[1]Yu Jianmin. A Handbook of Synthesis of Precious Metals Compounds and Complexes[M]. Beijing: Chemical Industry Press,2009:2.[余建民. 贵金属化合物及配合物合成手册[M]. 北京: 化学工业出版社出版,2009: 2.]
[2]Pearson R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85: 3 533-3 539.
[3]Liu Yingjun, Ma Dongsheng. Geochemistry of Gold[M]. Beijing: Science Press, 1991: 11-28.[刘英俊, 马东升.金的地球化学[M]. 北京: 科学出版社, 1991: 11-28.]
[4]Seward T M. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et Cosmochimica Acta, 1973, 37: 379-399.
[5]Shenberge D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53: 269-278.
[6]Hayashi K, Ohmoto H. Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250-350 ℃[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 111-2 126.
[7]Pan P, Wood S A. Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. II. Results at 200 to 350 ℃ and saturated vapor pressure[J]. Mineralium Deposita, 1994, 29: 373-390.
[8]Benning L G, Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150~400 ℃ and 500~1 500 bar[J].Geochimica et Cosmochimica Acta, 1996, 60: 1 849-1 871.
[9]Baranova N N, Zotov A V. Stability of gold sulfide species (AuHS0(aq) and Au(HS)-2 (aq)) at 300, 350 ℃ and 500 bar: Experimental study[J]. Mineralogical Magazine, 1998, 62: 116-117.
[10]Gibert F, Pascal M L, Pichavant M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulfide complex of gold (AuHS0) at 350 to 450 ℃ and 500 bar[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2 931-2 947.
[11]Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions[J]. Science, 1999, 284: 2 159-2 163.
[12]Fleet M E, Knipe S W. Solubility of native gold in H-O-S fluids at 100-400 ℃ and high H2S content[J]. Journal of Solution Chemistry, 2000, 29: 1 143-1 157.
[13]Dadze T P, Kashirtseva G A, Ryzhenko B N. Gold solubility and species in aqueous sulfide solutions at T=300 ℃[J]. Geochemistry International, 2000, 38: 708-712.
[14]Baranova N, Osadchii E, Gurevich V, et al. Experimental determination of the standard thermodynamic properties of solid phases in the Au-Ag-S system[J]. Geochimica et Cosmochimica Acta, 2002, 66: 50.
[15]Stefnsson A, Seward T M. Gold(I) complexing in aqueous sulphide solutions to 500 ℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 2004, 68: 4 121-4 143.
[16]Tagirov B R, Salvi S, Schott J, et al. Experimental study of gold hydrosulphide complexing in aqueous solutions at 350-500 ℃, 500 and 1000 bar using mineral buffers[J]. Geochimica et Cosmochimica Acta, 2005, 69: 2 119-2 132.
[17]Pokrovski G S, Tagirov B R, Schott J, et al. A new view on gold speciation in sulfur-bearing hydrothermal fluids from in situ X-ray absorption spectroscopy and quantum-chemical modeling[J]. Geochimica et Cosmochimica Acta, 2009, 73: 5 406-5 427.
[18]Pan P, Wood S A. Gold-chloride complexes in very acidic aqueous solutions and at temperatures 25-300 ℃: A laser Raman spectroscopic study[J]. Geochimica et Cosmochimica Acta, 1991, 55: 2 365-2 371.
[19]Gammons C H, Williams-Jones A E. The disproportionation of gold(I) chloride complexes at 25 to 200 ℃[J]. Geochimica et Cosmochimica Acta, 1997, 61: 1 971-1 983.
[20]Murphy P J, Stevens G, LaGrange M S. The effects of temperature and pressure on gold-chloride speciation in hydrothermal fluids: A Raman spectroscopic study[J]. Geochimica et Cosmochimica Acta, 2000, 64: 479-494.
[21]Stefánsson A, Seward T M. Stability of chloride gold(I) complexes in aqueous solutions from 300 to 600 ℃ and from 500 to 1800 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67: 4 559-4 576.
[22]Pokrovski G S, Tagirov B R, Schott J, et al. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids[J].Chemical Geology, 2009, 259: 17-29.
[23]Tossell J A. The speciation of gold in aqueous solution: A theoretical study[J]. Geochimica et Cosmochimica Acta, 1996, 60: 17-29.
[24]Liu X D, Lu X C, Wang R C, et al. Speciation of gold in hydrosulphide rich ore-forming fluids: Insights from first-principles molecular dynamics simulations[J]. Geochimica et Cosmochimica Acta, 2011, 75: 185-194.
[25]Render P J, Seward T M. The absorption of thiogold(Ⅰ) complexes by amorphous As2S3 and Sb2S3 at 25 and 90 ℃[J]. Geochim et Cosmochim Acta, 1989, 53: 255-267.
[26]Berndt M E, Buttram T, Earley D III, et al. The solubility of gold polysulfide complexes in aqueous sulfide solutions: 100 to 150 ℃ and 100 bar[J]. Geochimica et Cosmochimica Acta, 1994, 58: 587-594.
[27]Pokrovski G S, Dubrovinsky L S. The S-3 ion is stable in geological fluid at elevated temperatures and pressures[J]. Science, 2011, 331: 1 052-1 054.
[28]Seward T M. The hydrothermal chemistry of gold and its implications for ore formation: Boiling and conductive cooling as examples[J]. Economic Geology, 1989, 6: 398-404.
[29]Chen X, Chu W S, Chen D L, et al. Correlation between local structure and molar ratio of Au (III) complexes in aqueous solution: An XAS investigation[J]. Chemical Geology, 2009, 268: 74-80.
[30]Leng Chengbiao, Zhang Xingchun, Wang Shouxu, et al. Advances of researches on the evolution of ore forming fluids and the vapor transport of metals in magmatic-hydrothermal systems[J]. Geological Review,2009,55(1): 100-112.[冷成彪, 张兴春, 王守旭, 等. 岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展[J]. 地质论评,2009,55(1): 100-112.]
[31]Zezin D Yu, Migdisov A A, Anthony E, et al. The solubility of gold in H2O-H2S vapour at elevated temperature and pressure[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 140-5 153.
[32]Zhang Ronghua, Hu Shumin, Zhang Xuetong. Transportation of Au and Cu by vapor and related ore genesis [J].Mineral Deposits, 2006, 25(6): 705-714.[张荣华, 胡书敏, 张雪彤. 金铜在气相中的迁移实验及矿石的成因[J]. 矿床地质, 2006, 25(6): 705-714.]
[33]Zezin D Yu, Migdisov A A, Williams-Jones A E. The solubility of gold in hydrogen sulphide gas: An experimental study[J]. Geochimica et Cosmochimica Acta, 2011, 71: 3 070-3 081.
[34]Herrington R J, Wilkinson J J. Colloidal gold and silica in mesothermal vein systems[J].Geology, 1983, 21: 539-542.
[35]Mikucki E J. Hydrothermal transport and depositional processes in Archean lode-gold systems: A review[J]. Ore Geology Reviews, 1998, 13: 307-321.
[36]Kang Ruhua. Analysis of exploration prespectives of gold-antimony deposits in Baimashan-Longshan EW-striking structural zone, Hunan province[J].Geology and Mineral Resources of South China, 2002, 1: 57-61.[康如华. 湖南白马山—龙山东西向构造带金锑矿找矿前景分析[J]. 华南地质与矿产, 2002, 1: 57-61.]
[37]Pokrovski G S, Zakirov I V, Roux J, et al. Experimental study of arsenic speciation in vapor phase to 500 °C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases[J]. Geochimica et Cosmochimica Acta, 2002, 66: 3 453-3 480.
[38]Nie Fengjun, Hu Peng, Jiang Sihong, et al. Type and temporal-spatial distribution of gold and antimony deposits (prospects) in Southern Tibet, China[J]. Acta Geologica Sinica, 2005, 3: 374-385.[聂凤军, 胡朋, 江思宏, 等. 藏南地区金和锑矿床(点)类型及其时空分布特征[J]. 地质学报, 2005, 3: 374-385.]
[39]Zheng Shigan. Geolgical characteristics of longshan gold antimony deposit and resource forecast[J]. Geology and Mineral Resources of South China, 2006, 4: 14-18.[郑时干. 龙山金锑矿地质特征及深部找矿预测[J]. 华南地质与矿产, 2006, 4: 14-18.]
[40]Neiva A M R, Andras P, Ramos J M F. Antimony quartz and antimony-gold quartz veins from northern Portugal[J]. Ore Geology Reviews, 2008, 34: 533-546.
[41]Yin Huafeng, Liu Guangzhao, Liu Yufeng. Metallogenic regularities and ore Genesis of tungsten gold-antimony ore belt in Xuefengshan[J]. West-China Exploration Engineering, 2009, 21: 115-118.[尹华锋, 刘光昭, 刘玉峰. 雪峰山钨金锑矿带成矿规律和矿床成因[J]. 西部探矿工程, 2009, 21: 115-118.]
[42]Yang Z S, Hou Z Q, Meng X J, et al. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogeny[J]. Ore Geology Reviews, 2009, 36: 194-212.
[43]Zhang Gangyang, Zheng Youye, Zhang Jianfang, et al. Ore-control structural and geochronologic constrain in Shalagang antimony deposit in southern Tibet, China[J]. Acta Petrologica Sinica,2011, 7: 2 143-2 149. [张刚阳, 郑有业, 张建芳,等. 西藏沙拉岗锑矿控矿构造及成矿时代约束[J]. 岩石学报, 2011, 7: 2 143-2 149.]
[44]Obolensky A A, Gushchina L V, Borisenko A S, et al. Computer thermodynamic modeling of the transport and deposition of Sb and Au during the formation of Au-Sb deposits[J]. Russian Geology and Geophysics, 2009, 50: 950-965.
[45]An F, Zhu Y F. Native antimony in the Baogutu gold deposit (west Junggar, NW China): Its occurrence and origin[J]. Ore Geology Reviews, 2010, 37: 214-223.
[46]Pokrovski G S, Kara S, Roux J. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2 361-2 378.
[47]Helz G R, Tossell J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4 457-4 468.
[48]Spycher N F, Reed M H. As(III) and Sb(III) sulfide complexes: An evaluation of stoichiometry and stability from existing experimental data[J]. Geochimica et Cosmochimica Acta, 1989, 53: 2 185-2 194.
[49]Mosselmans J F W, Helz G R, Pattrick R A D, et al. A study of speciation of Sb in bisulfide solutions by X-ray absorption spectroscope[J]. Applied Geochemistry, 2000, 15: 879-889.
[50]Shikina N D, Zotov A V. Solubility of stibnite (Sb2S3) in water and hydrogen sulfide solutions at temperature of 200-300 ℃ under vapor-saturated conditions and a pressure of 500 bar[J]. Geochemistry International, 1999, 37: 82-86.
[51]Zotov A V, Shikina N D, Akinfiev N N. Thermodynamic properties of the Sb(III) hydroxide complex Sb(OH)3 at hydrothermal conditions[J]. Geochimica et Cosmochimica Acta, 2003, 67: 1 821-1 836.
[52]Krupp R E. Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constant from 25 ℃ to 350 ℃[J]. Geochimica et Cosmochimica Acta,1988, 52: 3 005-3 015.
[53]Tossell J A. The speciation of Sb in sulfidic solutions: A theoretical study[J]. Geochimica et Cosmochimica Acta,1994, 58: 5 093-5 104.
[54]Wood S A. Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions. I. Speciation of Sb in alkaline sulfide solutions at 258 ℃[J]. Geochimica et Cosmochimica Acta, 1989, 53: 237-244.
[55]Sherman D M, Ragnarsdottir K V, Oelkers E H. Antimony transport in hydrothermal solutions: An EXAFS study of antimony(V) complexation in alkaline sulfide and sulfide-chloride brines at temperatures from 25 °C to 300 °C at Psat[J]. Chemical Geology, 2000, 167: 161-167.
[56]Tossell J A. Calculation of the energies for oxidation of Sb(III) sulfides by elemental S and polysulfides in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2003, 67: 3 347-3 354.
[57]Pokrovski G S, Borisova A Yu, Roux J, et al. Antimony speciation in saline hydrothermal fluids: A combined X-ray absorption fine structure and solubility study[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4 196-4 214.
[58]Williams-Jones A E, Norman C. Controls of mineral parageneses in the system Fe-Sb-S-O[J]. Economic Geology, 1997, 92: 308-324.
[59]Smith R L J, Fang Z. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems[J]. Journal of Supercritical Fluids, 2009, 47: 431-446.
[60]Bassett W A, Anderson A J, Mayanovic R A, et al. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solution up to supercritical conditions[J]. Chemical Geology, 2000, 167: 3-10. |