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[10] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[11] 喻立珊, 曹国亮, 许模, 刘杰, 郑春苗. 离心实验在污染物迁移研究中的应用[J]. 地球科学进展, 2014, 29(2): 227-237.
[12] 李玉红, 詹力扬, 陈立奇. 北冰洋CH 4研究进展[J]. 地球科学进展, 2014, 29(12): 1355-1361.
[13] 杜志恒,效存德,李向应. 生物活性元素Fe来源及其溶解度影响因素研究综述[J]. 地球科学进展, 2013, 28(5): 597-607.
[14] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[15] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2): 253-261.
阅读次数
全文


摘要